Vol. 2, Issue 5, September- October 2012, pp.2220-2224

Optical Properties of the Tysonite Phase of LaF3 Compound in the Ground State by First Principles Calculations

Masoud Majidiyan¹, Rooh Allah Taghavimendi², Larousse Khosravi Khorashad³, Gholam Hossein Khorrami⁴ and Hadi Arabshahi⁵

¹Department of physics, Tarbiat Moallem University of Sabzevar, Sabzevar, Iran

²Department of physics, Islamic Azad University, Mashhad brench, Mashhad, Iran ³Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States ⁴Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad, Mashhad,

Iran

⁵Department of Physics, Payame Noor University, Tehran, Iran

Abstract— LaF_3 compound have wide applications such as optical fibers and solid state lasers. So study of its optical properties is important. In this paper some important optical properties, Such as dielectric function, refractiive index, energy loss function and optical conductivity, in theoricaly have been studied. The calculations were performed in the frame work of density functional theory (DFT), using the full potentional linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA). Also, we used Kramers-Kronig transformations for obtaining optical constants.

Index Terms- LaF₃ crystal, Density Functional Theory, Optical properties, Optical fiber.

I. INTRODUCTION

Lanthanides fluoride form a class of materials which have broad range of applications in optical fibers, multi-layer interference, electrodes, florescence lamp and radiation [1,2,3]. Among theses, LaF₃ is one of the most significant host materials which is extensively used for phosphoric purposes. LaF₃ has low energy and consequently quenching of excited states of La ions will be minimum [1,4]. Another applicable characteristic of LaF₃ is its ionic conductivity and super-ionic transitions. Due to this characteristic, LaF₃ can be used as a solid electrolyte which has potential application in battery industry. Besides, it can be applied as special ionic electrodes in detectors. It has a good moderate ionic conductivity even in room temperature [1,5,6]. Super-ionic transitions in LaF₃ exist well in LaF₃ compounds, and they have been studied by Brillouin and Raman spectroscopy [1,7]. Among the materials, injected compounds of Ce and Nb are of importance in for adjusted lasers in UV and UV vacuum domain [1,8,9]. Moreover, use of LaF₃ as an active region for solid state lasers has been investigated [10,11]. LaF₃ is a main candidate as a

material with high available refractive index for multi-layer interference [12]. LaF_3 has a trigonal structure called Tysonite. Fluorine ions are located in three separate sub-lattices which are F1, F2 and F3 [13]. Motionless Lanthanum cations are situated on layers perpendicular to the axis c. F1 anions, which form layers between La planes, are very mobile [14,15]. So far, there has not been a theoretical research on optical properties of LaF₃. Most of theoretical researches concern its electronic and structural properties.

II. METHOD OF CALCULATION

We used WIEN2k code which is one of strong and most application codes for simulation of crystals [16,17]. In this study, calculations have been performed using the Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method in the framework of Density Functional Theory (DFT). Generalized Gradient Approximation (GGA) has been used for exchange-correlation term. LaF₃ is crystallized in tetragonal, orthorhombic and cubic phases. However, it is in trigonal phase in environmental conditions. Space group of the compound in trigonal phase is $P\overline{3}C1$ and the numbers of its symmetries are 12 and there are 4 atoms inside unit cell. Figure 1 show the crystal structure of LaF₃. Muffin-Tin's radius of atoms was chosen as there is no overlapping between Muffin-Tin's spheres. Atomic positions and Muffin-Tin's radius are summarized in table 1. Separation energy between valance electrons and core electrons has been considered as -6Ryd. For this compound, R_{MT}×k_{max} and number of k-points in the first Brillouin zone has been chosen to be equal to 6 and 2000, respectively that R_{MT} and k_{Max} are the smallest radius of atoms and the maximum value of the reciprocal lattice vector respectively. The converge criterion of calculations have been

Masoud Majidiyan, Rooh Allah Taghavimendi, Larousse Khosravi Khorashad, Gholam Hossein Khorrami, Hadi Arabshahi / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2220-2224

considered when the integrate charge difference between input and output charge is less than 0.0001.

