
R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1914 | P a g e

The Transaction Concept: Integrated With BPEL and WS-AT,

WS-BA Coordination Protocols

 R.Soujanya (M.Tech) Guide: M.Venkateshwarlu M.Tech
 Department of SE, Department of CSE,

 Sri Kottam Tulasi Reddy Memorial College, Associate Professor CSE Department,

 Kondair. Andhra Pradesh. Sri Kottam Tulasi Reddy Memorial College,

 Kondair. Andhra Pradesh.

ABSTRACT
Service-Oriented Computing (SOC) is

becoming the mainstream development paradigm

of applications over the Internet, taking

advantage of remote independent functionalities.

When the control over the communication and

the elements of the information system is low,

developing solid systems is challenging. In

particular, developing reliable web service

compositions usually requires the integration of

both composition languages, such as the Business

Process Execution Language (BPEL), and of

coordination protocols, such as WS-Atomic

Transaction and WS-Business Activity.

Unfortunately, the composition and coordination

of web services currently have separate languages

and specifications.

The goal of this paper is twofold. First,

we identify the major requirements of transaction

management in Service-oriented systems and

survey the relevant standards. Second, we

propose a semiautomatic approach to integrate

BPEL specifications and web service

coordination protocols, that is, implementing

transaction management within service

composition processes, and thus overcoming the

limitations of current technologies.

Keywords: Web services, transaction

management, WS-Business Activity, WS-Atomic

Transaction, ACID properties, Service

composition languages, and Business process

execution language.

1. INTRODUCTION
The widespread adoption of Web services

is feeding the promises of the new field of Service

Centric Systems. As Service Centric (SC) Systems

are being increasingly adopted, new challenges and

possibilities emerge. Standardized web service

technologies are enabling a new generation of

software that relies on external services to

accomplish its tasks. The remote services are usually
invoked in an asynchronous manner. They are

known by their published interfaces, and await

invocations over a possibly open network. Single

remote operation invocation is not the revolution

brought by Service-Oriented Computing (SOC),

though. Rather, it is the possibility of having
programs that perform complex tasks coordinating

and reusing many loosely coupled independent

services.

Business processes are now able to execute

seamlessly across organizations and to coordinate

the interaction of loosely coupled services. Often it

is necessary to have transactionality for a set of

business operations,

But the loosely nature of such systems calls for

techniques and principles that go beyond traditional
ACID transactions.

In the present treatment, a service is a

standard XML description of an autonomous

software entity, it executes in a standalone container,

it may have one or more active instantiations, and it

is made of possibly many operations that are

invoked asynchronously. A service composition is a

set of operations belonging to possibly many

services, and a partial order relation defining the

sequencing in which operations are to be invoked.

Such a partial order is adequately represented as a
direct graph. A service transaction is a unit of work

comprehending two or more operations that need to

be invoked according to a specific transaction

policy. The coordination of a service transaction is

the management of the transaction according to a

given policy. A service transaction can span over

operations of one service or, more interestingly, of

several services.

One may argue that transaction

management is a well-known Technique for the new
features of transactions executed by web services;

various web transaction specifications have been

developed. WS-Coordination [1] specification

describes an extensive framework for providing

various coordination protocols. The WS-

AtomicTransaction (WS-AT) [2] and WS-Business

Activity (WS-BA) specifications [3] are two typical

web transaction protocols. They leverage WS-

Coordination by extending it to define specific

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1915 | P a g e

coordination protocols for transaction processing.

The former is developed for simple and short-lived

web transactions, while the latter for complex and

long-lived business activities. Finally, the Business

Process

Execution Language (BPEL) [4] is a

process-based composition specification language.
In order to develop reliable web services

compositions, one needs the integration of

transaction standards with composition language

standards such as BPEL [5], [6]. Unfortunately,

these are currently separate specifications.

