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Abstract 
We describe a promoter recognition 

method named An-HPR to locate eukaryotic 

promoter regions and predict transcription start 

sites (TSSs). We computed n-gram features are 

extracted and used in promoter prediction. We 

computed n-grams (n=2, 3, 4, 5) as features and 

created frequency features to extract informative 

and discriminative features for effective 

classification. Neural network classifiers with 

these n-grams as features are used to identify 

promoters in a human genome. Analysis of n-

Gram based (AnG) is applied to the feature 

Extraction and a subset of principal components 

(PCs) are selected for classification. Our system 

uses three neural network classifiers to 

distinguish promoters versus exons, promoters 

versus introns, and promoters versus 3' un-

translated region (3'UTR). We compared AnG-

HPR with four well-known existing promoter 

prediction systems such as DragonGSF, Eponine 

and FirstEF, PCA-HPR. Validation shows that 

AnG-HPR achieves the best performance with 

three test sets for all the four predictive systems. 

  

Keywords— promoter recognition; sequence 

feature; transcription start sites, Biological data 

sets, neural networks,  Binary classification, 
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1. INTRODUCTION 
Promoter recognition is a real problem that 

computationally identifies the transcription start site 

(TSS) or the 5’end of the gene without time-

consuming and expensive experimental methods 

that align ESTs, cDNAs or mRNAs against to the 

entire genome. In this article, we focus on humans 

because it is a representative species that has 
attracted much more attention in the past decade. In 

humans, the TSS is surrounded with a core-

promoter region within around ±100 base pairs (bp). 

A proximal promoter region has several hundreds bp 

immediately upstream of the core promoter.  

.  

 

 

 

 

 
 

 

 

 

 

 
Figure 1: A schematic representation of the 

locations of the promoter region, TFBSs, exons, 

introns and 3′utr regions. 

 

Available promoter prediction systems use 

two types of features for classification namely, 

context features like nmers, and signal features such 

as TATA-box, CCAAT-box, and CpG islands. 

Among the favorable promoter prediction programs, 

Eponine [1] builds a PWM to detect TATA-box and 

G+C enrichment regions as promoter-like regions; 

FirstEF [2] uses CpG-related and non-CpG related 

first exons as signal features; Promoter Inspector [3] 

uses IUPAC words with wildcards as context 
features. Good experiment results are achieved by 

integrating these two types of features. DPF [4] 

applies a separate module on G+C rich and G+C 

poor regions, and selects 256 pentamers to generate 

a PWM for prediction. Furthermore, DragonGSF [5, 

6] adds the CpG-island feature to DPF. 

Most of the promoter prediction programs 

try to predict the exact location of the promoter 

region of the known protein-coding genes, while 

some focus on finding the transcription start site 

(TSS). Some research has show that there is often 
no single TSS, but rather a whole transcription start 

region (TSR) containing multiple TSSs that are used 

with different frequencies. Generally two main 

approaches are used in promoter prediction [7]. 

1. First approach assigns scores to all single 

nucleotides to Identify TSS. 

2. Second approach identifies a promoter region 

without providing scores for all nucleotides. 

In this article analyzes the performance of 

17 programs on two tasks: Genome wide 

identification of the start of genes and Genome wide 
identification of TSRs. In Existing methods 

Promoter prediction programs DragonGSF predicts 

the value of precision is between 37-48% and recall 

is 51-70%, DragonPF predicts the value of precision 

is between 61-65% and recall 62-64%, FristEF 



 Chandrashekar.Jatoth, Rupesh Mahajan / International Journal of Engineering Research and 

Applications (IJERA) ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 6, November- December 2012, pp.247-254 

248 | P a g e  

predicts the value of precision is 79-81% and recall 

35-40%, Eponine predicts the value of precision is ≈ 

40 and recall ≈ 67%, NNPP2.2 predicts the value of 

precision is 69-93% and recall 2.0-4.5%, 

McPromoter2.0 predicts the value of precision is 26-

57%and recall ≈ 4.5, proSom predicts the value of 

precision is 0.38% and recall 0.66% [8]. 
We select the 13 representative PPPs that can 

analyze large genome sequences and report strand-

specific TSS predictions. ARTS, Eponine used 

SVM as the part of their design, EP3, Promoter 

scan, Wu-method used Position weight matrix 

(PWM). 

