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ABSTRACT 
When the signal in the form of image is 

processed, it gets distorted and further processing 

does not provide good results. Hence it is very 

important to get back the image in its original 

noise free condition. In this paper we present an 

image denoising method for noise removal. In this 

work, a wavelet-based multiscale linear minimum 

mean square-error estimation (LMMSE) scheme 

for image denoising is proposed. In order to 

achieve this undecimated wavelet transforms 

(UWT) have been applied to the image. We use 

two wavelet filters and generate two wavelet 

transformed images for each filter. Average of 

these two transformed images is used to generate 

a new image which is visually pleasing as 

compared to individual filtered image. It is also 

shown quantitatively by PSNR and MSE value. 

Experiments show that the proposed scheme 

outperforms some existing denoising methods. 

 

Keywords - bior1.3, db2, image processing, 

LMMSE, UWT 

 

1. INTRODUCTION 
Each imaging system suffers with a 

common problem of “Noise”. Unwanted data which 

may reduce the contrast deteriorating the shape or 

size of objects in the image and blurring of edges or 

dilution of fine details in the image may be termed 

as noise. It may be due to one or more of the 

following reasons, physical nature of the system, 
shortcomings of image acquisition devices, image 

developing mechanism and due to environment. 

Mathematically there are two basic models of Noise, 

additive and multiplicative. Additive noise is 

systematic in nature and can be easily modeled and 

hence removed or reduced easily. Whereas 

multiplicative noise is image dependent, complex to 

model and hence difficult to reduce. Suppressing 

such noise is, thus, the usual first step. Thus, 

denoising is often a necessary and the first step to be 

taken before the images data is analyzed. It is 

necessary to apply an efficient denoising technique 
to compensate for such data corruption. Image 

denoising still remains a challenge for researchers 

because noise removal introduces artifacts and 

causes blurring of the images. Most image  

 

processing techniques involve treating the image as 

a two-dimensional signal and applying standard 

signal-processing techniques to it. There are 

applications in image processing that require the 
analysis to be localized in the spatial domain. The 

term spatial domain refers to the image plane itself, 

and approaches in this category are based on direct 

manipulation of pixels in an image. Transform 

domain processing techniques are based on 

modifying the Fourier or wavelet transform of an 

image.  The classical way of doing this is through 

what is called Windowed Fourier Transform. Central 

idea of windowing is reflected in Short Time Fourier 

Transform (STFT). The STFT conveys the localized 

frequency component present in the signal during 
the short window of time. The same concept can be 

extended to a two-dimensional spatial image where 

the localized frequency components may be 

determined from the windowed transform. This is 

one of the bases of the conceptual understanding of 

wavelet transforms. Hence, wavelet transforms have 

been kept as the main consideration in this paper. 

Denoising of natural images corrupted by noise 

using wavelet techniques is very effective because of 

its ability to capture the energy of a signal in few 

energy transform values. The wavelet denoising 

scheme thresholds the wavelet coefficients arising 
from the wavelet transform. The wavelet transform 

yields a large number of small coefficients and a 

small number of large coefficients. Simple de-

noising algorithms that use the wavelet transform 

consist of three steps. 

 Calculate the wavelet transform of the 

noisy signal. 

 Modify the noisy wavelet coefficients 

according to some rule. 

 Compute the inverse transform using the 

modified coefficients. 
 

The problem of Image de-noising can be 

summarized as follows. Let A(i, j) be the noise-free 

image and B(i, j) the image corrupted with noise Z(i, 

j) , B(i, j) = A(i, j) +σZ(i, j). The problem is to 

estimate the desired signal as accurately as possible 

according to some criteria. In the wavelet domain, 

the problem can be formulated as Y(i, j) =W(i, j) + 

N(i, j). Where Y(i, j) is noisy wavelet coefficient, 
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W(i, j) is true coefficient and N(i, j) noise. The 

wavelet transform has proved to be very successful 

in making signal and noise components of the signal 

distinct. As wavelets have compact support the 

wavelet coefficients resulting from the signal are 

localized, whereas the coefficients resulting from 

noise in the signal are distributed. Thus the energy 
from the signal is directed into a limited number of 

coefficients which „stand out‟ from the noise. 

Wavelet denoising must not be confused with 

smoothing; smoothing only removes the high 

frequencies and retains the lower ones. Wavelet 

shrinkage denoising then consists of identifying the 

magnitude of wavelet coefficients one can expect 

from the noise (the threshold), and then shrinking 

the magnitudes of all the coefficients by this amount. 

