
N.Vignesh, Venkadesh.R, DR.K.Rajan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.074-078

74 | P a g e

Simulation Of Pre-Emptive Scheduling For Accuracy

Improvement By Using RTOS

N.Vignesh*, Venkadesh.R**, DR.K.Rajan***,
*(Assistant Professor, Vel Tech Engineering college, Chennai-62.)

*(Vice-Principal, Vel Tech Engineering College Chennai-62, India.)

***(Principal, Vel Tech Engineering college, Chennai-62.)

ABSTRACT
Now-a-days Hardware and Software are

developing very high level. But with the increasing

of SOC designs, Hardware dependent Software

(HDS) become Critical. In Previous work they

introduced abstract RTOS modeling, which

exposes dynamic scheduling effects early in the

system design. However, such models

insufficiently capture preemption. But the

accuracy of preemption depends on the

granularity of the timings. So we cannot take

accurate readings. For an accurately modeled

interrupt response time, very fine-grained timing

annotation is necessary. It contradicts the RTOS

abstraction idea and is detrimental to simulation

performance.

In current modeling of abstract software

execution (abstract RTOS on an abstract

processor), preemption modeling highly depends

on the timing annotation granularity. Scheduling

decisions are made at the boundaries of wait-for-

time statements. Hence, preemptive scheduling in

an abstract model (e.g. after an interrupt) may be

delayed by up to the longest time annotation in the

whole application. Minimizing this error by using

finer grained timing annotation, however, is

undesirable due to a slower simulation with the

dramatically increased number of wait-for-time

statements, and the difficulty to obtain accurate

fine-grained timing information. Therefore,

preemption is inaccurately emulated in TLM,

resulting in intolerable errors e.g. when

simulating interrupt response times. In this paper,

we introduce (simulation of) preemption in an

abstract model and consequently improve

dramatically the accuracy of the interrupt

response time without increasing the number of

wait-for-time statements.

Keywords –Pre-emptive Scheduling, RTOS,

TLMbased Abstract RTOS, ROM, SLDL, Interrupt

Latency.

I. Introduction
Current research work has addressed the

increasing software content in modern MPSoC

designs by utilizing software generation and abstract

modelling of software. Abstract RTOS and processor

Models have been proposed. They expose the effects

of dynamic scheduling on a software processor

already in early phases of the design. They have

deemed crucial for design space exploration, e.g. for

task distribution and priority distribution

However, current RTOS models poorly

support pre-emption. An RTOS model executing in a

discrete event simulation environment uses timing

annotation to emulate target specific time progress

(i.e. via wait-for-time statements). Scheduling

decisions are made at the boundaries of these wait-

for-time statements, very similar to cooperative

multitasking. Hence, the accuracy of pre-emption

depends on the granularity of the timing annotations

(Figure 1).

A real CPU provides the finest granularity,

checking at each clock cycle for incoming interrupts.

Abstract models can annotate each C-instruction,

basic block, function, or coarsely grained each task.

However, accurate emulation of pre-emption requires

fine grained annotation (e.g. at C statement level). On

the other hand, using fine grained annotation has two

drawbacks. It (a) slows down simulation speed, and

(b) fine grained annotation information may not

easily be available for a given application.

Figure 1. Granularity of timing annotation.

2. Problem Definition
In current modelling of abstract software

execution (abstract RTOS on an abstract processor),

pre-emption modelling highly depends on the timing

annotation granularity. Scheduling decisions are

made at the boundaries of wait for- time statements.

Hence, pre-emptive scheduling in an abstract model

(e.g. after an interrupt) may be delayed by up to the

longest time annotation in the whole application.

Minimizing this error by using finer grained timing

annotation, however, is undesirable due to a slower

simulation with the dramatically increased number of

wait-for-time statements, and the difficulty to obtain

accurate fine-grained timing information. Therefore,

pre-emption is inaccurately emulated in TLM,

N.Vignesh, Venkadesh.R, DR.K.Rajan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.074-078

75 | P a g e

resulting in intolerable errors e.g. when simulating

interrupt response time

3. Related Work
Abstract RTOS models have been developed

that execute on top of System Level Design

Languages (SLDLs) (e.g. SystemC, SpecC, proposes

SoCOS, a high-level RTOS model. It interprets a

proprietary language, describing RTOS

characteristics, using a specialized simulation engine.