 

CpGcluster used distance based algorithm. 

CpGProD used linear discriminating analysis 

(LDA). DragonGSF, DragonPF, McPromoter used 

neural networks.NNPP2.2 has used Time Delay 

neural network. Promoter Explorer has used 
AbaBoost algorithm. proSOM has used SOM. These 

programs have used as features various aspects of 

promoter and other regions of the DNA [6]. 

There are three classification methods for human 

promoter recognition system [9]. 

• Discriminative model that finds the optimal 

thresholds or classification boundaries in the signal, 

context and structure features space. Typical 

methods include artificial neural networks (ANNs), 

discriminate functions and support vector machines 

(SVMs). 
• Generative model that describes the generative 

process of signal, context and structure 

observations. Position weight matrix (PWM), 

nearest neighborhood and hidden Markov models 

(HMMs) belong to generative models. 

• Ensemble that combines multiple classifiers for 

multiple features in order to achieve a consensus 

and robust recognition results. 

 

Promoter Inspector is a program that 

predicts eukaryotic poly II promoter regions with 

high specificity in mammalian genomic sequences. 
The program Promoter Inspector focuses on the 

genomic context of promoters rather than their exact 

location. Promoter Inspector is based (refer table 1) 

on three classifiers, which specialize in to 

differentiating between promoter region and a 

subset of non-promoter sequences (intron, exon and 

3′utr). 

 

In contrast to this, PromnFD and PromFind 

use only one classifier, i.e the features are extracted 

from one promoter set and one set of various non-
promoter sequences. To compare the two 

approaches, two versions of Promoter Inspector are 

built. Version v1 was based on one st of mixed non-

promoter sequences, while version v2 was built on 

the basis of exon, intron and 3′utr. Both versions of 

promoter Inspector were applied to exon, intron, 

3′utr and promoter evaluation sets [3]. The 

identification of promoters and first exons has been 

one of the most difficult problems in gene-finding. 

The FirstEF [2] program identifies a promoter 

region and first exons in the human genome, which 

may be also be useful for the annotation of other 

mammalian genomes. FirstEF consists of different 

discriminate functions structured as a decision tree. 
The probabilistic models are designed to find 

potential first splice donor sites and CpGrelated and 

non-CpG-related promoter regions based on 

discriminant analysis. For every potential first 

splice-donor site and upstream promoter region, 

FirstEF decides whether the intermediate region 

could be a potential first exon based on a set of 

quadratic discriminant functions. Training and 

testing using different discriminant functions, the 

first exons and promoter regions from the first-exon 

database are used. Ramana et al. have also tried to 

identify the promoters as well as first exons of 
human species by using an algorithm called FirstEF 

which is based upon the usage of structural and 

compositional features [3]. They were able to 

predict 86% of the first exons. They have compared 

their method with Promoter Inspector and obtained a 

sensitivity of 70% compared to Promoter 

Inspector’s 48%. Bajic et al. termed that the 

prediction is positive if the predicted transcription 

start site (TSS) falls within a maximum allowed 

distance from the reference transcription start site 

[5]. They have assessed performance of some of the 
prediction algorithms based on the performance 

measures such as sensitivity and positive predictive 

value. In their later paper they concluded that the 

promoter prediction combined with gene prediction 

yields a better recognition rate [6].  