What remain of the coefficients should be valid 

signal data, and the transform can then be inverted to 

reconstruct an estimate of the signal. Wavelet 
shrinkage depends heavily on the choice of a 

thresholding parameter and the choice of this 

threshold determines, to a great extent the efficacy 

of denoising. Researchers have developed various 

techniques for choosing denoising parameters and so 

far there is no “best” universal threshold 

determination technique. Two types of wavelet 

transforms have been used: Discrete wavelet 

transform (DWT) and Undecimated Discrete 

wavelet transform (UWT). In threshold-based 

denoising schemes, a threshold is set to distinguish 
noise from the structural information. Thresholding 

can be classified into soft and hard ones, in which 

coefficients less than the threshold will be set to 0 

but those above the threshold will be preserved (hard 

thresholding) or shrunk (soft thresholding). Donoho 

(1995) first presented the Wavelet Shrinkage scheme 

with universal threshold based on orthonormal 

wavelet bases. It is generally accepted that in each 

subband the image wavelet coefficients can be 

modeled as independent identically distributed 

(i.i.d.) random variables with generalized Gaussian 

distribution (GGD). So by choosing different type of 
threshold we can improve the quality of the images. 

Although wavelet transform well decorrelates 

signals, strong intrascale and interscale dependencies 

between wavelet coefficients may still exist. The 

denoising schemes benefited from intrascale models. 

Wavelet interscale models are also used in many 

other applications. If a coefficient at a coarser scale 

has small magnitude, its descendants at finer scales 

are very likely to be small too. Shapiro (1993) 

exploited this property and developed the well-

known embedded zero tree wavelet image 
compression scheme. In another viewpoint, if a 

wavelet coefficient generated by true signal has 

large magnitude at a finer scale; its ascendants at 

coarser scales will likely be significant as well. But 

for those coefficients caused by noise, the 

magnitudes may decay rapidly along the scales. 

With this observation, it is expected that multiplying 

the wavelet coefficients at adjacent scales would 

strengthen the significant structures while diluting 

noise. Such a property has been exploited for 

denoising. 

In this paper we have taken two wavelet 

filter biorthogonal (bior1.3) and Daubechies (db2) 

and reconstructed the image individual filter. Now 
the average of two reconstructed images and 

generate the new image which is superior then 

individually generated images. The LMMSE based 

denoising technique with the assistance of UWT 

(undecimated wavelet transforms) adopted in this 

paper. 

 

2. THE DENOISING METHOD 
This paper discusses how to remove the 

additive white Gaussian noise (AWGN) with a zero 
mean and reconstructed images also analyzed for 

other mean values. Decimation of the wavelet 

coefficients is an intrinsic property of the discrete 

wavelet transform (DWT). The decimation step 

removes every other of the coefficients of the current 

level. Thus the computation of the wavelet transform 

is faster and more compact in terms of storage space. 

More importantly, the transformed signal can be 

perfectly reconstructed from the remaining 

coefficients. Unfortunately, the decimation is 

causing shift variance of the wavelet transform. In 
order to achieve shift- invariance, researches from 

different fields and having various goals have 

invented several wavelets transform algorithms. This 

type of transforms is known under the common 

name undecimated wavelet transform (UWT). 

Unlike the discrete wavelet transform (DWT), which 

downsamples the approximation coefficients and 

detail coefficients at each decomposition level, the 

undecimated wavelet transform (UWT) does not 

incorporate the down sampling operations. This 

algorithm is based on the idea of no decimation. It 
applies the wavelet transform and omits both down 

sampling in the forward and up sampling in the 

inverse transform. More precisely, it applies the 

transform at each point of the image and saves the 

detail coefficients and uses the low-frequency 

coefficients for the next level. The size of the 

coefficients array does not diminish from level to 

level. Thus, the approximation coefficients and 

detail coefficients at each level are the same length 

as the original signal. By using all coefficients at 

each level, we get very well allocated high-

frequency information. The resolution of the UWT 
coefficients decreases with increasing levels of 

decomposition. By comparing the UWT with the 

DWT, the UWT has some unique features, 

Translation invariance, better denoising capability, 

better peak detection capability. 
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Fig.2: a 2-dimensional UWT - decomposition step 

 

2.1 Wavelet Thresholding  

The term wavelet thresholding is explained 
as decomposition of the data or the image into 

wavelet coefficients, comparing the detail 

coefficients with a given threshold value, and 

shrinking these coefficients close to zero to take 

away the effect of noise in the data. The image is 

reconstructed from the modified coefficients. 

