
 Irfan Ali / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.706-711

706 | P a g e

Bit-Error-Rate (BER) Simulation Using MATLAB

Irfan Ali
M.Tech. Scholar, Jagan Nath University, Jaipur (India)

Abstract
This paper introduce the Bit error rate,

(BER) simulation using Mat lab. Bit error rate,

(BER) is a key parameter that is used in assessing

systems that transmit digital data from one

location to another. Systems for which bit error

rate, is applicable include radio data links as well

as fiber optic data systems, Ethernet, or any

system that transmits data over a network of

some form where noise, interference, and phase

jitter may cause quality degradation of the digital

signal. Mat lab is an ideal tool for simulating

digital communications systems, thanks to its

easy scripting language and excellent data

visualization capabilities. One of the most

frequent simulation tasks in the field of digital

communications is bit-error-rate testing of

modems. The bit-error-rate performance of a

receiver is a figure of merit that allows different

designs to be compared in a fair manner.

Performing bit-error-rate testing with Mat lab is

very simple, but does require some prerequisite

knowledge.

Keywords: BER, Mat lab, Eb/No,

I. INTRODUCTION
As the name implies, a bit error rate (BER)

is defined as the rate at which errors occur in a

transmission system. This can be directly translated

into the number of errors that occur in a string of a

stated number of bits. The definition of bit error rate

can be translated into a simple formula:

 BER = number of errors / total number of bits

sent

If the medium between the transmitter and

receiver is good and the signal to noise ratio is high,
then the bit error rate will be very small possibly

insignificant and having no noticeable effect on the

overall system However if noise can be detected,

then there is chance that the bit error rate will need

to be considered. Although there are some

differences in the way these systems work and the

way in which bit error rate is affected, the basics of

bit error rate itself are still the same. When data is

transmitted over a data link, there is a possibility of

errors being introduced into the system. If errors are

introduced into the data, then the integrity of the
system may be compromised. As a result, it is

necessary to assess the performance of the system,

and bit error rate, BER, provides an ideal way in

which this can be achieved. Unlike many other

forms of assessment, bit error rate, BER assesses the

full end to end performance of a system including

the transmitter, receiver and the medium between

the two. In this way, bit error rate, BER enables the

actual performance of a system in operation to be

tested, rather than testing the component parts and

hoping that they will operate satisfactorily when in

place. The main reasons for the degradation of a

data channel and the corresponding bit error rate,

BER is noise and changes to the propagation path

(where radio signal paths are used). Both effects

have a random element to them, the noise following

a Gaussian probability function while the
propagation model follows a Rayleigh model. This

means that analysis of the channel characteristics are

normally undertaken using statistical analysis

techniques. For fiber optic systems, bit errors mainly

result from imperfections in the components used to

make the link. These include the optical driver,

receiver, connectors and the fiber itself. Bit errors

may also be introduced as a result of optical

dispersion and attenuation that may be present. Also

noise may be introduced in the optical receiver

itself. Typically these may be photodiodes and
amplifiers which need to respond to very small

changes and as a result there may be high noise

levels present. Another contributory factor for bit

errors is any phase jitter that may be present in the

system as this can alter the sampling of the data.

Signal to noise ratios and Eb/No figures are

parameters that are more associated with radio links

and radio communications systems. In terms of this,

the bit error rate, BER, can also be defined in terms

of the probability of error or POE. The determine

this, three other variables are used. They are the

error function, erf, the energy in one bit, Eb, and the
noise power spectral density (which is the noise

power in a 1 Hz bandwidth), No. It should be noted

that each different type of modulation has its own

value for the error function. This is because each

type of modulation performs differently in the

presence of noise. In particular, higher order

modulation schemes (e.g. 64QAM, etc) that are able

to carry higher data rates are not as robust in the

presence of noise. Lower order modulation formats

(e.g. BPSK, QPSK, etc.) offer lower data rates but

are more robust. The energy per bit, Eb, can be
determined by dividing the carrier power by the bit

rate and is a measure of energy with the dimensions

of Joules. No is a power per Hertz and therefore this

has the dimensions of power (joules per second)

divided by seconds). Looking at the dimensions of

the ratio Eb/No all the dimensions cancel out to give

a dimensionless ratio. It is important to note that

 Irfan Ali / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.706-711

707 | P a g e

POE is proportional to Eb/No and is a form of signal

to noise ratio.

