Nawneet Hooda / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.610-612 On Integrability and L^p-convergence of modified trigonometric Sums

Nawneet Hooda

Department of Mathematics,

DCR University of Sci& Tech, Murthal, Sonepat-131039 (INDIA)

Abstract

We study modified cosine and sine sums and obtain necessary and sufficient conditions for the integrability and L^p -convergence of these modified sums. We deduce the result of Ul'yanov [4, cf.1] as corollary from our results. We also obtain stronger result than that of Rees and Stanojević [3, Theorem 1].

1. Introduction

Let us consider the series

(1.1) $f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx$, (1.2) $\overline{f}(x) = \sum_{k=1}^{\infty} a_k \sin kx$.

We know that the functions
$$f(x)$$
 and $\overline{f}(x)$ defined by the series (1.1) and (1.2) for $a_k \downarrow 0$ can be non-summable. Ul'yanov [4, cf. 1] obtained following result concerning the integrability of | f | and | \overline{f} |^p, for any p provided $0 and $< a_k > a$ null sequence of bounded variation.$

Theorem A. If the sequence $\langle a_k \rangle$ satisfies the condition $a_k \rightarrow 0$ and $\Sigma |\Delta a_k| < +\infty$, then for any p, 0 , we have

$$\lim_{n\to\infty} \int_{-\pi}^{\pi} \left| f(x) - S_n(x) \right|^p dx = 0,$$
$$\lim_{n\to\infty} \int_{-\pi}^{\pi} \left| \bar{f}(x) - \bar{S}_n(x) \right|^p dx = 0,$$

where $S_n(x)$ and $\overline{S}_n(x)$ are the partial sums of the series (1.1) and (1.2).

Concerning the series (1.2), the following theorem is well known:

2000 AMS Mathematics Subject Classification : 42A20, 42A32.

Theorem B [1]. Let
$$\overline{f}(x) = \sum_{n=1}^{\infty} a_n \sin nx$$
 where $\Delta a_n \ge 0$ and $\lim_{n\to\infty} a_n = 0$, then $\overline{f} \in L^1[0, \pi]$.

However, there is no known analogue of theorem B for the cosine series.

Hooda [2] *et al.* introduced new modified cosine sums as

(1.3)
$$f_n(x) = \left(\frac{1}{2}\right) \left[a_1 + \sum_{k=0}^n \Delta^2 a_k\right] + \sum_{k=1}^n \left[a_{k+1} + \sum_{j=k}^n \Delta^2 a_j\right] \cos kx,$$

and here sine sums as

(1.4)
$$\bar{f}_n(x) = \sum_{k=1}^n \left[a_{k+1} + \sum_{j=k}^n \Delta^2 a_j \right] \sin kx$$
,

and studied these sums for convergence. We give the necessary and sufficient conditions for the integrability and L^p -convergence of these modified sums. We deduce Theorem A as corollary of our theorems, obtain stronger result than that of Rees of Stanojević [3, Theorem1] and an analogue of theorem B for the cosine series. However, we shall consider only (1.3), as the results for (1.4) can be obtained by slight modifications.

2. Main Results

We prove the following results :

Theorem 1. If the sequence $\{a_n\}$ satisfies the conditions $a_n \rightarrow 0$ and $\Sigma |\Delta a_n| < \infty$, then for any p, 0 ,

$$\lim_{n\to\infty} \int_{-\pi}^{\pi} |f(x) - f_n(x)|^p dx = 0,$$

$$\lim_{n\to\infty} \int_{-\pi}^{\pi} |\bar{f}(x) - \bar{f}_n(x)|^p dx = 0.$$

Nawneet Hooda / International Journal of Engineering Research and Applications 611 (IJERA) ISSN: 2248-9622 www.ijera.com

A) ISSN: 2248-9622 www.ijera.c Vol. 2, Issue 6, November- December 2012, pp. en Now,

Theorem 2. Let $a_n \rightarrow 0$, then

(i)
$$f(x) = \lim_{n \to \infty} f_n(x)$$
 exists, and

(ii) f
$$\epsilon L^1[0,\pi]$$
.

This result is stronger than Theorem 1 of Rees and Stanojević [3] and provides an analogue of Theorem B for the cosine series for these types of sums.

3. Proofs of Main Results

Proof of Theorem 1. We have

(3.1)
$$f_n(x) = \left(\frac{1}{2}\right) \left[a_1 + \sum_{k=0}^n \Delta^2 a_k\right] + \sum_{k=1}^n \left[a_{k+1} + \sum_{j=k}^n \Delta^2 a_j\right] \cos kx$$

$$(1/2)[a_0 - a_{n+1} + a_{n+2}]$$

+
$$\sum_{k=1}^{n} [a_k - a_{n+1} + a_{n+2}] \cos kx$$

$$= (a_0/2) - (1/2)\Delta a_{n+1} + \sum_{k=1}^{n} a_k \cos kx$$

$$-\Delta a_{n+1} \sum_{k=1}^{n} \cos kx$$

$$= (a_0/2) + \sum_{k=1}^{n} a_k \cos kx -\Delta a_{n+1} \left(\sum_{k=1}^{n} \cos kx + (\frac{1}{2}) \right)$$

 $= S_n(x) - \Delta a_{n+1} D_n(x) ,$

where $D_n(x) = (1/2) + \cos x + \dots + \cos nx$ represents Dirichlet's kernel.