Thresholding distinguishes between the coefficients 

due to noise and the ones consisting of important 

signal information. The choice of a threshold is an 

important point of interest. It plays a major role in 

the removal of noise in images because denoising 
most frequently produces smoothed images, 

reducing the sharpness of the image. Care should be 

taken so as to preserve the edges of the denoised 

image. There exist various methods for wavelet 

thresholding, which rely on the choice of a threshold 

value. Some typically used methods for image noise 

removal include VisuShrink, SureShrink and 

BayesShrink. For all these methods the image is first 

subjected to a wavelet transform, which decomposes    

the image into various sub-bands. The sub-bands 

HHm, HLm, LHm, m = 1, 2, …, j are called the details, 

where m is the scale and j denotes the largest or 
coarsest scale in decomposition. Note, LLm is the 

low-resolution component. Thresholding is now 

applied to the detail components of these sub bands 

to remove the unwanted coefficients, which 

contribute to noise. And as a final step in the 

denoising algorithm, the inverse wavelet transform 

is applied to build back the modified image from its 

coefficients. In threshold-based (hard or soft) 

denoising schemes, the wavelet coefficients whose 

magnitudes are below a threshold will be set to 0. 

These pixels are generally noise predominated and 
thus the thresholding of these coefficients is safely a 

structure preserving denoising process. We apply the 

LMMSE only to those coefficients above a threshold 

and shrink those below the threshold to 0. Here in 

this paper threshold applied to wj (wavelet 

coefficients) is set as TH=1.8*σj.     

Suppose the original signal f is corrupted with 

additive white Gaussian noise n. 

g = f + n                                              (1)    

 

where n ∈ N(0, σ2), Applying the UWT to the noisy 
signal g, at scale yields 

  𝑤𝑗 =  𝑥𝑗 + 𝑣𝑗                                 (2) 

     

 where wj is wavelet coefficients at scale j, 

xj and vj are the expansions of f and n respectively. 

In this thesis, the LMMSE of wavelet coefficients is 

employed instead of soft thresholding. Suppose the 

variance of vj and xj  is  𝜎𝑗
2 and 𝜎𝑥𝑗

2  respectively. 

Since vj and xj are both zero mean, the LMMSE of xj 

is:  𝑥𝑗
′ = 𝑘′. 𝑤𝑗          

     where       𝑘′ =
𝜎𝑥𝑗

2

𝜎𝑥𝑗
2 +𝜎𝑗

2                                      (3)     

This leads to the energy shrinkage of the 

restored signal.        After applying the LMMSE, 

approximate 𝒙   𝒋
′  is obtained and  𝑥𝑗

′  is extracted, and 

this is nearly approximate coefficients of the real 

image.  

 

2.2 Wavelet Filter Used 

Orthogonal filter banks with symmetric FIR 

filters are of great interest in certain applications of 

image and video processing. The symmetry property 
of the filters is important for handling boundary 

distortions of finite length signals effectively. The 

orthogonality property in filter banks preserves the 

energy of the input signal in the subbands, which 

guarantees that errors arising from quantization or 

transmission will not be amplified. In addition, 

orthogonality usually leads to high energy 

compaction. Thus, it is desirable to design filter 

banks that are both symmetric and orthogonal.  

Daubechies (1992)  

Ingrid Daubechies, one of the brightest 
stars in the world of wavelet research, invented what 

are called compactly supported orthonormal 

wavelets, thus making discrete wavelet analysis 

practicable. The names of the Daubechies family 

wavelets are written dbN, where N is the order, and 

db the “surname” of the wavelet. The db1 wavelet is 

the same as Haar wavelet. In this paper we used db2 

wavelet filter of this family which is used in 

programming by this instruction.                                

 [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') 

This computes four filters associated with 

the orthogonal or biorthogonal wavelet named in the 
string „wname‟. Here we signify db2 wavelet filter 

name. 

Biorthogonal Filter 

For image denoising, symmetric wavelet 

filters are more desirable because a symmetrical 

extension at the image edges can be used, providing 

less distortion and higher denoising.  The most 

common type of symmetrical wavelet filter is called 

a biorthogonal filter. FASTMAN has implemented a 

biorthogonal wavelet filter pair as a mega function. 