 

ExonType Sensitivit

y  

Specificit

y 

correlation 

coefficient 

CpG-related 0.92 0.97 0.94 

NotCpG-

related 

0.74 0.60 0.65 

all exons 0.86 0.83 0.83 

Table1.Accuracy of FirstEF based on cross-

validation 

 

Li et al. is having proposed that locate 

eukaryotic promoter regions and predict 
transcription start sites (TSSs). Here the authors 

have computed codon (3-mer) and pentamer (5-mer) 

frequencies and created codon and pentamer 

frequency feature matrices to extract informative 

and discriminative features for effective 

classification. Principal component analysis (PCA) 

is applied to the feature matrices and a subset of 

principal components (PCs) are selected for 

classification [7].  
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Program True 

Positiv

e 

False 

Positiv

e 

Sensitivit

y (%) 

PP

V 

(%) 

DragonGS

F 

269 69 68.4  79.6 

FirstEF 331 501 84.2  39.8 

Eponine 199 79 50.6  71.6 

PCA-HPR 301 65 76.6  82.2 

Table 2. Performance comparison of four prediction 

systems for 22 chromosomes. 

 

Promoter prediction systems use two types 

of features for classification namely, context 
features like n-mers, and signal features such as 

TATA box, CCAAT-box and CpG islands. Among 

the favorable promoter prediction programs, 

Eponine builds a PWM to detect TATA-box and 

G+C enrichment regions as promoter-like regions; 

FirstEF uses CpGrelated and non-CpG related first 

exons as signal features; Promoter Inspector uses 

IUPAC words with wild cards as context features. 

Good experiment results are achieved by integrating 

these two types’ features. DPF applies a separate 

module on G+C rich and G+C poor regions, and 

selects 256 pentamers to generate a PWM for 
prediction. Furthermore, DragonGSF adds the CpG-

island feature to DPF. Jia Zeng et al. in their paper 

selected three promoter systems DragonGSF, 

Eponine and FirstEF to compare the performance on 

test set 1. A promoter region is counted as a true 

positive (TP) if TSS is located within the region, or 

if a region boundary is within 200bp 5′ of such a 

TSS. Otherwise the predicted region is counted as a 

false positive (FP). The test results of Eponine and 

FirstEF. On test set 2, we adopt the same evaluation 

method as DragonGSF when one or more 
predictions fall in the region of [2000, +2000] 

relative to a TSS, a TP is counted. All predictions 

which fall on the annotated part of the gene in the 

region are counted as FP [10]. Sobha.et.al is termed 

that n-gram based promoter recognition methods 

were tried in promoter prediction and its application 

to whole genome promoter prediction in E.coli and 

Drosophila [11]. Here, we describe a method named 

AnG-HPR to predict the location of the TSSs with 

best performance. We extracting n-grams and using 

them to identify promoters in human genome. 

Patterns or features that characterize a 
promoter/non-promoter are needed to be extracted 

from the given set of promoter and non-promoter 

sequences. Here promoter recognition is addressed 

by looking at the global signal characterized by their 

frequency of occurrence of n-grams in the promoter 

region. 

  

2. Introduction to N-Grams as features 
Promoter recognition is tackled using 

various techniques such as support vector machines 

(SVM) [12], neural networks [13, 14], hidden 

Markov models [15], position weight matrix (PWM) 

[16], to expectation and maximization (EM) 

algorithm [17]. These techniques are based on 

basically motifs present in the promoter which are 

specific regions in the promoter or the global signal 

that is present in the promoter. To extract the local 

or global signals various feature extraction methods 

are used. 
Condon usage patterns in coding regions 

and hexamer conservation (TATA box, CAAT box) 

in promoter regions is well known. Techniques that 

use these concepts are available in abundance in 

literature. Most of the local content-based methods 

are in fact based on conservation of the hexamers 

[13, 16]. In literature there are a few articles on 

protein sequence classification and gene 

identification using n-grams, but very few on 

promoter recognition. An n-gram is a selection of n 

contiguous characters from a given character stream 

[18]. Ohler et al. have used interpolated Markov 
chains on human and Drosophila promoter 

sequences as positive data set achieving a 

performance accuracy of 53% [19]. Ben-gal et al. 

have used a variable-order Bayesian network which 

looks at the statistical dependencies between 

adjacent base pairs to achieve a true positive 

recognition rate of 47.56% [20]. Leu et al. have 

developed a vertebrate promoter prediction system 

with cluster computing extracting n-grams for n = 6 

to 20 [21]. They achieved an accuracy rate of 88%. 