II. FACTORS AFFECTING BIT ERROR RATE
It can be seen from using Eb/No, that the

bit error rate, BER can be affected by a number of

factors. By manipulating the variables that can be

controlled it is possible to optimize a system to

provide the performance levels that are required.

This is normally undertaken in the design stages of a

data transmission system so that the performance

parameters can be adjusted at the initial design

concept stages. The interference levels present in a

system are generally set by external factors and

cannot be changed by the system design. However it

is possible to set the bandwidth of the system. By

reducing the bandwidth the level of interference can
be reduced. However reducing the bandwidth limits

the data throughput that can be achieved. It is also

possible to increase the power level of the system so

that the power per bit is increased. This has to be

balanced against factors including the interference

levels to other users and the impact of increasing the

power output on the size of the power amplifier and

overall power consumption and battery life, etc.

Lower order modulation schemes can be used, but

this is at the expense of data throughput. It is

necessary to balance all the available factors to
achieve a satisfactory bit error rate. Normally it is

not possible to achieve all the requirements and

some trade-offs are required. However, even with a

bit error rate below what is ideally required, further

trade-offs can be made in terms of the levels of error

correction that are introduced into the data being

transmitted. Although more redundant data has to be

sent with higher levels of error correction, this can

help mask the effects of any bit errors that occur,

thereby improving the overall bit error rate.

III. SIMULATION TOOL
MATLAB (matrix laboratory) is a

calculating environment and fourth-generation

programming language. Developed by Math Works,

MATLAB allows matrix manipulations, plotting of

functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with

programs written in other languages, including C,

C++, Java, and Fortran. Although Matlab is
intended primarily for numerical computing, an

optional toolbox uses the MuPAD symbolic engine,

allowing access to symbolic Computing capabilities.

An additional package, Simulink, adds graphical

multi-domain simulation and Model-Based Design

for dynamic and embedded systems. In 2004,

Matlab had around one million users across industry

and academia. Matlab users come from various

backgrounds of engineering, science, and

economics. Matlab is widely used in academic and

research institutions as well as industrial enterprises.

Matlab is an ideal tool for simulating digital

communications systems, thanks to its easy scripting

language and excellent data visualization

capabilities. One of the most frequent simulation

tasks in the field of digital communications is bit-

error- rate testing of modems. The bit-error-rate

performance of a receiver is a figure of merit that

allows different designs to be compared in a fair
manner. Performing bit-error-rate testing with Mat

lab is very simple, but does require some

prerequisite knowledge. In Matlab, we represent

continuous-time signals with a sequence of

numbers, or samples, which are generally stored in a

vector or an array. Before we can performance bit-

error-rate test, we must precisely understand the

meaning of these samples. We must know what

aspect of the signal the value of these samples

represents. We must also know the time interval

between successive samples. For communications

simulations, the numeric value of the sample
represents the amplitude of the continuous-time

signal at a specific instant in time. We assume this

amplitude is a measurement of voltage, though it

could just as easily be a measurement of current.

The time between successive samples is, by

definition, Ts. This tells us how often the continuous

time signal was sampled. Instead of specifying Ts ,

we usually specify the sampling frequency, fs ,

which is the inverse of Ts. For convenience, we will

always associate a sample value of 1.0 with a

voltage of exactly one volt. Furthermore, we will
always assume a resistance of exactly one ohm. This

allows us to dispense with the notion of resistance

altogether. For our simulations, we will represent a

continuous time signal as an array of samples, the

numeric value of which is in units of volts,

referenced to a resistance of one ohm. Usually, the

sampling frequency is 8 KHz, but other sampling

frequencies are also in common use, so the sampling

frequency should always be specified. Suppose we

have a signal x(n), where n is an index of the sample

number. We define the instantaneous power of the

signal as:
 Pins ≡ x2(n).

