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ABSTRACT 
 In this paper we investigated the 

properties of functions defined in terms of the 

quotient of the analytic representations of convex 

and starlike functions. In particular, we consider 

the class Gb consisting of normalized functions f. 

We determine values of b for which 

)(* SGb  , 12/1   and also find values 

of b for which Gb  K. It is known that K

S*(1/2), showing that KSG  )2/1(*1 . We 

also find values of b for which Gb is not starlike 

and not univalent.  
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1. INTRODUCTION: 
A function f of the complex variable „z‟ is 

analytic in an open disc if it is analytic at each point 

in that disc. 

An analytic function f on a domain D is 

said to be univalent if it does not take the same 

value twice i.e., )()( 21 zfzf  for all pairs of 

distinct points z1 and z2 in D. 

A conformal mapping of the unit disc onto 

a domain starlike with respect to the origin is said to 

be starlike function. 

Let S denote the class of functions f normalized by 

f(0) = 01)0( f that are analytic and univalent 

in the unit disk  1:  zz . A function f in S 

is said to be starlike of order ,10,  and is 

denoted by S*     if   Re   ,)(/)(  zfzfz

z  
 and is said to be convex and is denoted by K if  Re 

   zzfzfz ,0)(/)(1 . Mocanu studied 

linear combinations of the representations of convex 

and starlike functions and defined the class of  -

convex functions. S.S. Miller was shown that if 

     0)(/)(1)(/)(1Re  zfzfzzfzfz 

 for z , then f is starlike for    real and convex 

for 1 . 

 In this paper we investigated the properties 
of functions defined in terms of the quotient of the 

analytic representations of convex and starlike 

functions. In particular, we consider the class Gb 

consisting of normalized functions f defined by  
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We determine values of b for which 

)(* SGb  , 12/1   and also find values 

of b for which Gb K It is known that K S*(1/2). 

Show that KSG  )2/1(*1  we also find 

values of b for which Gb is not starlike and not 

univalent. 

Let T (P) denote the class of function f(z) of the 

form 
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 Which are analytic and P-valent in the open 

unit disk  1:  zandczzU  

 In this paper 
q
zD  denotes the qth- order 

differential operator, for a function )()( PTzf  . 
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To prove our result, we need the following Lemma 

given by jack. 

1.2. Lemma: Suppose ''  is analytic for 

0)0(,  rz  and 
rz

zMax
z




)(
)( 0


   

then  .1),()( 000  kzkzz   

1.3. Theorem: Let

   2),(2/),(1 qpqpb  , 

.1),(
2

1
 qp  Then  ),(* qpSGb  , 

with extremal function    ),(12
1/

qp
zz


 . 

Proof: It is well known that if )(z  is analytic in 

  with 0)0(  , then 
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if and only if )(z is a Schwarz function, i.e. 

1)( z  for z  with 0)0(  . 

 Let p (z) be an analytic function defined by  

(1.3.1)    
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 Differences on both sides we get 
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If  qpSf ,* , then by Lemma 1.2 there is a 

0z for which   10 z and 

   000 zzz   . It follows from (1.3.2) that  
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Which contradicts our hypothesis. 
This completes the proof of the Theorem. 

By taking p=1, q=0, we have the following corollary 

which states as follows 

1.4. Corollary: If  
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By  above theorem,  we have the following corollary 

1.5. Corollary: )2/1(*
1 SG   

Proof: By putting b=1, p=1, q=0 in Theorem 1.3 we 

get the proof of the corollary. 

1.6. Theorem: If  ),2/1(*Sf   then 
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Proof: Let   
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Where w (z) is a Schwarz function. We need to find 

the largest disk Rz   for           

which       
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Dieudonne found the region of values for the 

derivatives of Schwarz functions. This led to the 

sharp bound. 
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(1.6.1) 
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Which completes the proof of the theorem. 

1.7. Theorem: KG 1  

Proof: )2/1(*

1 SG  , for  1Gf   satisfies 
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for some Schwarz function w(z). 

Putting  =1/2 in (1.3.2) we get 

1)(1  zwzGf  for z , which means 

that )(zwz   also be a Schwarz function. 

Since 
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 is sufficient to 

construct a Schwarz function )()( zwzz   for 

which 

(1.7.1)                   0
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Where n is large enough so that 
410/)( zz

for Az   and 
810)(Im z                  

for Az . Define   by  (z) = 0.9999

)]([ zz  . 

 We first show that  (z) is a Schwarz 

function and then show that the inequality (1.7.1) 

holds when 0zz  . 

If  Az   
Then             

  1)0001.1(9999.0)(9999.0)(  zzz 

 

If Az ,
 iezz  0 ,

5100   , and note 

that .0)(Recos2 0  z   

If ,0))(Re(  zz   then

.1)(Re  zzz   

If       ))(Re( zz  <0,then 

0001.12141)(sin)(cos)(Re 2
0

2
0   zz

 

Thus, If Az , 

     

.110)0001.1(9999.0)(Im)(Re9999.0)( 8  zzzz 

 

Therefore, )(z  is a Schwarz function. 

Now we show that (1.7.1) holds at 0zz  for

)(z . 

Since 
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We write )()( zzzw  , where 

0003.0)( z  for zA. 

Note that 
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Hence, the function f for which 

)(1

)(1

))((

)(1

zw

z

qpzf

zfz









 must be in kG 1 .  

Which completes the proof of the theorem. 

1.8. Theorem: kGb   for .22b  

Proof: Since  ).2/1(1

 SGGf b  

We write  
)(1

1

))((

)(

zwqpzf
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Where w is a Schwarz function. For ,bGf   we 

take 2/1  in (1.3.2) to obtain 

2/2)(  zwz  and 

 zzw ,2/2)( . 

We have to show that 
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(1.8.1)                 
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the result follows. 
 Mac Gregor found the radius of convexity 

for )2/1(*S   to be   68.0332
2/1

 ----------

-    Since  )2/1(*

1 SG   we know that the radius 

of convexity is at least this large. 

1.9. Corollary: If ,12/2,  bGf b
 

then f is convex in the disk .2/2 bz   

Proof: If 1)(  zwz  for  z , then 

tzwz  )(  for .1 tz  

If ,bGf  then  bzwz  )(  for  z . Hence 

,2/2)(  zwz  then .2/2 bz   

Now we illustrate this by examples 

1.10. Examples: Theorem 1.3 gives order of 

starlikeness for bG  when ,10  b  with 

).2/1(1

 SG  Our method do not extend to b>1, 

but we expect the order of starlikeness to decrease 

from ½ to „0‟ as „b‟ increase from „1‟ to some value 

0b  after which functions in bG  need not be 

starlike. We do not have a sharp result for b>1, but 

the next example shows that the univalent functions 

in bG  are not necessarily starlike for b11.66. 

 The function   1
1)(
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We see that h is not starlike for 

.12/2,  aaz  

 Thus,   aazhzfzf a /)()(   is not starlike 

for z .  

By putting     
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for a sufficiently close to 2/2 . Hence, 

)0(*SGf b    

for  b=11.66. 

  We show that the function in bG  need not 

be univalent. It is shown for   1
1)(
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 996.00z  we conclude that for 

f(z)=g(cz)/c, c=0.997, 4 for „b‟ sufficiently large. 
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