Ji et al. have used SVM and n-grams (n = 4, 5, 6, 7) 
for target gene prediction of Arabidopsis [22]. 

Prediction system with cluster computing extracting 

n-grams for n = 6 to 20 [21]. They achieved an 

accuracy rate of 88%. Ji et al. have used SVM and 

n-grams (n = 4, 5, 6, 7) for target gene prediction of 

Arabidopsis [22]. There are position specific n-gram 

methods by Wang et al. and Li et al. [23, 24]. Wang 

et al. have proposed a position specific propensity 

analysis model (PSPA) which extracts the 

propensity of DNA elements at a particular position 

and their co-occurrence with respect to TSS in 

mammals. They have considered a set of top ranking 
k-mers (k = 1 to 5) at each position ±100 bp relative 

to TSS and the co-occurrence with other top ranking 

k-mers at other downstream positions. PSPA score 

for a sequence is computed as the product of scores 

for the 200 positions of ±100 bp relative to TSS. 

They found many position-specific promoter 

elements that are strongly linked to gene product 

function. Li et al. too have considered position-

specific weight matrices of hexamers at some ten 

specific positions for the promoter data of E. coli 

[24].  
Here, we extract n-grams to be used as 

features. An investigation of the lower order n-

grams for promoter recognition was taken up in 

order to assess their applicability in whole genome 

promoter recognition. To this end we have extracted 

the n-grams and fed them to a multi-layer feed-

forward neural network. Further, by using the best 
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features, two more neural networks are designed to 

annotate the promoters in a genome segment. In the 

following sections, we explain the extraction of 

features, the classification results using these 

features, and a way of finding the promoters in an 

unknown segment of the Human genome. 

 

2.1 Feature Extraction 

In this section, different data sets that are used 

in experimentation and the feature extraction 

method for various n-grams are described. 

 

2.1.1 Data set 

The training set in this experiment is 

divided into several subsets of promoters, introns, 

exons and 3′UTR sequences. Promoter sequences 

are extracted from two public databases. One is the 

Eukaryotic Promoter Database (EPD), release 86 

[8], which contains 1871 human promoter 
sequences. The other is the Database of 

Transcription Start Sites (DBTSS), version 5.2.0 [9], 

which includes 30,964 human promoter sequences 

and 15,531 forward strand promoter sequences. We 

used forward strand promoter sequences are in our 

experiment. Human exon and intron sequences are 

extracted from the EID [10], and the first exons are 

not included in the exons training set. Human 

3’UTR sequences are from the UTR database [11]. 

From DBTSS we have extracted promoter 

sequences [-250, +50] bp around the experimental 
TSS. DBTSS contains 24 chromosomes; each 

chromosome has 1000 nucleotide sequences. From 

EID and 3′UTR we have extracted non-promoter 

sequences of length 300 bp [27].  

 

2.1.2 Method 

Patterns or features that characterize a 

promoter/non-promoter are needed to be extracted 

from the given set of promoter and non-promoter 

sequences. Here promoter recognition is addressed 

by looking at the global signal characterized by the 

frequency of occurrence of n-grams in the promoter 
region. We show in the section neural network 

architecture and classification performance that 

these features perform well for prokaryotic as well 

as eukaryotic promoter recognition. To extract the 

global signal for a promoter, the frequency of 

occurrence of n-grams is calculated on the DNA 

alphabet {A,T,G,C}. The set of n-grams for n = 2 is 

16 possible pairs such as AA, AT, AG, AC, TA, etc. 

and the set of n-grams for n = 3 are 64 triples such 

as AAA, AAT, AAG, AAC, ATA etc. Similarly n-

grams for n = 4, 5, 6 are calculated. Let fi
n denote 

the frequency of occurrence of the i-th feature of n-

gram for a particular n value and let |L| denote the 

length of the sequence. The feature values Vi
n are 

normalized frequency counts given in Eq. (1). 