In other words, the instantaneous power of a sample

is just the value of that sample squared. Since the

units of the sample are volts, the units of the power

are watts. A far more useful quantity is the average

power, which is simply the average of the

instantaneous power of every sample in the signal.

For signal x(n), of N samples, we have:

 N

Pave ≡ Σ x2(n). (1)

 n=1

Note that this is simply the sum of the square of all

samples, divided by the number of samples. One

 Irfan Ali / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.706-711

708 | P a g e

way to compute the average power, „pav‟, of signal

„x‟, using Matlab is:

 pav= sum(x.^2)/length(x).

If our signal has a mean of zero, or in other

words, no DC component, we can find the average
power of the signal by taking its variance. This

works because:

 σ(x) ≡ E[x2]−(E[x])2,

which states: the variance of a signal is the

mean of its square, minus the square of its mean. If

the mean is zero, the variance is just the mean of the

square, exactly the same as the average power.

Therefore, if a signal has no DC value, we can

compute its average power by finding its variance.

We need to be careful using the variance to find the
average power of a signal. This technique only

works if the mean of the signal is zero. If the mean

is not zero, we must use (1), which always works,

regardless of whether the mean is zero or not. By

definition, power is the time derivative of energy; or

equivalently, energy is the time integral of power.

For sampled signals, integration reduces to a

summation. Since energy is the product of power

and time, the total energy of a signal must be equal

to its average power multiplied by its duration.

Furthermore, the duration of a signal is its length in
samples, divided by the sampling frequency, in

samples per second. Therefore:

 Etot = Pave · t

 = . ,

 = . (2)

The Matlab command for finding the total energy,

„et‟, of signal „x‟, that has sampling rate „fs‟, is:

 et= sum(x.^2)/ fs.

IV. SIMULATION PROCEDURE
Bit-error-rate testing requires a transmitter,

a receiver, and a channel. We begin by generating a

long sequence of random bits, which we provide as

input to the transmitter. The transmitter modulates

these bits onto some form of digital signalling,

which we will send though a simulated channel. Bit-

error-rate performance is usually depicted on a two

dimensional graph. The ordinate is the normalized

signal-to-noise ratio (SNR) expressed as Eb /N0: the

energy-per-bit divided by the one-sided power

spectral density of the noise, expressed in decibels

(dB). The abscissa is the bit-error-rate, a

dimensionless quantity, usually expressed in powers
of ten. To create a graph of bit-error-rate versus

SNR, we plot a series of points. Each of these points

requires us to run a simulation at a specific value of

SNR. To obtain the bit-error-rate at a specific SNR,

we follow the procedure given below

A. Run Transmitter

The first step in the simulation is to use the

transmitter to create a digitally modulated signal

from a sequence of pseudo-random bits. Once we
have created this signal, x(n), we need to make some

measurements of it.

B. Establish SNR

The signal-to-noise-ratio (SNR), Eb /N0, is

usually expressed in decibels, but we must convert

decibels to an ordinary ratio before we can make

further use of the SNR. If we set the SNR to m dB,

then Eb/N0= 10m/10. Using Matlab, we find the

ratio, „ebn0‟, from the SNR in decibels, „snrdb‟, as:

 ebn0= 10^(snrdb/10).

 Note that Eb/N0 is a dimensionless quantity.

C. Determine Eb

Energy-per-bit is the total energy of the

signal, divided by the number of bits contained in

the signal. We can also express energy-per-bit as the

average signal power multiplied by the duration of

one bit. Either way, the expression for Eb is:

 Eb =

where N is the total number of samples in

the signal, and fbit is the bit rate in bits-per-second.

Using Matlab, we find the energy-per-bit, „eb‟, of
our transmitted signal, „x‟, that has a bit rate „fb‟, as:

 eb = sum(x.^2)/(length(x)*fb).