This paper has a double goal: the first one is

to look at the requirements of transaction

management for Service-oriented systems. The

systematization of requirements is the starting point

for an analysis of current standards and technologies

in the field of web services. The second goal of the
paper is to propose a framework for the integration

of BPEL with transaction protocols such as WS-

AtomicTransaction and WS-Business Activity. We

use a simple but representative example across the

paper, the drop-dead order (DDO) one, to illustrate

requirements and the proposed approach.

2. The Drop Dead Order Example

The drop-dead order describes a scenario

where a customer wants to order products from a

distributor under the condition that the products are
delivered before the drop-dead date (Figure).

In the scenario, the distributor tries to find a

supplier that has the products available. If he finds

such a supplier, he will search for a carrier that is

able to deliver the products before the drop-dead

date. If both the supplier and the carrier are able to

fulfill the demands of the customer, the distributor

reports to the customer that he can fulfill the order.

After the customer has acknowledged, the distributor

sends a confirmation to the supplier and the carrier.

 FIGURE: The Drop Dead Order Example

3 TRANSACTION REQUIREMENTS

In the field of databases, transactions are

required to satisfy the so-called ACID properties,

that is, the set of operations involved in a transaction

should occur atomically, should be consistent,

should be isolated from other operations, and their

effects should be durable in time. Given the nature

of Service-Oriented Systems, satisfying these

properties is often not possible and, in the end, not

necessarily desirable. In fact, some features are

unique to Service-Oriented Systems:

 Long-lived and concurrent transactions, not

only traditional transactions which are
usually short and sequential.

 Distributed over heterogeneous

environments.

 Greater range of transaction types due to

different types of business processes,

service types, information types, or product

flows.

 Unpredictable number of participants.

 Unpredictable execution length.

 For example, information query and

flight payment need 5 minutes; while e-
shopping an hour; and a complex business

transaction like contracting may take days.

 Greater dynamism. Computation and

communication resources may change at

runtime.

 Unavailability of undo operations, most

often only compensating actions that return

the system to a state that is close to the

initial state is available.

Furthermore, transactions may act differently when

exposed to certain conditions such as logical

expressions, events expressed in deadlines, and even
errors in case of a faulty web service. To make sure

that the integrity of data is persistent, the two

transaction models used are, namely, Composite and

distributed that allow smooth recovery to a previous

“safe” state.

The set of emerging features mentioned

earlier, which combinations of requirements are

mostly coming from the areas of databases and

workflows provide the basis for identifying the most

relevant requirements for transactions in Service-

Oriented Systems.

3.1 ACID Properties

3.1.1 Atomicity

Atomicity is the property of a transaction to

either complete successfully or not at all, even in the

event of partial failures.

3.1.2 Consistency

Consistency is the property of a transaction

to begin and end in a state which is consistent with

the intended semantics of the system, i.e., not

breaking any integrity constraints.

3.1.3 Isolation
Isolation is the property of a transaction to

perform operations isolated from all other

operations. One transaction can therefore not see the

other transaction‟s data in an intermediate state.

3.1.4 Durability

Durability is the property of a transaction to

record the effects in a persistent way. Whenever a

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1916 | P a g e

transaction notifies one participant of successful

completion, the effects must persist, even when

subsequent failures occur.

3.2 Transaction Behaviors

3.2.1 Rollback

Rollback is the operation of returning to a

previous state in case of a failure during a
transaction. This may be necessary to enforce

consistency.

3.2.2 Compensating Actions

Compensating actions are executed in the

event of a failure during a transaction, all changes

performed before the failure should be undone.

3.2.3 Abort

Abort is the returning to the initial state in

case of failure or if the user wishes so.

3.2.4 Adding Deadlines

Adding deadlines to transactions involves

giving timeouts to operations.

3.2.5 Logical Expressions

 Logical expressions for specifying

constraints are used for giving unambiguous and

semantically defined rules for guaranteeing

consistency.

3.3 Transaction Models

3.3.1 Composite Transactions

Composite transactions are nested

transactions. These transactions depend on the

global outcome, that is, all three succeed or the
whole composite transaction fails.