Atom	Atomic position			RMT(a.u)	
	Х	У	Z		
La	0.659	0.000	0.250	2.05	
	7		0		
F1	0.333	0.666	0.185	1.86	
	3	7	6		
F2	0.365	0.053	0.081	1.86	
	6	5	3	A 1 1	
F3	0.000	0.000	0.250	1.86	
	0	0	0	0	

Fig 1. Crystal structure of LaF₃

III. RESULTS

We know that dielectric function indicate response of material to electro-magnetic waves. The dielectric function can be written as [18]: $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$

That, $\varepsilon_1(\omega)$, is real part and $\varepsilon_2(\omega)$, imaginary part of dielectric function.

Figure 2 and 3, show changes of real and imaginary part of dielectric function, in the x- and z-directions, in terms of incident photon energy that real part of dielectric function has been extracted from imaginary part of dielectric function by the Keramers-Kronig's transformations. As know, the imaginary and real part of dielectric function can be written as [19]:

$$Im \varepsilon_{ij}(\omega) = \frac{4\pi e^2}{m^2 \omega^2} \sum_{c,v} \int dk < C_k |p_i| V_k > V_k |p_j| C_k > x \delta(\varepsilon_{ck} - \varepsilon_{vk} - \omega)$$
$$Re \varepsilon_{ij}(\omega) = \sigma_{ij} + \frac{2}{\pi} p \int_0^\infty \frac{\omega' Im \varepsilon_{ij}(\omega')}{\omega'^2 - \omega^2} d\omega'$$

Where $|C_k >$ and $|V_k >$ are conduction and valence states of the electron in a given wave vector k. According Figure 2, there is

no major difference between real part of dielectric function at x- and z-direction to 6 eV and main difference is happened at the range 6 eV to 13 eV, after this range, again, there is no important different. So, we can say this compound in low energy is nearly isotropic. When $\varepsilon_1(\omega) < 0$, electro-magnetic wave don't propagate [18], so, roots of $\varepsilon_1(\omega)$ indicate forbidden region for propagation. Roots of $\varepsilon_1(\omega)$ in x-direction are lied at energies 16.60 eV and 13.19 eV and in z-direction, at energies 10.82 eV and 13.17 eV. In other word, forbidden region in z-direction is more than x-direction. Also, according Figure 2, depth of $\varepsilon_1(\omega)$ inside negative value in z-direction is more than x-direction, so, we expect energy loss in z-direction be more than x-direction but width of peak of energy loss be less than x-direction.

Fig 2. Real part of dielectric function of LaF₃. Fig 3. Imaginary part of dielectric function of LaF₃.

The roots of $\varepsilon_1(\omega)$ indicate plasma oscillations but it is not enough condition and we have to consider the energy loss function. Figure 4 show the energy loss function of LaF₃ compound in terms of photon energy. The clear peaks of energy loss function are happened at energies 13.28 eV and 13.29 eV in x- and z-direction, respectively. These peaks is good agreement with roots of $\varepsilon_1(\omega)$. Also, peak of energy

Masoud Majidiyan, Rooh Allah Taghavimendi, Larousse Khosravi Khorashad, Gholam Hossein Khorrami, Hadi Arabshahi / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2220-2224

loss in z-direction is more than x-direction that it is adapted by our expectation.

In the optical applications such as optical fiber, we attempt to using materials which they have less refraction changes inside an energy range. Figure 5 show the refractive index of LaF₃ in terms of photon energy. According Figure 5, we can say LaF₃ have isotropic refractive index at the low energy and its birefractive value to 6 eV is small. The value of static refractive index at the 0.6328 μ m summarized in table 2. The result of refractive index at the 0.6328 μ m summarized in table 2. The result of refractive index at the 0.6328 μ m summarized in 2.0,21].

Fig. 5. Refractive index of LaF₃

Tig of Difference between n_x and n_z.