Using Abel's transformation, we get

(3.2)
$$f_n(x) = \sum_{k=1}^{n-1} \Delta a_k D_k(x)$$

+ $a_n D_n(x) - \Delta a_{n+1} D_n(x)$
= $\sum_{k=1}^n \Delta a_k D_k(x) + a_{n+2} D_n(x)$.

Now,

$$\int_{-\pi}^{\pi} |\Delta a_{n+1} D_n(x)|^p dx$$

$$\begin{split} f(x)-f_n(x) = & \sum_{k=n+1}^\infty \quad \Delta a_k D_k(x) \\ & \quad - \quad a_{n+2} \, D_n(x) \text{ for } x \neq 0 \,. \end{split}$$

This means

and t

 $|\mathbf{f}(\mathbf{x}) - \mathbf{f}_{\mathbf{n}}(\mathbf{x})|^{\mathbf{p}}$

$$\leq \left(\frac{2}{|x|}\right)^p \left[\sum_{k=n+1}^{\infty} |\Delta a_k| + |a_{n+2}|\right]$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x})|^{p} d\mathbf{x}$$

$$\leq 2^{p} \left[\left| a_{n+2} \right| + \sum_{k=n+1}^{\infty} \left| \Delta a_{k} \right| \right]^{p} \int_{-\pi}^{\pi} \frac{dx}{x^{p}}$$

 $\rightarrow 0$ as $n \rightarrow \infty$.

A similar argument is also valid for $\overline{f}(x) - \overline{f}_n(x)$.

Corollary 1. From relation (3.1), we have

$$\int_{\pi}^{\pi} |f(x) - S_n(x)|^p dx$$

$$= \int_{-\pi}^{\pi} |f(x) - f_n(x) + f_n(x) - S_n(x)|^p dx$$

$$\leq \int_{-\pi}^{\pi} |f(x) - f_n(x)|^p dx$$

$$+\int_{-\pi} |f_n(x) - S_n(x)|^p dx$$

$$= \int_{-\pi}^{\pi} |f(\mathbf{x}) - f_n(\mathbf{x})|^p d\mathbf{x}$$
$$+ \int_{-\pi}^{\pi} |\Delta a_{n+1} D_n(\mathbf{x})|^p d\mathbf{x}$$

Nawneet Hooda / International Journal of Engineering Research and Applications612(IJERA)ISSN: 2248-9622www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.

$$\leq \int_{-\pi}^{\pi} \left(\frac{2}{|x|}\right)^{p} \left|\Delta a_{n+1}\right|^{p} \mathrm{d}x$$

$$=2^p \left|\Delta a_{n+1}\right|^p \int\limits_{-\pi}^{\pi} (dx/x^p)$$

 $\rightarrow 0$ as $n \rightarrow \infty$.

Also $\lim_{n\to\infty} \int_{-\pi}^{\pi} |f(x) - f_n(x)|^p dx = 0$ by our

Theorem 1. Hence the corollary follows.

Corollary2.
$$\lim_{n\to\infty} \int_{-\pi}^{\pi} |\overline{f}(x) - \overline{S}_n(x)|^p dx =$$

follows by the similar arguments as in corollary 1.

Corollaries (1) and (2) yield Theorem A of Ul'yanov.

Proof. of Theorem 2. (i) We have

 $f_{n}(x) = \sum_{k=0}^{n} \Delta a_{k} D_{k}(x) + a_{n+2} D_{n}(x)$ Using Abel's transformation,

(3.3)
$$f_n(x) = \sum_{k=0}^{n-1} (k+1)\Delta^2 a_k F_k(x)$$

+ (n+1) $\Delta a_n F_n(x) + a_{n+2} D_n(x)$

where $F_n(x)$ denotes Féjer kernel.

Since $F_n(x) = O(1/nx^2)$ for $x \neq 0$, and $a_n \rightarrow 0$, the

last two terms of (3.3) tend to zero. Also

$$\begin{split} 0 &\leq \sum_{k=0}^{n-1} \Delta^2 a_k \ (k+1) \ F_k(x) \\ &\leq \ (C/ \ x^2) \ (a_0 - \Delta a_n), \end{split}$$

so $\lim_{n\to\infty} \sum_{k=0}^{n}$ (k+1) $\Delta^2 a_k F_k(x)$ always exists for $x \neq 0$ and $a_n \rightarrow 0$ which proves the first part.

(ii) Now ,
$$f(x) = \sum_{k=0}^{\infty} \Delta^2 a_k (k+1) F_k(x), x \neq 0$$

Integrating term by term, we get

1

$$f(x) dx = (\pi/2) \sum_{k=0}^{n} (k+1) \Delta^2 a_k$$

$$= (\pi/2) a_0 < \infty$$
.

References

0

- [1] N.K. Bari, A Treatise on trigonometricseries (London : Pregamon Press) Vol. II (1964).
- [2] N.Hooda ,B.Ram and S.S.Bhatia, On L¹-Convergence of a modified cosine sum, *Soochow J. Math.*28(3)(2002),305-310.
- [3] C.S. Rees and Č.V. Stanojević, Necessary and sufficient condition for Integrability of certain cosine sums, J. Math. Anal. Appl. 43(1973), 579-586.
- [4] P.L. Ul'yanov, Application of Aintegration to a class of trigonometric series (in Russian) MC 35 (1954), 469-490.