3.3.2 Distributed Transactions

 Distributed transactions are transactions

between two or more parties executing on different

hosts. The transaction should support transactions

through a network between two different hosts.

3.4 Transaction Behavior—Alternatives

3.4.1 Transaction Recovery

Transaction recovery by dynamic rebinding

and dynamic recomposition at runtime is the

possibility of replacing a faulty web service when
the current service is not able to fulfill its promises.

Dynamic recomposition is the forming of a new

composition by replacing one or several services by

another composition that fulfills the same function.

Imagine that the first Carrier somehow fails and is

unreachable. If this happens during a transaction,

then automatic rebinding with a service that offers

the same service should take place. Recomposition

through rebinding with a third Carrier through the

Supplier is also a possibility.

3.4.2 Optimistic or Pessimistic Concurrency

Control

Optimistic or pessimistic concurrency

control refers to the support of different types of

concurrency control to enforce consistency. This

control could either be optimistic or pessimistic. The

pessimistic approach prevents an entity in

application memory by locking it in the transaction

for the entire time. While the optimistic simply

chooses to detect collisions and then resolves the

collision when it does occur. This scheme has better

performance. When two transactions are concurrent,

they should not both claim the same supply of goods

from one Supplier.

TRANSACTION STANDARDS AND

SERVICE COMPOSITION LANGUAGES
WS-Transactions and Business Transaction

Protocol (BTP) are the two most representative

standards that directly address the transaction

management of web service-based systems, while
for representing compositions of services, the

Business Process Execution Language and the

Choreography Description Language (WS-CDL) are

most widely known and adopted. WS-Transactions

consist of two coordination protocols: WS-Atomic

Transaction and WS-Business Activity which live in

the WS-coordination framework. WS-AT provides

the coordination protocols for short-lived simple

operations, while WS-BA provides the coordination

protocols for long-lived complex business activities.

The WS-coordination framework is extensible and

incremental. That is, WS-coordination can enhance
existing Service-Oriented Systems with transaction

properties by wrapping them with a specific

coordination.

BTP is a model for long-lived business

transaction structured into small atomic transactions,

and using cohesion to connect these atomic

operations. Its motivation is to optimize the use of

resource involved in a long-lived transaction under

loosely coupled web service environments and

avoiding the use of a central coordinator.

BPEL provides the facilities to specify
executable business processes with references to

services‟ interfaces and implementations. It does

handle some basic issues of transactions, such as

compensation, fault, and exception handling, but

other transaction requirements are not managed.

WS-CDL provides the infrastructure to describe

cross-enterprise collaborations of web services in a

choreographic way.

Consider the proposed protocols that take

the transaction and the business perspective of

Service-Oriented Systems with respect to the
requirements. In Table 1, we summarize the results

of the evaluation for all requirements—each row—

and for all protocols—each column—by denoting

the satisfaction with the “⨁” symbol, the partial

satisfaction with “⨀” and no support with ”Ө”.

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1917 | P a g e

TABLE-1 Evaluation Results

WS-AT is a traditional protocol which

satisfies the basic ACID properties. WS-BA, on the

other hand, renounces atomicity to accommodate

long-lived transactions. BTP has included confirm

sets. These confirm sets let the application element

choose which operations with parties in the

transaction are to be canceled and which are to be

confirmed. In this way, the application element is
able to contact more services which perform the

same task and to choose the best option.

Unfortunately, BTP is not part of the WS-Stack,

which limits its compatibility with other web service

technologies. In addition, BTP does not support

long-lived transactions. There is also a difference in

granularity between the above transaction standards.

WSAT contains simple two-phase commit protocols,

WS-BA contains nonblocking protocols and BTP

consists of a Sequence of small atomic transactions.

As for security, WS-Security can be combined with

WS-Transaction as well as with BTP.
Dynamic rebinding is supported only by

BPEL, though only at the implementation level. WS-

CDL supports most requirements, while its major

disadvantage is that the large players in the field do

not support it and that no implementation is

available.