Our proposed solution uses a standard unmodified

discrete event simulator presents modelling of fixed

priority pre-emptive multi-tasking systems. However,

it uses SpecC specific concurrency and exception

mechanisms and is limited in inter-task

communication. In contrast, our proposed solution

does not rely on SpecC specific primitives and

provides task communication.

 Figure-2. RTOS Block Diagram

It introduces abstract scheduling on top of

SpecC, providing scheduling primitives found in a

typical RTOS and allows modelling of target-specific

execution timing. However, it emulates pre-emption

only at the granularity of the timing annotation. In

this paper, we will eliminate this restriction. It

describes an RTOS centric co simulator, using a host

compiled RTOS. However, it does not include target

execution time simulation.

4. Abstract RTOS Modelling

We will _first describe a current approach of

abstract RTOS modelling [6] (subsequently called

TLM-based RTOS) and reveal the limitations in pre-

emption modelling. Second, we will introduce the

novel ROM-based abstract RTOS and show how it

overcomes the TLM limitations.

4.1. TLMbased Abstract RTOS

The TLM-based abstract RTOS maintains a

task state machine for each module/behaviour as

shown simplified in Figure 2. Each action, which

potentially changes scheduling, is wrapped to interact

with the abstract RTOS model (e.g. task create, -

suspend, - resume, semaphore acquire- release). For

example, if a running task starts pending on a non-

available semaphore, its state changes from RUN to

WAIT (as in a regular RTOS). The abstract RTOS

[6], keeps track of all task states and dispatches tasks

using primitives of the underlying SLDL (e.g.

events). It sequentializes the task execution according

to the selected scheduling policy.

A pre-emption, as a result of an external

interrupt, can occur at any point in time. Since a wait-

for-time increases.

 Figure-3. RTOS and Task Diagram

Simulation time and a pre-emption will

occur while executing this statement. With the

scheduling decision being made only at the end of the

time increase, the pre-emption (dispatch of the

selected ISR task) takes effect after the wait-for-time

statement. This delays pre-emption scheduling and

subsequently increases the latency for an ISR. Figure

3 shows a pre-emption situation handled by different

approaches. We use line styles to indicate task states:

a solid line represents RUNNING, dashed line

READY and no line indicates the WAIT state. The

empty flag indicates pending on a semaphore (or

event) a filled flag its release.

 Figure-3(a) Processor

This Figure 3(a) depicts pre-emption on a

real processor as a reference. While the low priority

task Tlow executes, an interrupt pre-empts at t1 and

triggers the ISR. The ISR activates Thigh at t2 and

Finishes. Thigh computes until t3 when acquiring a

semaphore. Subsequently, the pre-empted Tlow

resumes and Finishes the section of computation at

t6.

 Figure- 3(b) TLM

N.Vignesh, Venkadesh.R, DR.K.Rajan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.074-078

76 | P a g e

This Figure 3(b) shows pre-emption in the TLM-

based RTOS. The section executed by Tlow is

annotated with a single wait-for-time statement (from

t0 to t4 depicted by an arc). Since the TLM-based

RTOS evaluates scheduling at boundaries of wait-

for-time statements, the interrupt occurring at t2, is

evaluated only at t4. Then, it schedules first the ISR,

then Thigh. Note that the TLM-based RTOS is highly

inaccurate. Thigh finishes late at t6 (instead of t3).

Analogous, Tlow finishes early at t4 (instead of t6).

4.2. Result Oriented Modelling (ROM)

ROM is a general concept for abstract yet

accurate modelling of a process that was

demonstrated for communication modelling [16].

ROM assumes a limited observability of internal state

changes of the modelled process. It is not necessary

to show intermediate results of the process to the

user, as in a .black box. approach. The only goal of

ROM is to produce the end result of the process fast.

