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Abstract 
This paper discusses the application of 

complex wavelet transform (CWT) which has 

significant advantages over real wavelet 

transform. CWT is a form of discrete wavelet 

transform, which generates complex coefficients 

by using a dual tree of wavelet filters to obtain 

their real and imaginary parts. In this paper we 

implement Selesnick’s idea of dual tree complex 

wavelet transform where it can be formulated for 

standard wavelet filters without special filter 

design. We examine the behaviour of 1 

dimensional signal and implement the method 

for the analysis and synthesis of a signal. Analysis 

and synthesis of a signal is performed on a test 

signal to verify the CWT application on 1D 

signal. The same is implemented for the MST 

radar signal. In this paper, CWT with custom 

thresholding algorithm is proposed for the 

estimation of Doppler profiles. The proposed 

algorithm is self-consistent in estimating the 

Doppler of a MST RADAR signal, in contrast to 

existing methods, which estimates the Doppler 

manually and failed at higher altitudes.  

Keywords— Signal processing, MST radar, 

Doppler Estimation, Complex wavelets, custom 

thresholding. 

 

INTRODUCTION 
RADAR can be employed, in addition to 

the detection and characterization of hard targets, to 

probe the soft or distributed targets such as the 

Earth‟s atmosphere. Atmospheric radars, of interest 

to the current study, are known as clear air radars, 

and they operate typically in very high frequency 

(30–300 MHz) and ultrahigh-frequency (300 MHz–

3 GHz) bands. The turbulent fluctuations in the 

refractive index of the atmosphere serve as a target 

for these radars. The present algorithm used in 
atmospheric signal processing called “classical” 

processing can accurately estimate the Doppler 

frequencies of the backscattered signals up to a 

certain height. However, the technique fails at 

higher altitudes and even at lower altitudes when the 

data are corrupted with noise due to interference, 

clutter, etc. Bispectral-based estimation algorithm 

has been tried to eliminate noise [1]. However, this 

algorithm has the drawback of high computational 

cost. Multitaper spectral estimation algorithm has 

been applied for radar data [2]. This method has the 

advantage of reduced variance at the expense of  

 

broadened spectral peak. The fast Fourier transform 

(FFT) technique for power spectral estimation and 

“adaptive estimates technique” for estimating the 

moments of radar data has been proposed in [3]. 

 
 

Fig.1. Flow chart for ADP (EALG) 
 

 This method considers a certain number of 

prominent peaks of the same range gate and tries to 

extract the best peak, which satisfies the criteria 

chosen for the adaptive method of estimation. The 

method, however, has failed to give consistent 

results. Hence, there is a need for development of 

better algorithms for efficient cleaning of spectrum. 

II. Existing Method 

The National Atmospheric Research 

Laboratory, Andhra Pradesh, India, has developed a 

package for processing the atmospheric data. They 
refer to it as the atmospheric data processor [4]. In 

this paper it is named as existing algorithm (EALG). 

The flowchart of EALG is given in Fig. 1. Coherent 

integration of the raw data (I and Q) collected by 

radar is performed. It improves the process gain by a 

factor of number of inter-pulse period. The presence 

of a quadrature component of the signal improves 

the signal-to-noise ratio (SNR). The normalization 

process will reduce the chance of data overflow due 
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to any other succeeding operation. The data are 

windowed to reduce the leakage and picket fence 

effects. The spectrum of the signal is computed 

using FFT. The incoherent integration improves the 

detectability of the Doppler spectrum. The radar 

echoes may be corrupted by ground clutter, system 

bias, interference, etc. The data is to be cleaned 
from these problems before going for analysis. After 

performing power spectrum cleaning, one has to 

manually select a proper window size depending 

upon the wind shear [6], etc., from which the 

Doppler profile is estimated by using a maximum 

peak detection method [3].  

 
Fig.2. Typical spectra of the east beam. (a) Before 

Spectral cleaning. (b) Doppler profile of east beam 

using the EALG.  

 

The EALG is able to detect the Doppler 

clearly up to 11 km as the noise level is very low. 