WS-AT is a very conservative business

transaction model especially with respect to

blocking. WS-BA is more appropriate for services,

by renouncing to the concept of the two-phase

commit. BTP places itself in the middle (two-phase
commit is followed in a relaxed way). As for BPEL

and WS-CDL, they address the business process

perspective with limited transaction support.

5 PROPOSALS FOR INTEGRATING

TRANSACTIONS INTO BPEL

The above survey shows that there are

standardized protocols for describing transactions

and languages for describing processes in terms of

flows of activities. The connection among these is,

to say the least, very loose. The problem is that

processes are described in terms of activities and

roles capable of executing the activities, but
semantic dependencies among these activities are

not represented beyond message and flow control. It

may happen that several operations from a single

web service are invoked within a BPEL process, and

dependencies among these operations may exist.

Our proposal consists of making the

dependencies among the activities explicit via an

automatic procedure and performing a restructuring

step of the process, where necessary. The identified

dependencies among activities can be then identified

by the designer of the process as being transactions

or not. In case they are, the designer will decide
which kind of transactions they are and simply

annotate them. The execution framework then takes

care that transaction annotations are correctly

managed at runtime. The need for the human design

decision in the process is necessary due to the lack

of semantic annotations of the BPEL processes.

Only the designer can decide whether a set of

activities that seem to have a dependency in the

process are to be executed transaction ally or not.

Fig 3 Approach to integrating transactions into
BPEL processes.

Consider Fig. 3, where data transformation

goes from left to right and we distinguish three

layers: the data layer at the bottom, the middle

execution layer defining the data transformation, and

the knowledge level indicating from where the

knowledge to transform the data comes. We start
with a generic business process designed to solve

some business goal. An automatic processing step,

which we define next, identifies dependencies

among activities. These are then reviewed by an

expert that decides which actually transactions are

and which not. For those who qualify, he further

decides what kind of transactions they are and

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1918 | P a g e

annotates them. For instance, some may be long

running while others may be atomic ones. We

remark how this is a design step performed by an

expert who understands the domain, the specific

process, and the consequences of choosing a

transaction policy in favor of another. This step

cannot be automated unless further semantic
annotations are made on the BPEL. The restructured

and annotated process is then ready to be sent for

execution. Next the execution phase and will be

handled by the execution framework. We consider

the three phases of the approach individually.

5.1 Preprocessing

Preprocessing the BPEL specification is

performed in two steps, namely, 1) identification and

2) resolution of transaction dependencies. In order to

illustrate the two steps, we introduce an abstract

model of BPEL.

5.1.1 Abstract Model of BPEL Specifications

A BPEL process specification describes the

interaction between services in a specific composite

web service. Its abstract model, known as behavioral

interface, defines the behavior of a group of services

by specifying constraints on the order of messages to

be sent and received from a service.

A BPEL specification „S‟ is a set of

activities „A‟ and its associated links „L‟, represented

by S = (A, L). The links, which are directed, define a
partial ordering over the set of activities and are thus

well represented as a directed graph (e.g., Fig. 4).

 An activity „a‟ in A having a type represented

by Ta, has the following properties:

- Name Na.

- Operation OPa, which is usually implemented

by the web service at a specific port.

- Input variable IVa and output variable OVa,

which specify the parameters required and

produced by the OPa, respectively.

- Set of source links SLa and set of target links

TLa, which specify the outgoing and incoming
links (transitions), respectively.

A link l in S has a unique name Nl and is

indirectly defined through two activities a1 and

a2 which indicates not only the direction l
d of

the transition, but also the conditions lc for the

transition to take place.

Furthermore, the Customer-to-distributor

link lc-d is one of the source links of the

ReceiveOrder activity a1, namely, lc-d ∈ SLa1.

Furthermore, lc-d ∈ TLa6, where TLa6 is the target
link of the CompleteDistribution activity a6.