 

 Vi
n   

=           fi
n 

 |L| - (n-1)   , 1≤ i ≤ 4n   for n=2, 3, 4, 5    (1) 

Here, the denominator denotes the number of n-

grams that are possible in a sequence of length |L| 

and hence Vi
n denotes the proportional frequency of 

occurrence of i-th feature for a particular n value. 

Thus each promoter and non-promoter sequence of 

the data set is represented as a 16-dimensional 

feature 
Vector (V1

2
, V2

2
, V3

2
, ……… V16

2
) for n=2, as a 64-

dimensional feature vector (V1
3
, V2

3
, V3

3
, ……… 

V64
3
) for n=3, as a 256 dimensional feature vector 

(V1
4
, V2

4
, V3

4
,……… V256

4
) for n=4 and a 1024-

dimensional feature vector (V1
5
, V2

5
, V3

5
,…… 

V1024
5
) for n=5. 

 

In a binary classification problem, the 

training set will be a mixture of both positive and 

negative data sets. Similarly the test set which 

consists of both positive and negative data is used to 

evaluate the performance of the classifier. A neural 
network classifier is trained using the n-grams of the 

training set as input feature vectors and then the test 

set is evaluated using the same network. Figures 1–4 

depict the average separation between the positive 

and negative data for n = 2, n = 3, n = 4 and n = 5, 

respectively. It can be observed that the plots depict 

the separability of promoter and non-promoter data 

sets in different feature spaces. 

CpG islands, which exist in 60% of 

mammalian promoters [12], are regarded as one of 

the most important signal features in promoter 
recognition. Methods such as CpGProD [13], DPF 

[4], DragonGSF [5, 6], FirstEF [2] and 

PromoterExplorer [7] embed this signal feature in 

their prediction system. In our method, two features 

are used to identify if a given sequence (>200bp) is 

CpG islands related: GC percentage (GCp) and 

Observed/expected CpG ratio (o/e). These are 

calculated with equations (1-5) (see supplementary 

material). If GCp > 0.5, and o/e > 0.6, then the 

sequence is considered CpG islands related, 

otherwise it is non-CpG islands related [14]. A DNA 

sequence contains four types of nucleotides: adenine 
(abbreviated A), cytosine (C), guanine (G) and 

thymine (T). With different combinations, there are 

43=64 codons and 45=1024 pentamers in promoter 

and nonpromoter datasets. Pentamers are widely 

selected as context features in many promoter 

prediction models [4, 7], as they keep good balance 

between search efficiency and discriminability. Four 

resulting feature matrices are constructed from 

promoter, exon, intron and 3'UTR training datasets. 

Finally, three pairs of matrices: promoter versus 

exon, promoter versus intron and promoter versus 
3'UTR are built from the four feature matrices for 

further processing. 
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Fig.1. Average separation between promoters and 

non-promoters for n = 2 for Homo sapiens. Here, 1. 

. .16 represent AA, AT, AG, AC etc. 

 

3. NEURAL NETWORK 

ARCHITECTURE AND 

CLASSIFICATION PERFORMANCE 
A feed-forward neural network with three 

layers, namely, an input layer, one hidden and an 

output layer is used for promoter classification. The 

number of nodes in the input layer is 16, 64, 256, 

1024 features for n = 2, 3, 4, 5 respectively. One 
more experimentation which uses Euclidean 

distance measure to reduce the number of features 

of n = 5 is done. Experimentation is done with 

different number of hidden nodes that give an 

optimal classification performance. The output layer 

has one node to give a binary decision as to whether 

the given input sequence is a promoter or non-

promoter. 5-fold cross-validation [25] is used to 

investigate the effect of various n-grams on 

promoter classification by neural network. Average 

performance over these folds is being reported. 