Since our signal, x(n), is in units of volts, the units

of Eb are Joules.

D. Calculate N0

With the SNR and energy-per-bit now

known, we are ready to calculate N0, the one-sided

power spectral density of the noise. All we have to

do is divide Eb by the SNR, providing we have
converted the SNR from decibels to a ratio. Using

Matlab, we find the power spectral density of the

noise, „n0‟, given energy- per-bit „eb‟, and SNR

„ebn0‟, as:

 n0 = eb/ebn0.

The power spectral density of the noise has units of

Watts per Hertz.

E. Calculate σn

The one-sided power spectral density of the
noise, N0, tells us how much noise power is present

in a 1.0 Hz bandwidth of the signal. In order to find

 Irfan Ali / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.706-711

709 | P a g e

the variance, or average power, of the noise, we

must know the noise bandwidth. For a real signal,

x(n), sampled at fs Hz, the noise bandwidth will be

half the sampling rate. Therefore, we find the

average power of the noise by multiplying the

power spectral density of the noise by the noise

bandwidth:

 σn = ,

where σn is the noise variance in W, and N0

is the one-sided power spectral density of the noise

inW/Hz. Using Matlab, the average noise power,

„pn‟, of noise having power spectral density „n0‟,

and sampling frequency „fs‟, is calculated as:

 pn= n0*fs/2.

The average noise power is in units of Watts.

F. Generate Noise
Although the communications toolbox of

Matlab has functions to generate additive white

Gaussian noise, we will use one of the standard

built-in functions to generate AWGN. Since the

noise has a zero mean, its power and its variance are

identical. We need to generate a noise vector that is

the same length as our signal vector x(n), and this

noise vector must have variance σn W. The Matlab

function „randn‟ generates normally distributed

random numbers with a mean of zero and a variance

of one. We must scale the output so the result has

the desired variance, σn. To do this, we simply
multiply the output of the „randn‟ function by p¾n.

We can generate the noise vector „n‟, as:

 n = sqrt(pn)*randn(1,length(x));.

Like the signal vector, the samples of the noise

vector have units of volts.

G. Add Noise

We create a noisy signal by adding the

noise vector to the signal vector. If we are running a
fixed-point simulation, we will need to scale the

resulting sum by the reciprocal of the maximum

absolute value, so the sum stays within amplitude

limits of ±1.0. Otherwise, we can simply add the

signal vector „x‟ to the noise vector „n‟ to obtain the

noisy signal vector „y‟ as:

 y = x+n;.

H. Run Receiver

Once we have created a noisy signal vector,

we use the receiver to demodulate this signal. The

receiver will produce a sequence of demodulated
bits, which we must compare to the transmitted bits,

in order to determine how many demodulated bits

are in error.

I. Determine Offset

Due to filtering and other delay-inducing

operations typical of most receivers, there will be an

offset between the received bits and the transmitted

bits. Before we can compare the two bit sequences

to check for errors, we must first determine this
offset. One way to do this is by correlating the two

sequences, then searching for the correlation peak.

Suppose our transmitted bits are stored in vector

„tx‟, and our received bits are stored in vector „rx‟.

The received vector should contain more bits than

the transmitted vector, since the receiver will

produce (meaningless) outputs while the filters are

filling and flushing. If the length of the transmitted

bit vector is lt x , and the length of the received

vector is lrx , the range of possible offsets is

between zero and lrx −lt x −1. We can find the offset

by performing a partial cross-correlation between
the two vectors. Using Matlab, we can create a

partial cross-correlation, „cor‟, from bit vectors „tx‟

and „rx‟, with the following loop:

 for lag= 1 : length(rx)−length(tx)−1,

 cor(lag)= tx*rx(lag : length(tx)−1+lag)′;

 end.