Therefore, the link lc-d connects the transition

between a1 and a6, denoted as

 a1

 𝒍𝒄−𝒅

_
→ a6. Fig. 4 provides an illustration of

a1

 𝒍𝒄−𝒅

_
→ a6.

Figure 4: Representation of activities and the link

that connects them.

5.1.2 Dependencies Identification Algorithm

If one specifies a set of activities within a

given BPEL specification S, there may exist

dependencies among activities that can hinder the

application of transaction management as described

above. Assume that
 St = { ai│ ai is a transactional activity of a

transaction t} is a transaction t specified within the

BPEL specification S.

For any two activities am and an where am,

an ∈ St and am ≠ an, if there exists a path am
𝒍𝒋𝟏
 ….

𝒍𝒋𝒌

an where lj1 and ljk are some links connecting

activities, we say that an is reachable from am,

denoted as am

∗
 an, and {lj1…. ljk} is a link chain of

am

∗
 an denoted as LC { am

∗
 an }. For any two

activities am and an in a transaction St that are

implemented by the same web service, if am

∗
 an

and OVam ∈ l
c where l ∈ LC {am

∗
 an}, then a

transaction dependency exists between am and an.

To identify the existence of transaction dependencies
within a given BPEL specification S, we propose

Algorithm 5.1.

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1919 | P a g e

The algorithm is a standard graph algorithm

similar to those for reachable set construction. The

function IdentifyDependency takes S as input and

outputs a Boolean value that represents the existence

of transaction dependencies. The function first

creates a path p for any two activities am and an.

Then, traverses the links in the link chain ls obtained

from p. When a link l is detected and its transition

condition lc contains the output variable OVam of the
first activity am, or if it contains an output variable

OVai which is identical to OVam semantically, the

algorithm stops and returns TRUE. Otherwise, it

continues until all pairs of activities in St have been

visited. Finally, if no transaction dependencies are

detected, the algorithm returns FALSE.

5.1.3 Resolution of Dependencies

Once transaction dependencies are

identified, it is necessary to handle them. To solve

this problem, we merge the dependent activities into

one transaction. Algorithm 5.2 resolves the
transaction dependencies within a BPEL

specification S. It employs Algorithm 5.1 to detect

transaction dependencies and it asks the user for

confirmation that it is indeed a transactional

dependency. The output is a new

BPEL specification referred to as preprocessed

BPEL where conflicts are resolved.

5.2 Declaration of Transaction Policies

Once transactions are identified and BPEL

has been accordingly restructured, one needs to

define the desired transactional behavior. To this

end, we introduce a reference transaction policy

declaration schema, shown in Fig. 7.

With this schema, one can declare the

transaction policy using the following elements:
1. Trans ID is a nonzero integer, representing

transactions within a business process.

2. Trans Protocol specifies a protocol for the

transaction, such as WS-AtomicTransaction or WS-

BusinessActivity.

3. Trans Root indicates the parent transaction

identified by Trans_ID. The value 0 is used to

indicate the root transaction within the business

process. One can specify the hierarchy of

transactions by assigning appropriate Trans_IDs and

Trans_Roots.
With such a schema, one can annotate

constraints or preferences to a specific activity in the

BPEL specification. The annotated activity must be

an invoke activity. One can separately specify the

desired constraints or preferences in the design-time-

info or runtime-info sections. For transaction

management, we declare the transaction policies in

the section of the transinfo which is embedded

within the section of runtime info, since a

transaction policy is a runtime constraint. Together

with the other types of process information,

transaction policies are stored in an XML file for use
at runtime.

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1920 | P a g e

Figure 7: A transaction policy declaration schema.

5.3 The Execution Framework

The proposed approach transforms a

generic business process into a restructured one in

which transactions are identified and annotated.

Now, one needs an execution framework that is

richer than a simple BPEL engine. In fact, one needs

to interpret the annotations, make sure that activities

are executed according to the transaction conditions
and also that the binding among dependent activities

is consistent with the transaction semantics. To

achieve this, we rely on the Service Centric System

Engineering (SeCSE) platform in the context of

which the current approach has been developed.