Above 11 km, noise is dominating, and, hence, the 

accuracy of the Doppler estimated using the EALG 

is doubtful as is discussed in the subsequent 
sections. To overcome the effect of noise at high 

altitudes, a wavelet-based denoising algorithm is 

applied to the radar data before computing its 

spectrum [5]. This paper gives better results 

compared to [4], but this method fails to extract the 

exact frequency components after denoising at 

higher altitudes. To overcome this effect we 

proposed a new method, where spectrum is 

estimated prior to denoising and then denoised using 

Complex Wavelet Transform (CWT) with the help 

of Custom thresholding method. It is named as 
proposed algorithm (PALG) in this letter. 

 

III. Complex Wavelet Transform (CWT) 
Complex wavelet transforms (CWT) uses 

complex-valued filtering (analytic filter) that 

decomposes the real/complex signals into real and 

imaginary parts in transform domain. The real and 

imaginary coefficients are used to compute 

amplitude and phase information, just the type of 
information needed to accurately describe the 

energy localization of oscillating functions (wavelet 

basis). The Fourier transform is based on complex-

valued oscillating sinusoids 

cos ( ) sin( )j te t j t      

The corresponding complex-valued scaling function 
and complex-valued wavelet is given as 

( ) ( ) j ( )c r it t t      

where  ( )r t  is real and even, 

           ( )ij t is imaginary and odd. 

Gabor introduced the Hilbert transform into signal 

theory in [9], by defining a complex extension of a 

real signal ( )f t  as:  

( ) ( ) ( )x t f t j g t   

where, ( )g t  is the Hilbert transform of ( )f t  and 

denoted as
1/2{ ( )} ( 1)H f t and j   .  

The signal ( )g t  is the 90o
 

shifted version 

of ( )f t  as shown in figure (3.1 a).The real part 

( )f t  and imaginary part ( )g t  of the analytic 

signal ( )x t  are also termed as the „Hardy Space‟ 

projections of original real signal ( )f t  in Hilbert 

space. Signal ( )g t  is orthogonal to ( )f t . In the 

time domain, ( )g t  can be represented as [7]  

1 ( ) 1
( ) { ( )} ( )*

f t
g t H f t d f t

t t


  





  
  

If ( )F   is the Fourier transform of signal 

( )f t  and ( )G   is the Fourier transform of signal 

( )g t , then the Hilbert transform relation between 

( )f t  and ( )g t  in the frequency domain is given 

by  

( ) { { ( )}} sgn( ) ( )G F H f t j F   

 

where, sgn( )j   is a modified „signum‟ 

function. 

This analytic extension provides the 

estimate of instantaneous frequency and amplitude 

of the given signal ( )x t  as:  

Magnitude of 
2 2( ) ( ( ) ( )x t f t g t       

Angle of 
1( ) tan [ ( ) / ( )]x t g t f t        

The other unique benefit of this quadrature 

representation is the non-negative spectral 

representation in Fourier domain [7] and [8], which 

leads toward half the bandwidth utilization. The 

reduced bandwidth consumption is helpful to avoid 

aliasing of filter bands especially in multirate signal 

processing applications. The reduced aliasing of 

filter bands is the key for shift-invariant property of 
CWT. In one dimension, the so-called dual-tree 

complex wavelet transform provides a 

representation of a signal ( )x n in terms of complex 

wavelets, composed of real and imaginary parts 
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which are in turn wavelets themselves. Figure 3 

shows the Analysis and Synthesis of Dual tree 

complex wavelet transform for three levels. 

 

 

III. CUSTOM THRESHOLDING 

To overcome the pulse broadening effect in 

improved thresholding function a new function 

called customized thresholding function is 

introduced. The Custom thresholding function is 

continuous around the threshold, and which can be 

adapted to the characteristics of the input signal.  