These simulations are done using Stuttgart Neural 
Network Simulator [26]. 

                                                                  

S.

No 

Features Precisio

n 

Specificit

y 

Sensitivit

y 

PPV 

1 N=2 

gram 

68.47  84.05 67.36 83.5

1 

2 N=3gram 70.86 81.923 63.94 84.8

9 

3 N=4gra

m 

72.42 86.51 84.38 89.2

4 

4 N=5gram 76.56 69.44 80.85 81.5

4 

Table 3. Homo sapiens classification results for 

different n-grams (average of 5-fold cross validation 

experiments) 

 

3.1 Classification Performance 
In a binary classification problem the 

training set will be a mixture of both positive and 

negative data sets. Similarly the test set also 

consisting of both positive and negative data is used 

to evaluate the performance of classifier. A neural 

network classifier is trained using n-grams of 

training set as input feature vectors and then the test 

set is evaluated using by same network. The below 

figures are depict the average separation between 

the positive and negative for n=2, 3, 4, 5 
respectively. It can be observed that the plots depict 

the separability of promoter and non-promoter data 

sets in different feature spaces. 

A feed forward neural network with three 

layers is used for promoter classification. The nodes 

in the input layer are 16, 64, 256, 1024 features for 

n=2, 3, 4, 5 respectively. The experimentation is 

done with different number of hidden nodes that 

give an optimal classification performance. The 

output layer has one node to give a binary decision 

as to whether the given input sequence is a promoter 

or non-promoter. 5-fold cross validation is used to 
investigate the effect of various n-grams on 

promoter classification by neural network. Average 

performance over these folds is being reported. 

These simulations are using Stuttgart Neural 

Network Simulator (SNNS). The classification 

results are evaluated using performance measures 

such as Precision, Specification, Sensitivity 5.3, 5.4 

given these results. 

Using these, we would like to find out the 

efficacy of these features in identifying promoter in 

human genome [2]. 
 

 
       Fig. 2. Average separation between promoter 

and non promoter for n=3. Here 0...64 represent the 
AAA, AAT, AAG, AAC...etc 
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Figure.3: Average separation between promoter and 

non promoter for n=4. Here 0...256 represent the 

AAAA, AAAT, AAAG, AAAC...etc 

                                         

n-gram Precision Specificity Sensitivity PPV 

3-gram 82.07  82.86 78.06 83.75 

4-gram 82.51  84.95 78.64 85.51 

 

Table 4. Homo sapiens classification results for 

different n-grams for reduced data set (average of 5-

fold cross-validation experiments) 

 

Program True 

Positiv

e 

False 

Positiv

e 

Sensitivit

y (%) 

PPV 

(%) 

DragonGS

F 

269 69 68.4  79.6 

FirstEF 331 501 84.2  39.8 

Eponine 199 79 50.6  71.6 

PCA-HPR 301 65 76.6  82.2 

AnG-HPR 431 61 78.64 85.5

1 

 

Table 5. Performance comparison of five prediction 

systems for test set 2. 
 

The classification results are evaluated 

using performance measures such as precision, 

specificity and sensitivity. Specificity is the 

proportion of the negative test sequences that are 

correctly classified and sensitivity is the proportion 

of the positive test sequences that are correctly 

classified. Precision is the proportion of the 

correctly classified sequences of the entire test data 

set.  

 

 
Fig.4. Average separation between promoter and 

non promoter for n = 5. Here 0...1024 represent the 
AAAAA, AAAAT, AAAAG, AAAAC...Etc 

 

Positive predictive value is defined as the 

proportion of true positives to the sum of true 

positives and false positives. False positives are 

negatives which are classified as positives. The 

classification results for various n-grams for Homo 

sapiens presented in Tables 1 and 2 respectively.  