Service Centric System Engineering is a

European sixth framework integrated project, whose

primary goal is to create methods, tools, and

techniques for system integrators and service

providers and to support the cost-effective

development of service-centric applications. The

SeCSE service composition methodology supports
the modeling of both the service interaction view

and the service process view. A service integrator

needs to design both the abstract flow logic and the

decision logic of the process-based composition.

Therefore, the SeCSE composition language allows

the definition of a service composition in terms of a

process and some rules that determine its dynamic

behavior. Correspondingly, the flow logic can be

represented by a BPEL specification, while the

decision logic is defined by rules.

 Based on the architecture of the SeCSE
platform, we built a transaction management tool

called DecTM4B. It consists of three modules,

namely,

 The Preprocessor for Transaction

Management is used to identify and

eliminate transaction dependencies

occurring in the original BPEL

specification. The output is the

preprocessed BPEL specification. The

SeCSE platform will deal with the binding

of abstract services before the BPEL engine

executes the BPEL specification. The
preprocessing executed by Preprocessor for

T.M. happens just before the binding.

Currently,ODE and ActiveBPEL are two

BPEL engines supported by the SCENE

platform.

 The Event Adapter maps the low-level

events from the BPEL engine onto the

binding-related events. The first version of
SeCSE event adapter is extended to support

the mapping of transaction-related events.

 The Transaction Manager is a separate

component in the executor and deployed in

the Mule container (Mule is a messaging

platform based on ideas from Enterprise

Service Bus (ESB) architectures).

The Transaction Manager consists of the following

two transaction-specific components:

- TransLog is responsible for managing the lifecycle

of transactions, such as creating transaction

instances, maintaining the status of transaction
instances, and destroying transaction instances.

TransLog is also responsible for transferring the

information among the components in the executor.

For example, it listens the transaction-

related events from the Event Adapter, and it is

responsible for the communication between

Transaction Manager and JBoss Transaction Server.

- PolicyOperator retrieves the transaction policies

from the XML file, and parses the transaction

policies, and then maps transaction policies onto the

coordination context. It provides a set of APIs which
are to be called by the TransLog.

As for the implementation of transaction

protocols, we rely on JBoss Transaction Server.

JBoss Transaction Server is an open source

implementation of WS-Coordination,

WSAtomicTransaction, and WS-BusinessActivity. It

provides a set of APIs to support the coordination

services and transaction protocols. JBoss

Transaction Server is selectedfor this purpose

because it 1) is a complete, standalone, open source

software tool, 2) has sufficient documentation and 3)
and supports WS-Coordination and WS-Transaction.

6. CONCLUSION:
Web services are being increasingly

adopted by organizations in order to run their

business more effectively and efficiently. However,

current technologies lack the support often required

by such organizations. The success of web services

lies, among other factors, in their reliability,
especially when economic interests are involved.

One key feature is that of being able to deal

transactionally with a set of operations, but this is far

from being easy, especially when the operations in

the transaction come from different remote service

instances.

In this paper, we highlight the key requirements of

transaction management in Service-Oriented

Systems and propose a novel declarative transaction

R.Soujanya, Guide: K.Venkateshwarlu / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1914-1921

1921 | P a g e

management approach for web service compositions.

The key to implementing transaction management

into BPEL processes is to consider the combination

of business logic with transactions, taking into

account the challenges that make it impossible to

directly apply transaction models to all

BPEL processes.
The proposal consists of first a

preprocessing of the BPEL to identify and manage

transaction dependencies among a group of

activities. Then, it proceeds with the annotation with

transaction policies. Finally, the interpretations of

the declared transaction policy are specified as

event-action condition rules to be processed at

runtime.

REFERENCES
1) WS-C, “Web Services Coordination (WS-

Coordination),” technical report, Arjuna

Technologies Ltd., BEA Systems, Hitachi

Ltd., IBM, IONA Technologies, and

Microsoft, 2007.