 Table2. Static refractive index and static dielectric

 function

Tulletion								
Method	Static		Refractive		Static			
1 1 1	refraction		index at		dielectric			
			0.6328 µm		function			
1	n _{0x}	n _{0z}	n _x	nz	$\mathbf{\epsilon}_{0x}$	$\mathbf{\epsilon}_{0z}$		
GGA	1.68	1.67	1.69	1.68	2.8	2.7		
12			9	1	3	7		
Exp[20,2	1.59*	1.58*	1.60	1.60	-	-		
1]	*	*	6	2				

**Experimental values of static refractive index have been obtained by limit of Sellmiere's relation at high wave lengths.

In the visible region, the dispersion relation of refractive index in terms of wave length, λ , can be calculated by Sellmiere's relation [22]:

$$n^{2}(\lambda) = A + \frac{B\lambda^{2}}{\lambda^{2} - C^{2}}$$

That A, B and C are Sellmiere's coefficients. The Sellmiere's coefficients have been obtained by evaluation of n^2 data in Sellmiere's relation. The results of evaluation summarized in table 3. By the dispersion relation we can indicate Group index of compound. The Group index is factor which determines group velocity of waves, in dielectric medium, to propagation velocity waves in free space. The Group index can be written [23]:

$$N_{g}(\lambda) = n(\lambda) - \lambda \frac{dn(\lambda)}{d\lambda}$$

The Group index is quantity which used in optical fiber for calculating dispersion because of Ng indicate group velocity of propagated optical pulse inside glass or transparent medium. According to figure 7, there is small difference between n_x and n_z , nevertheless difference at Ng is very small.

Masoud Majidiyan, Rooh Allah Taghavimendi, Larousse Khosravi Khorashad, Gholam Hossein Khorrami, Hadi Arabshahi / International Journal of Engineering Research and Applications **ISSN: 2248-9622** (IJERA) www.ijera.com

Fig 8. Sellmiere's relation for LaF₃ and Fitted data In the visible region.

Table 3. Calcualted and experimental Sellmiere's coefficients.

Method		Sellmiere's coefficients					
	A in	B in	B in	C^2	C^2		
	x-and	x-dir	z-dir	(μm^2)	(μm^2)		
	z-dir			in	in		
			-	x-dir	z-dir		
GGA	1.000	1.824	1.770	0.119	0.118		
Exp[20	1.000	1.537	1.514	0.088	0.087		
1							

Other important optical property is optical conductivity. When a optical pulse incident on matter the electrons of occupied states under Fermi level exited to unoccupied states above the Fermi level, so, density of states under and above Fermi level are an effective factor for optical conductivity[24]. Figure 9 and Figure 10 show the optical conductivity and threshold of optical conductivity in terms of incident photon energy, respectively. The threshold of optical conductivity determine optical band gap of compound. According to Figure 7 threshold of optical conductivity in x- and z-direction nearly same and for x- and z-direction is begun about 6.4 eV which it is

Fig 10. Threshold of optical conductivity of LaF₃.

If you are using Word, use either the Microsoft Equation Editor or the MathType add-on (http://www.mathtype.com) for equations in your paper (Insert | Object | Create New | Microsoft Equation or MathType Equation). "Float over text" should not be selected.

IV. CONCLUSION

In this paper, we exhibited that dielectric function and refractive index and other important optical properties of LaF₃ at the low energy nearly are isotropic. The forbidden region and depth of real part of dielectric function inside negative value in z-direction are more than x-direction that it is adapted with observation of the energy loss function and plasma oscillation. The calculated values of refractive index and optical band gap are in good agreement with reported values. The Sellmiere's relation at the visible range is calculated. The calculation of dispersion for refractive index demonstrates there is

Masoud Majidiyan, Rooh Allah Taghavimendi, Larousse Khosravi Khorashad, Gholam Hossein Khorrami, Hadi Arabshahi / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.2220-2224

very small difference between Ng in x- and z-directions.