This mega function implements one stage of the 
wavelet filter pyramid. It takes an input signal at a 

clock frequency f0, computes the decimated high-
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pass and low-pass outputs (at clock frequencies f0/2) 

and then interleaves them to produce a single output 

containing alternating lowpass and highpass 

coefficients. Wavelet coefficients are computed by 

applying multiple stages of a lowpass and highpass 

filter pair, called a quadrature mirror filter pair, to 

the data signal. At each stage (or scale) of the 
pyramid, the low-pass filter computes a smoother 

version of the signal and the high-pass filter brings 

out the signal‟s detail information at that scale. At 

the first stage, the filters are applied to the original, 

full-length signal. Then, at the next stage, the filter 

pair is applied to the smoothed and decimated low-

pass output of the first stage. The wavelet 

coefficients consist of the accumulated detail 

components and the final smooth component. 

Biorthogonal wavelets with FIR filters: 

These wavelets can be defined through the two 

scaling filters wr and wd, for reconstruction and 
decomposition respectively. The Biorthogonal 

wavelet family is a predefined family of this type 

such as bior1.1, bior1.3. 

This family of wavelets exhibits the 

property of linear phase, which is needed for signal 

and image reconstruction. In this family two 

wavelets are used, one for decomposition and the 

other for reconstruction. In this thesis second filter 

we used bior1.3 wavelet filter which is used in 

programming by this instruction.  

           [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') 
„wname‟ we specify here is bior1.3.  

 

2.3 Image Denosing using proposed algorithm 

Image denoising based on averaging of two wavelets 

transformed images algorithm is as follows: 

1. Read the input image. 

2. Corrupt the image with Additive White 

Gaussian noise (AWGN) with different 

noise intensity. 

3. Perform multiscale decomposition of the 

image corrupted by Gaussian noise using 

Undecimated wavelet transform (UWT) 
with the help of „bior1.3‟ wavelet filter. 

4. Calculate the wavelet coefficients of noisy 

image for 3 different scales. 

5. Select only those coefficients above the 

threshold and shrink those below the 

threshold to 0. 

6. We combine the wavelet coefficients with 

the same spatial location across adjacent 

scales as a vector, to which the LMMSE is 

then applied. 

7. Invert the multiscale decomposition to 
reconstruct the denoised image. 

8. Repeat the step from 3 to 6 for the „db2‟ 

wavelet filter and reconstruct the image. 

9. Averaging the matrices of two 

reconstructed images. 

10. Generate a new reconstructed image matrix 

and get the denoised image which is better 

than individually generated denoised 

images.  

 

3. PERFORMANCE MEASURE 

In this work the performance of image denoising is 

computed in terms of Mean square error (MSE) and 

Peak signal to noise ratio (PSNR). 
(i) Mean Square Error (MSE) 

 

MSE=
1

𝑀𝑁
   𝑓 𝑥, 𝑦 − 𝑓′ 𝑥, 𝑦  2𝑁

𝑦=1
𝑀
𝑥=1              (4) 

 

𝑓 𝑥, 𝑦  : Original image 

𝑓′ 𝑥, 𝑦  : reconstructed image after denoising 
M, N: dimensions of the image 

For better performance MSE value should be 

minimum. 

 

(ii) Peak Signal to Noise Ratio (PSNR) 

It is the measure of the peak error in the signal and is 

expressed mathematically by the following equation: 

 

 𝑃𝑆𝑁𝑅 =
   𝑓 ′ 𝑥 ,𝑦  

2𝑁
𝑦=1

𝑀
𝑥=1

𝑀𝑆𝐸
              (5)                                    

The higher the value of peak signal to noise ratio 

means the ratio of the significant signal to noise is 
better. 

 

4. EXPERIMENTAL RESULTS 
The proposed image denoising algorithm is 

implemented in matrix laboratory (MATLAB). This 

part presents the results, obtained after following the 

wavelet denoising algorithm. The results have been 

demonstrated in the form of plots and reconstructed 

images. The proposed technique has been tested for 
assumed standard test images Lena and Barbara. 