Hiding of intermediate states gives ROM the

opportunity for optimization. Often, intermediate

states can be entirely eliminated. Instead, ROM

utilizes an Optimistic predicts approach to determine

the outcome (e.g. termination time and final state)

4.3. ROMenhanced Abstract RTOS

Our ROM-enhanced abstract RTOS is based

on the same principles as the earlier described TLM-

based abstract RTOS. It extends all primitives, which

potentially trigger scheduling, to interact with a

centralized abstract RTOS model. However, ROM

differs in the implementation of three crucial

elements: (a) integration of interrupts, (b) wait-for-

time statements, and (c) dispatch implementation. As

a result, the ROM-based RTOS handles pre-emption

With higher accuracy by allowing pre-emption of

wait for time statements.

5. Analysis of Potential Benefits
In order to quantify the benefits of our

ROM-based model, we first statically analyze five

applications with function level timing annotations.

In a second step, we measure one application.

Figure-4. Statically analyzed TLM ISR latency.

More formally, the execution duration (busy time) of

an application is captured in N wait-for-time

statements, each annotates a duration of Wi and is

executed Ci times. With this definition, the

application execution time can be computed as Texec

=PN; i=1; Ci =Wi. The probability P(Tdel) of

incurring a delay of Tdel is then2:

The pre-emption scheduling delay, thus the

error in ISR latency, has a significant spread in a

TLM. For our analyzed applications, 50% of ISRs

will be delayed by up to 5,710 cycles. For the

Mp3.Hw example 46% of ISRs will be delayed

between 5,710 and 17,810 CPU cycles. In

comparison to the specified delay of 366 cycles, our

analysis indicates a potential improvement in the

order of two magnitudes. In general, the actual

improvement will depend on the application and its

timing granularity.

6. Experimental Results

 Figure-5 MP3 JPEG media

In order to demonstrate the benefits of our

ROM-based abstract RTOS model on a real-world

design example (Figure 7), we have implemented it

on top of SCE [1] using the SpecC SLDL. We

realized the ROM-based RTOS without any change

in the simulation engine, it only uses standard

primitives (events and wait-for-time statements).

Note that the ROM concept is generic and can be

directly applied to other SLDLs such as SystemC as

well.

To measure the improvements, we use the

ROM-based abstract RTOS in an industrial sized

example as outlined in Figure 7. An ARM7TDMI

running ¹C/OS-II [13] concurrently decodes a MP3

stream and encodes a JPEG picture. The processor is

assisted by 3 HW accelerators, an additional set of

HW units perform input and output. We focus in this

simulation on the audio output. The ARM writes the

decoded samples into the AC97 controller, which

feeds them via an AC-Link to an AC97 codec [12].

N.Vignesh, Venkadesh.R, DR.K.Rajan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.074-078

77 | P a g e

Upon a half- filled FIFO, the AC97 controller

triggers an interrupt to the ARM which then writes

additional samples into the FIFO.

Figure-6 Measured Interrupt Latency

This Figure 6 shows the ISR latency for

three solutions: execution on a cycle accurate ISS [2],

simulation using the TLM-based RTOS, and using

our ROM-based solution. The logarithmic x-axis

denotes the ISR latency in CPU cycles. The y-axis

denotes the cumulative probability. As an example,

the TLM line reads 0.41 at 1000 cycles, indicating

that 41% of the ISR invocations will be delayed by

1000 cycles or less. Table 2 shows the same data in

numerical form.

Our ROM-based abstract RTOS model, on

the other hand, shows a very tight distribution. The

minimal latency and the 96th percentile are only 2

cycles apart. Interestingly, the maximum observed

latency reached almost 10,000 cycles. Here, the

interrupt occurred while the CPU just started another

ISR. Since both interrupts use the same priority level,

no pre-emption occurred and the measured ISR

started late. The ROM ISR latency distribution

matches the CPU within 8% in terms of average and

50th percentile. At this point, we do not model RTOS

critical sections, hence ROM does not show the same

variation the CPU does.