The resulting vector, „cor‟, is a partial

cross-correlation of the transmitted and received

bits, over the possible range of lags: 0 : lrx −lt x −1.
We need to find the location of the maximum value

of „cor‟, since this will tell us the offset between the

bit vectors. Since Matlab numbers array elements as

1 : N instead of as 0 :N−1, we need to subtract one

from the index of the correlation peak. Using

Matlab, we find the correct bit offset, „off‟, as:

 off= find(cor== max(cor))−1.

J. Create Error Vector

Once we know the offset between the

transmitted and received bit vectors, we are ready to
calculate the bit errors. For bit values of zero and

one, a simple difference will reveal bit errors.

Wherever there is a bit error, the difference between

the bits will be ±1, and wherever there is not a bit

error, the difference will be zero. Using Matlab, we

calculate the error vector, „err‟, from the transmitted

bit vector, „tx‟, and the received bit vector, „rx‟,

having an offset of „off‟, as:

 err = tx−rx(off+1 : length(tx)+off);.

K. Count Bit Errors

The error vector, „err‟ contains non-zero

elements in the locations where there were bit

errors. We need to tally the number of non-zero

elements, since this is the total number of bit errors

in this simulation. Using Matlab, we calculate the

 Irfan Ali / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.706-711

710 | P a g e

total number of bit errors, „te‟, from the error vector

„err‟ as:

 te= sum(abs(err)).

L. Calculate Bit-Error-Rate

Each time we run a bit-error-rate

simulation, we transmit and receive a fixed number
of bits. We determine how many of the received bits

are in error, then compute the bit-error-rate as the

number of bit errors divided by the total number of

bits in the transmitted signal. Using Matlab, we

compute the bit error-rate, „ber‟, as:

ber= te/length(tx),

where „te‟ is the total number of bit errors, and „tx‟

is the transmitted bit vector.

V. SIMULATION RESULTS
Performing a bit-error-rate simulation can

be a lengthy process. We need to run individual

simulations at each SNR of interest. We also need to

make sure our results are statistically significant.

A. Statistical Validity

When the bit-error-rate is high, many bits

will be in error. The worst-case bit-error-rate is 50

percent, at which point, the modem is essentially
useless. Most communications systems require bit-

error-rates several orders of magnitude lower than

this. Even a bit-error-rate of one percent is

considered quite high. We usually want to plot a

curve of the bit-error-rate as a function of the SNR,

and include enough points to cover a wide range of

bit-error-rates. At high SNRs, this can become

difficult, since the bit-error-rate becomes very low.

For example, a bit-error-rate of 10−6 means only one

bit out of every million bits will be in error. If our

test signal only contains 1000 bits, we will most
likely not see an error at this Bit-error-rate. In order

to be statistically significant, each simulation we run

must generate some number of errors. If a

simulation generates no errors, it does not mean the

bit-error-rate is zero; it only means we did not have

enough bits in our transmitted signal. As a rule of

thumb, we need about 100 (or more) errors in each

simulation, in order to have confidence that our bit-

error-rate is statistically valid. At high SNRs, this

can require a test signal containing millions, or even

billions of bits.

B. Plotting

Once we perform enough simulations to

obtain valid results at all SNRs of interest, we will

plot the results. We begin by creating vectors for

both axes. The X-axis vector will contain SNR

values, while the Y-axis vector will contain bit-

error- rates. The Y-axis should be plotted on a

logarithmic scale, whereas the X-axis should be

plotted on a linear scale. Supposing our SNR values

are in vector „xx‟, and our corresponding bit-error-

rate values are in vector „yy‟, we use Matlab to plot:

 semilogy (xx,yy,′o′).

Fig. 1, 2 and 3 shows example of plot of the results

of a bit-error-rate simulation at different Eb/N0.