The size of images which we have examined is 

512×512. These images are widely used by 

researchers in image processing applications.  The 

qualitative judgment made visually based on the 

results obtained for Gaussian noise variance 5, 10, 

15, 20, 25, 30, with zero mean. For making the 

method general the images were examined for 

different mean values of noise also and verified the 

results. In Fig. 4.1 and Fig. 4.2 it has been clearly 

seen that the MSE value of reconstructed image 

generated by averaging of two wavelets transformed 
images is below the MSE value of individually 

generated image by single filter. It is well known 

that the performance of the image quality increases 

with decrement in MSE value. So from Fig. 4.1 and 

Fig. 4.2 it can be easily concluded that the PSNR 

value obtained for proposed method is better than 

the PSNR value of individual filter. 
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Fig.4.1: Variation of MSE and PSNR for different 

filter for Lena image 

 
Fig.4.2: variation of MSE and PSNR for different 

filter for Barbara image 

 

 
(a): noisy image (σ=5)                  (b): Denoised 

image (σ=5) 

 

 
(c): noisy image (σ=10)              (d): Denoised image 

(σ=10) 
 

 
(e): noisy image (σ=15)               (f): Denoised image 

(σ=15) 
 

 
(g): noisy image (σ=20)                (h): Denoised 

image (σ=20) 

 

(i): noisy image (σ=25)                  (j): Denoised 

image (σ=25) 

 

 
 (k): noisy image (σ=30)                (l): Denoised 

image (σ=30) 
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(a): noisy image (σ=5)                  (b): Denoised 

image (σ=5)  

 

 
(c): noisy image (σ=10)               (d): Denoised image 

(σ=10) 

 

 
(e): noisy image (σ=15)               (f): Denoised image (σ=15) 

 

 
(g): noisy image (σ=20)                (h): Denoised image 

(σ=20) 

 

 
(i): noisy image (σ=25)                (j): Denoised image (σ=25) 

 

 
(k): noisy image (σ=30)                  (l): Denoised 

image (σ=30) 

Fig.4.3: comparison between noisy and denoised 

images 

 

In summary, the proposed scheme permits 

more smoothing away from edges and lesser 

smoothing near edges, resulting in restoring the 

noisy image without significantly degrading its 

edges. However, visually, the edges of the image 

appear sharp and most of the background and other 
low activity areas of the image have been overly 

smoothed. 

As of now the results of various images for 

different values of noise variance with zero mean 

have been observed. It has been seen that, 

experimentally this method gives good results for 

zero mean. Now the proposed method has been 

examined for two mean values 1, 2 using standard 

image Lena.   

 

Table 4: Comparison of quantitative parameters for 
Bior1.3, Db2 and Averaging filter with different 

mean for Lena image 

 

(a) Additive White Gaussian noise with mean=1 

 

Variance 

MSE 

Bior 1.3 Db2 

Averaging 

filter 

15 14.9996 15.8271 14.644 

20 21.1894 22.21 20.557 

25 28.4396 29.5641 27.4408 

 

 

Variance 

PSNR(db) 

Bior 1.3 Db2 

Averaging 

filter 

15 30.7656 30.5343 31.8706 

20 29.2633 29.0615 30.3958 

25 27.9866 27.8212 29.143 
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(b) Additive White Gaussian noise with mean=2 

 

 

Variance 

MSE 

Bior 1.3 Db2 

Averaging 

filter 

15 17.8939 18.6266 17.4962 

20 24.1054 25.1874 23.5045 

25 31.1594 32.3935 30.2098 

 

 

Variance 

PSNR 

Bior 1.3 Db2 

Averaging 

filter 

15 30.0593 29.8868 31.1576 

20 28.7642 28.576 29.8748 

25 27.6495 27.4838 28.785 

 

  From above tables it has been observed that 

as mean value of AWGN increases, MSE value also 

increases which degrades the performance of image in 

terms of PSNR. But the proposed method gives better 

results as compared to single filter reconstructed image 

for different mean values. So it can be seen from Table 4 

that the proposed method gives better results for any 

value of mean with different variance. 

 

 
Fig.4.4: comparison of PSNR (dB) for different 

image denoising technique for Lena image corrupted 

by AWGN 

 

The above graph show that the different 

denoising response for three different variance 15, 

20, 30. These denoising schemes clearly 

differentiated by their respective colors. The graph 

compares the value of PSNR (dB) for different type 
of denoising schemes. The proposed scheme is 

represented by black line. This is providing the best 

results to all other methods of denoising. 

 

 

5. Conclusion 
In this paper, Averaging of two wavelet 

transformed images algorithm for denoising natural 

images were investigated and their performance was 

comparatively assessed. Its performance was shown 

to be competitive with or exceeding the performance 

of other algorithms. In addition, it has been shown to 

enjoy the advantage of implementation simplicity. 
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