REFERENCES

- P.Modak,, A.K.Verma, S.Ghosh, G.P.Das, "Pressure-induced phase transition in tysonite LaF₃", Journal of Physics and Chemistry of Solids 70 (2009) 922–926
- [2] P. Fabani, G.P. Pazzi, S. Salvini, "Impurity centers for tunable lasers in the ultraviolet and visible regions", Journal of Physics and Chemistry of Solids 52 (1991) 299–317.
- [3] R. Burkhalter, I. Dohnke, J. Hulliger, "Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications", Progress in Crystal Growth and Characterization of Materials 42 (20 01) 1–6 4.
- [4] Daibo Pi, Feng Wang, Xianping Fan, Minquan Wang, Yong Zhang, "Luminescence behavior of Eu nanoparticles", Spectrochimica Acta A 61 (20 05) 2455–2459.
- [5] G.A. Jaroszkiewicz, J.H. Strange, "Motion on inequivalent lattice sites: NMR theory and application to LaF", Journal of Physics C 18 (1985) 2331–2350.
- [6] J. Schoonman, G. Oversluizen, K.E.D. Wapenaar, "Solid electrolyte properties of LaF", Solid State Ionics 1 (1980) 211–221.
- [7] C.A. I. Anghel, J.D. Comins, "Brillouin and Raman scattering measurements on supersonic LaF", Materials science forum 239–241 (1997) 413–416.
- [8] R.W. Waynant, P.H. Klein, "Vacuum ultraviolet laser emission from Nd", Applied Physics Letters 46 (1985) 14–16.
- [9] D.J. Ehrlich, P.F. Moulton, R.M. Osgood Jr., "Optically pumped Ce: LaF laser at 286 nm", Optics Letters 5 (1980) 339–341.
- [10] M.J. Weber, in: R.J. Presseley (Ed.), Handbook of Lasers, Chemical Rubber, Cleveland, 1971.
- [11] A.A. Kaminskii, Lazernye Kristally, Laser Crystals, Nauka, Moscow, 1975.
- [12] Yusuke Taki, Kinichi Muramatsu," Hetero-epitaxial growth and optical properties of LaF₃ on CaF₂", Thin Solid Films 420–421 (2002) 30-3.
- [12] B. Maximov, H. Schulz, Acta Cryst. B 41 (1985) 88–91.
- [13] A.F. Privalov, H.-M. Vieth, I.V. Murin, J. Phys.: Condens. Matter 6 (1994) 8237–8243.
- [14] P. A.F. Privalov, O. Lips, F. Fujara, J. Phys.: Condens. Matter 14 (2002) 4515–4529.
- [15] P.Blaha, D. Singh, P. I. Sorantin and K. Schwarz, Phys. Rev. B46, (1992)1321-1325.
- [16] P.Blaha and K. Schwarz, WIEN2k. Vienna University of Technology Austria (2002).

- [17] Charles Kittle," Introduction to solid state physics",7th edition, john Wiley & Sons Inc,ISBN-0-1711181-3
- [18] de L Kronig R 1926 On the theory of the dispersion of x-rays J. Opt. Soc. Am. 12 547–57
- [19] B. H. T. Chai, "Handbook of Laser Science and Technology", Suppl. 2, Optical Materials (CRC Press, Boca Raton, FL, 1995), p.30.
- [20] Laiho, R. and Lakkisto, M., "Investigation of the refractive indices of LaF₃, CeF₃, PrF₃,NdF₃", Phil. Mag. B 48. 203 (1983).
- [21] W. Sellmeier, Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen, Annalen der Physik und Chemie 219, 272-282 (1871).
- [22] J. Singh, "Optical properties of condensed matter and applications", Wiley Series, ISBN-13 978-0-470-02192-7.
- [23] Javad Baedi, M R Benam, Masoud Majidiyan, "First-principles study of the effect of La substitution on the electronic and optical properties of Pb(Zr_xTi_{1-x})O3 crystal", Phys. Scr. 81 (2010) 035701(5pp).