 Figure 1

 Figure 2

 Figure 3

Matlab Code For BER Simulation

N = 10^6 % number of bits or symbols

rand('state',100); % initializing the rand() function

randn('state',200); % initializing the randn() function

% Transmitter

ip = rand(1,N)>0.5; % generating 0,1 with equal

probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 1

n = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)]; % white

gaussian noise, 0dB variance

 Irfan Ali / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 3, Issue 1, January -February 2013, pp.706-711

711 | P a g e

Eb_N0_dB = [-3:10]; % multiple Eb/N0 values

for ii = 1:length(Eb_N0_dB)

 % Noise addition

 y = s + 10^(-Eb_N0_dB(ii)/20)*n; % additive

white gaussian noise

 % receiver - hard decision decoding

 ipHat = real(y)>0;

 % counting the errors

 nErr(ii) = size(find([ip- ipHat]),2);

end

simBer = nErr/N; % simulated ber

theoryBer = 0.5*erfc(sqrt(10.^(Eb_N0_dB/10))); %

theoretical ber

% plot

close all

figure

semilogy(Eb_N0_dB,theoryBer,'b.-');

hold on

semilogy(Eb_N0_dB,simBer,'mx-');

axis([-3 10 10^-5 0.5])

grid on

legend('theory', 'simulation');

xlabel('Eb/No, dB');

ylabel('Bit Error Rate');
title('Bit error probability curve for BPSK

modulation');

Figure 4

VI. CONCLUSION
Bit error rate BER is a parameter which

gives an excellent indication of the performance of a

data link such as radio or fibre optic system. As one

of the main parameters of interest in any data link is

the number of errors that occur, the bit error rate is a

key parameter. A knowledge of the BER also

enables other features of the link such as the power

and bandwidth, etc to be tailored to enable the

required performance to be obtained. Bit error rate

(BER) testing, is a powerful methodology for end to

end testing of digital transmission systems. A BER

test provides a measurable and useful indication of

the performance of the performance of the system

that can be directly related to its operational

performance. If the BER rises too high then the

system performance will noticeably degrade. If it is
within limits then the system will operate

satisfactorily. We simulate the Bit-error-rate

performance of digital communication system by

adding a controlled amount of noise to the

transmitted signal. This noisy signal then becomes

the input to the receiver. The receiver demodulates

the signal, producing a sequence of recovered bits.

Finally, we compare the received bits to the

transmitted bits, and tally up the errors through BER

versus Eb/N0 plot.

REFERENCES
[1] JAMES E. GILLEY: “BIT-ERROR-RATE

SIMULATION USING MAT LAB”,

TRANSCRYPT INTERNATIONAL, INC.,

AUGUST 19, 2003.

[2] WIKIPEDIA, FREE ENCYCLOPAEDIA,

ARTICLE ON BIT ERROR RATE

HTTP://EN.WIKIPEDIA.ORG/WIKI/BIT_ERROR

_RATE.

[3] WIKIPEDIA, FREE ENCYCLOPAEDIA,
ARTICLE ON SIGNAL TO NOISE RATIO

HTTP://EN.WIKIPEDIA.ORG/WIKI/S/N_RATIO

[4] JOHN. G. PROAKIS, “DIGITAL

COMMUNICATIONS”, MCGRAW-HILL

SERIES IN ELECTRICAL AND COMPUTER

ENGINEERING, THIRD ED.

[5] THE MATH WORKS, INC., THE STUDENT

EDITION OF MATLAB VERSION 7 USER'S

GUIDE, PRENTICE HALL, ISBN 0-13-

184979-4, 1995.

[6] D. HANSEL MAN AND B. LITTLEFIELD,
MASTERING MATLAB 7. A

COMPREHENSIVE TUTORIAL AND

REFERENCE, PRENTICE HALL, UPPER

SADDLE RIVER, NJ, 1998

[7] B. SKLAR, DIGITAL COMMUNICATIONS:

FUNDAMENTALS AND APPLICATIONS, CH. 4,

ENGLEWOOD CLIFFS, NJ: PRENTICE HALL,

1988.

[8] M. JERUCHIM, “TECHNIQUES FOR

ESTIMATING THE BIT ERROR RATE IN THE

SIMULATION OF DIGITAL COMMUNICATION

SYSTEMS," IEEE J. SELECT. AREAS

COMMUNICATION., VOL. SAC-2, PP. 153-

170, JAN.1994.