2) WS-AT, “Web Services Atomic

Transaction (WS-AtomicTransaction),

Version 1.1,” technical report, Arjuna

Technologies Ltd., BEA Systems, Hitachi

Ltd., IBM, IONA Technologies, and

Microsoft, 2007.
3) WS-BA, “Web Services Business Activity

Framework (WSBusinessActivity), Version

1.1,” technical report, Arjuna Technologies

Ltd., BEA Systems, Hitachi Ltd., IBM,

IONA Technologies, and Microsoft, 2007.

4) BPEL, “Business Process Execution

Language for Web Services Version 1.1,”

technical report, IBM, Microsoft, BEAT,

SAP, and Siebel Systems, 2003.

5) C. Sun and M. Aiello, “Requirements and

Evaluation of Protocols and Tools for
Transaction Management in Service Centric

Systems,” Proc. Ann. Int‟l Computer

Software and Applications Conf.

(COMPSAC ‟07), pp. 461-466, 2007.

6) A. Erradi, P. Maheshwari, and V. Tosic,

“Recovery Policies for Enhancing Web

Services Reliability,” Proc. IEEE Int‟l

Conf. Web Services (ICWS ‟06), pp. 189-

196, 2006.

7) A.Portilla, “Providing Transactional

Behavior to Services Coordination,” Proc.

Very Large Data Bases (VLDB) PhD
Workshop, vol. 170, 2006.

8) S. Loecher, “Model-Based Transaction

Service Configuration for Component-

Based Development,” Component-Based

Software Eng., pp. 302-309, 2004.

9) P.W.P.J. Grefen, “Combining Theory and

Practice in Integrity Control: A Declarative

Approach to the Specification of a

Transaction Modification Subsystem,”

Proc. 19th Int‟l Conf. Very Large Data

Bases, R. Agrawal, S. Baker, and D.A. Bell,

eds., pp. 581- 591, 1993.

10) C. Sun and M. Aiello, “Requirements and

Evaluation of Protocols and Tools for

Transaction Management in Service Centric

Systems,” Proc. Ann. Int‟l Computer
Software and Applications Conf.

(COMPSAC ‟07), pp. 461-466, 2007.

11) A. Lazovik, M. Aiello, and M. Papazoglou,

“Planning and Monitoring the Execution of

Web Service Requests,” Int‟l J. Digital

Libraries, vol. 6, no. 3, pp. 235-246, 2006.

12) M. Aiello and A. Lazovik, “Monitoring

Assertion-Based Business Process,” Int‟l J.

Cooperative Information Systems, vol. 15,

no. 3, pp. 359-390, 2006.

13) B. Haugen and T. Fletcher, “Multi-Party

Electronic Business Transactions. Version
1.1,” technical report, UN, 2002.

AUTHOR BIOGRAPHIES:

 R.Soujanya received her B.Tech,

Degree in Computer science and information

technology from G.Pulla Reddy Engineering

College, Kurnool India, in 2010. She is pursuing

her M.Tech in Software Engineering in Sri Kottam
Tulasi Reddy Memorial College, Kondair India. Her

area of interest is in the field of Service oriented

computing, Wireless Sensor Networks and Software
Testing.

Mr.M.Venkateshwarlu Associate Professor,

completed B.Tech in Computer Science &

Engineering in Sri Kalahastheeshwara Institute of

Technology, Sri Kalahasthi, and M.Tech in

Computer Science & Engineering in Sri Kottam

Tulasi Reddy Memorial College of Engg, Affiliated

to JNTU Hyderabad. His interested areas are

Wireless Sensor Networks, Artificial Intelligence.

He attended two international conferences on

MANET`s and one national level conference on
Networks. He attended Mission 10x program

conducted by Wipro. Presently he was acting as The

Convener of R&D cell in SKTRMCE. Kondair,

Mahaboob Nagar (Dt). He had total 07 years of

teaching experience. Currently he was working as

Associate Professor in CSE Department in KTM

College of Engineering,