 

 

Based on extensive experiments, we could 

see that soft- thresholding outperforms hard-

thresholding in general. However, there were also 

cases where hard-thresholding yielded a much 

superior result, and in those cases the quality of the 

estimate could be improved by using a custom 

thresholding function which is similar to the hard-
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thresholding function but with a smooth transition 

around the threshold  . Based on these 

observations, we defined a new custom thresholding 

function as follows:  

 
2

1

0

3 4

c

x sgn( x )( ) if x

f ( x ) if x

x x
otherwise

  



 
  

   




  


 


        
               

where 0     and 0 1  . This idea 

is similar to that of the semisoft or firm shrinkage 

proposed by Gao and Bruce [10], and the non-

negative garrote thresholding function suggested by 

Gao [10], in the sense that they are continuous at   

and can adapted to the signal characteristics. In our 

definition of ( )cf x ,   is the cut-off value, below 

which the wavelet coefficients are set zero, and   
is the parameter that decides the shape of the 

thresholding function ( )cf x . This function can be 

viewed as the linear combination of the hard-

thresholding function and the soft-thresholding 

function . ( ) (1 ). ( )h sf x f x    that is made 

continuous around the threshold . 

Note that,  

0
lim ( ) ( )c sf x f x


  and 
1,

lim ( )hf x
 

                                  

This shows that the custom thresholding function 

can be adapted to both the soft- and hard-

thresholding functions. 
 

IV. PROPOSED ALGORITHM 
The algorithm for cleansing the spectrum using 

CWT with custom thresholding is as follows. 

1) Let f(n) be the noisy spectral data, for n =0, 

1,...,N-1. 

2) Generate noisy signal y(n) using 

( ) ( ) ( ) 1,2,....,x n f n z n n N   
 

3) Spectrum is calculated for the above signal y(n) 

as ( ) [ ]j j n

n

Y e y n e


  



  . 

4) Input x(n) to the two DWT trees with one tree 

uses the filters h0, h1 and the other tree with 

filters g0, g1. 
5) Apply custom thresholding to wavelet 

coefficients in the two trees. 

6) Compute IDWT using these thresholded 

wavelet coefficients. 

7) The coefficients from the two trees are then 

averaged to obtain the denoised original signal. 

8) Then variance is calculated using  

2
1 1

0 0

1
( ) ( )

N N

k k

Y k Y k
N

 

 

 
 

 
 

 
 

V. RESULTS 
The typical spectra of the data collected on 

December 08, 2010, for east beam before and after 

denoising are shown in Fig. 4. The PALG is applied 

to the data collected on June 9, 2006, at 1737 LT for 

East beams, and the respective Doppler Profile is 

obtained. The spectrum of the atmospheric data after 

performing adaptive window denoising for only the 

east beam is shown in Fig. 5(a).  
               (a)   (b) 

 
Fig.4. Typical Spectra of East beam (a) Spectra 

before Denoising (b) Spectra after Denoising. 

 

The Doppler profile obtained after processing the 

radar data using the PALG is shown in Fig. 5(b). 

From Fig. 5(b), it is evident that the Doppler could 

be obtained even at higher altitudes, in the presence 

of atmospheric noise.                

(a)   (b) 

   
Fig.5. Typical Spectra of East beam. (a) Spectra 

after denoising. (b) Doppler Profile after Denoising. 

 

To decrease the probability of filtering out 

the genuine peak and to improve the detectability of 

the signal, bin wise denoising is used instead of 

applying single denoising for the entire frame of 

data. 
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The Doppler profiles for the four scan of 

east beam are shown in Fig. 6(a), mean and standard 

deviation are shown in Fig. 6(b). 

        (a)           (b) 

 
Fig.6. Typical Spectra of East Beam (a) Doppler 

profiles for 4 scans. (b) Mean and Standard 

Deviation of Doppler Profiles for 4 scans. 

 

Finally the results were compared with the 

GPS sonde data and are shown in Fig. 7. From Fig. 

7 it is evident that the results from the PALG are 

better and consistent compared to EALG. 

  

     
Fig.7. Mean Velocity Profiles for GPS, Raw Data 

and PALG  

 

VI. CONCLUSION 
The wavelet transform allows processing of 

non-stationary signals such as MST radar signal. 

This is possible by using the multi resolution 

decomposing into sub signals. This assists greatly to 

remove the noise in the certain pass band of 

frequency. The PALG is self-consistent in detecting 

the wind speeds up to 20 km. The results have been 

validated against the GPS sonde data. The proposed 

method may be used effectively in detection, image 

compression and image denoising and also it is 

giving better results at low signal-to-noise ratio 

cases (even at -15 dB). 
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