 

4. DISCUSSION AND CONCLUSION 
In proposed approach human promoters are 

classified using a neural network classifier. Since 

the optimal features are not known we started 

classification model with minimum number of 

features n=2 and incrementally increased to 

maximum number of features. The features are 

given as input to a single layer feed forward neural 

network. We selected four promoter systems, 

DragonGSF, Eponine and FirstEF, PCA-HPR to 

compare the performance on test set 1. A promoter 

region is counted as a true positive (TP) if TSS is 
located within the region, or if a region boundary is 

within 200bp 5' of such a TSS. Otherwise the 

predicted region is counted as a false positive (FP). 

The test results of Eponine and FirstEF are cited 

from the reference paper [16]. On test set 2, we 

adopt the same evaluation method as 

DragonGSF[5]: when one or more predictions fall in 

the region of[−2000, +2000] relative to a TSS, a TP 

is counted. All predictions which fall on the 

annotated part of the gene in the region [+2001, 

EndofTheGene] are counted as FP. Other 
predictions are not considered in counting TP and 

FP. Experimental results of DragonGSF, FirstEF 

and Eponine are obtained from [5]. We adopt the 

sensitivity (SN) and the positive predictive value 

(PPV) to evaluate the performance of these systems. 

The results and comparisons based on test 1 and test 

2 are shown in Table 4 and Table 5.  

In test 1, with the same number of true 

positives in comparison with existing methods, our 

method produces the smallest number of false 

positives. In test 2, although FirstEF, PCA-HPR 
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achieves a higher SN than AnG-HPR, the PPV is 

just half of AnG-HPR. PCA-HPR keeps a good 

balance between SN and PPV, while AnG-HPR 

produces better results. On test set 3, we compare 

AnG-HPR with DragonGSF because DragonGSF is 

the only online system which can accept relatively 

longer sequences among systems compared in the 
analysis. In order to get fair results for these 

sequences which are longer than 1,000,000bp (the 

limitation of a file in the DragonGSF web tool), we 

divided them into segments that are equal or less 

than 1,000,000bp each, before sending them to 

PCA-HPR and DragonGSF. Under the same 

evaluation criteria as the one in test set 2, AnG-HPR 

achieved a better result: the SN of AnG-HPR and 

DragonGSF are 76.2% and 46.8%, and PPV of the 

two systems are 83.4% and 63.8%, respectively. 

DragonGSF reports a good prediction performance 

on the whole human genome sequence, but it uses 
the TRANSFAC [17] database which includes 

binding site information only available for known 

promoters. Therefore, our system has the advantage 

in predicting unknown promoters. Different 

numbers of feature values are used to arrive at the 

best performance. Test results are measured using 

measures such as precision, specificity and 

sensitivity and PPV. Maximum accuracy achieved 

using SNNS is 89.2% in the case of DBTSS data 

set. 

In this Paper, we focus on extracting the 
statistical features. There is evidence of a statistical 

preference in terms of codon usage patterns in 

protein coding regions. The majority of promoter 

prediction methods available now directly extract a 

limited number of context features from sequences. 

Here we are not doing any feature selection and 

using the entire set of n-grams. In this paper 

Classification of both promoter (DBTSS data set) 

and non-promoter is best for n=4. We obtained a 

precision of 72.42%, specificity of 86.5%, and 

sensitivity of 84.3% and positive predictive value of 

89.2% for this set. The result shows that for DBTSS 
n=4 gram features give the better performance than 

other n-grams. The results here consolidate the 

results obtained for Drosophila Melanogaster in the 

work done by Sobha et al. They obtained best 

performance results for n=4. Does this then make 4-

grams as a special parameter for the eukaryotes is 

needed to be further investigated? 

A study of the n-gram (n=2, 3, 4, 5) as 

features for a binary neural network classifier is 

done. In human genome 4-gram features give them 

an optimal performance with neural network 
classifier. The results show that the classification 

result 4-gram is better in identification of the 

promoter than the other n-grams. Human promoter 

classification gives the better accuracy results of 

89.2%. 
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