7. Conclusion
In this Paper, we have presented a novel

approach for modeling preemption in an abstract

RTOS model. Our solution is based on the Result

Oriented Modeling technique, previously applied

only to communication modeling. While a TLM-

based RTOS model relies on fine-grained timing

annotations to emulate preemptions, our ROM-based

model allows accurate preemption at any point. ROM

significantly increases the timing accuracy of

preemption simulation without demanding fine-

grained timing information and without reducing

simulation performance.

With this accuracy improvement, ROM is an enabler

to further expand the use of abstract modelling. This

work is the first to show that the ROM concept is

applicable outside of the communication domain.

Where in communication modelling it is tied to a

particular bus model, here the ROM approach is not

application specific. Any application scheduled on

the ROM-based RTOS will benefit from the

enhanced accuracy.

References
 [1] T. Gr¨otker, S. Liar, G. Martin, and S. Swan.

System Designwith SystemC. Kluwer

Academic Publishers, 2002.

[2] Z. He, A. Mok, and C. Peng. Timed RTOS

Modelling for Embedded System Design. In

RTAS, San Francisco, 2005.

[3] K. Hines and G. Borriello. A Geographically

Distributed Framework for Embedded

System Design and Validation. In DAC, San

Francisco, CA, June 1998.

[4] S. Honda et al. RTOS-Centric

Hardware/Software Cosimulator for

Embedded System Design. In

CODES+ISSS, Stockholm,Sweden, Sept.

2004.

[5] Y. Hwang, S. Abdi, and D. Gajski. Cycle

Approximate Retargettable Performance

Estimation at the Transaction Level. In

DATE, Munich, Germany, Mar. 2008.

[6] Intel Corporation. Audio Codec '97

Component Specification, Sept. 2000.

 [7] H. Posada et al. RTOS modelling in

SystemC for real-time Embedded SW

simulation: A POSIX model. Design

Automation For Embedded Systems,

10(4):209.227, Dec. 2005.

[8] G. Schirner and R. D¨omer. Result Oriented

Modeling a Novel Technique for Fast and

Accurate TLM. IEEE TCAD,1688.1699,

Sept. 2007.

[9] H. Tomiyama et al. Modeling fixed-priority

pre-emptive multi-task systems in SpecC. In

SASIMI, Nara, Oct. 2001.

N.Vignesh @ Selvaganapathy received

B.Tech Degree in 2007 in Electrical

and Electronics Engineering from Sri

Manakula Vinayagar Engineering

College affliated to Pondicherry

University and M.E Embedded System Technolgies

degree received in the year 2009 from Vel Tech

Engineering College affliated to Anna University

chennai. He has 3 years of teaching experience in

engineering colleges. His Research are interest in

Speed Control of Electrical Machine, Switching

Converter Technolgy and Drives. He has published 2

international Journals, 2 International conferences

and attended Faculty Development programmes. He

N.Vignesh, Venkadesh.R, DR.K.Rajan / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.074-078

78 | P a g e

is currently working as a Assistant Professor in the

Department of Electrical and Electronics

Engineering, Vel Tech Engineering college,

Chennai-62, India. .

Venkadesh.R completed his B.E.

Computer Science and Engineering

from University of Madras in 1999

and M.Tech Electronics and

Communication Engineering from

Pondicherry University in 2004. He

has 13 years of teaching experience in engineering

colleges. He has published 2 international Journals, 3

International conferences, attended workshops and

Faculty Development programmes. Interested area is

Communication and Networking. At present he is

working as Vice-Principal and Assistant Professor,

Department of Electronics and Communication

Engineering, Vel Tech Engineering college,

Chennai-62, India.

K.Rajan completed his B.E. Electrical

and Electronics and M.E. Applied

Electronics at P.S.G. College of

Technology, Coimbatore. He has

completed his Ph.D. from J.N.T.U.

Anantapur, AP in high frequency power system for

industrial and commercial zones. He has 19 years of

industrial experience in R&D, production and 9 years

of teaching experience in engineering colleges. He

has published 4 international and national journals.

He also presented papers in 14 international and

national conferences. Interested area is power

electronics and power system. At present he is

working as Principal in Vel Tech Engineering

College. – RS Trust.

