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Abstract 
The aim of  this paper is to study the L1-

convergence of  modified cosine sums [4] . The 

results obtained generalize the results of [4] and 

deduce a well known result [6]  as a corollary.  

 

 

1.   Introduction. Consider the cosine series  

(1.1)           
2

a 0
 + 



1k
ka cos kx .  

Let Sn(x) denote the partial sum of (1.1) and 

 f(x) = limn Sn(x) . 

 The problem of L1  convergence, via Fourier 

coefficients, consists of finding the properties of 

Fourier coefficients such that the necessary and 

sufficient condition for  

|| Sn(x)  f(x) || =  o(1),   n, is given in the 

form an log n = o(1),  n , where     

 || . || denotes the L1-norm.  
 

Convex  sequence. A sequence {ak} is said to be 

convex if 

 

2ak  0  for every k where 2ak =    ak   ak+1  

and  ak = ak  ak+1. 

 

Quasi- Convex  sequence  A sequence {ak} is said 

to be quasi-convex if   

 




1k

k
 

| 2ak | < . 

The class of all such sequences is an extension of 

the class of convex null sequences.  The class of 

quasi-convex sequences is a subclass of BV class 

( 


1k

|ak | < ), the class of all null sequences of 

bounded variation. 
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The class S[5.cf .1]. A null sequence {ak} belongs 

to the class S if there exists a sequence {Ak} such 

that  

(1.2)     Ak  0 ,  k   ,  

 

(1.3)           


0k
kA  <  ,  

 

(1.4)             | ak |   Ak  for all k .  

 

The class S is  the extension of the class of quasi-

convex sequences.   Since a quasi-convex null 

sequence satisfies conditions of the class S, if we 

choose   An =  


nm

|
 

2am | . 

 

Concerning the convergence of (1.1) in L-metric, 

the following results are known.  

 

Theorem A [1].  If {ak} is a null convex  sequence, 

then the cosine series (1.1) is the Fourier series of 

its sum f, and  

                   || Sn(x)   f(x) || = o(1), n 

 if and only if        

                   an log n =  o(1), n .  

 

Theorem B [1].    If ak =  o(1), k   , and the 

series 


1k

k
 

| 2ak |  < .  then the cosine series 

(1.1) is the Fourier series of its sum f, and  

                    || Sn(x)   f(x) || =  o(1),  n,         

if and only if 

                  an log n = o(1),   n  

 

Teljakovskii generalized Theorem B by establishing 

the following Theorem :  

 

Theorem C[6].  Let {ak} belong to the class S.  

Then the cosine series (1.1) is the Fourier series of 

its sum f and  

                  || Sn(x)  f(x) || = o(1),    n  

if and only if  

                   an log n  =  o(1), n . 

  

 

 

Teljakovskii, thus showed that the class S is also a 

class of L1-convergence which in turn led to 

numerous, more general results. 
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 Kumari and Ram  [4] introduced a new modified 

cosine sum 

fn(x) =   

    
2

a 0
 + 



n

1k




n

kj

 








j

a j
k cos kx ,  

and proved      

 

Theorem D.    Let (1.1) belong to the class S.  

If  limn | an+1 | log n = 0,  then  

                       || f(x)  fn(x) || = o(1),  n . 

  

2. Lemmas 
 

 The following lemmas are required for the 

proofs of our results. 

  

Lemma  1.[2].  If | ck |   1 ,  then  

 




0




n

0k
kk )x(Dc dx  C (n+1)  , 

where C is a positive constant.  

 

Lemma 2[3].  Let Dn(x),Dn(x) and Kn(x) denote 

Dirichlet, conjugate Dirichlet and Fejer kernels 

respectively,  then 

 

       Kn(x) =Dn(x)   (1/(n+1)) Dn(x) 

 

 

3. Results .We prove the following theorem :  

 

Theorem .   Let {ak} belong to the class S.   Then  

               || f(x)  fn(x) || =  o(1), n  .  

 

Corllary .  If {ak}  belongs to the class S, then  

                || Sn(x)  f(x) || = 0,  n  

 if and only if  

                 an log n =  o(1),  n .  

 

The theorem  generalizes Theorem D and corollary 
is Theorem C of Teljakovskii.  

 

 

 

 

 

 

 

 

Proof of Theorem .  We have 

 
(3.1) fn(x)  = 

         
2

a 0
+ 



n

1k




n

kj

 








j

a j
k cos kx  

               =
2

a 0
+ 



n

1k

k cos kx ×                                                    

 

                         



































 

n

a

k

a

k

a nkk ...
1

1  

 

 

                   = 
2

a 0
+ 



n

1k

k cos kx 









 

1n

a

k

a 1nk
  

                        

               =  
2

a 0
 +

 




n

1k

ak cos kx  

                                       
1n

a 1n







n

1k

k cos kx  

               =  
2

a 0
 +

 




n

1k

ak cos kx 

                                      
1n

a 1n




 -Dn(x)   

               = Sn(x)  
1n

a 1n



 Dn(x).  

  

Using Abel transformation and lemma 2, 

 

   fn(x) =    

 






1

0

)(
n

k

kk xDa + )(xDa nn   

                                 
1n

a 1n



 Dn(x)  

              =





1

0

)(
n

k

kk xDa + )(xDa nn    

 

                                  )(1 xDa nn + )(1 xKa nn  

              =

 






1

0

)(
n

k

kk xDa + )(1 xKa nn  

 

So, 

 

   f(x) - fn(x)  

            =

 






1

)(
nk

kk xDa - )(1 xKa nn  

 

 Abel transformation with lemma1 yield, 
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0

)()( xfxf n
dx  

         ≤

 
 









0 1

)(
nk

kk xDa dx +  



0

1 )(xKa nn dx 

         ≤  







0 1

)(
nk

k

k

k
k xD

A

a
A dx 

                                                  +
1na 







)(xKn  

          =   


 






0 1 0

)(
nk

j

j

j
k

j

k xD
A

a
A dx+π

1na

, 
                                                   

         ≤  C 





1

)1(
nk

kAk  +π 1na  

 since 






)(xKn =π,  {ak} is null   sequence and 

under the assumed hypothesis    





1

)1(
nk

kAk

converges, the right hand side tends to zero as n

 and this gives 

  

limn  



0

)()( xfxf n dx=0. 

This completes the proof of our theorem.  

 

Proof of Corollary .  We have  




0

| f(x)  Sn(x) | dx  =  




0

| f(x)  fn(x) + fn(x)  Sn(x) | dx 

 

 

 

 

 
 

 


0

| f(x)  fn(x) |dx  

                   + 


0

| fn(x)  Sn(x) |dx 

  


0

| Sn(x) fn(x) |dx+ 


0

|an+1 Dn(x)|dx   

                                       + 




|an+1Kn(x) |dx 

and 

 




0

| an+1 Dn(x) |dx 

        


0

| fn(x)Sn(x) |dx + 




| an+1Kn(x) | dx   

                    

       ≤  


0

| f(x)  Sn(x) |dx  + 




| an+1Kn(x) |dx .                                                                 

                      

Since 




| Dn(x) |dx behave like an+1log n for large 

values of n and limn  



0

)()( xfxf n dx=0 by 

our theorem, the corollary follows. 
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