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Abstract 
In this paper, we are implementing 32 

bit pipelined processor on FPGA and designed 

using verilog. In this  Processor , we  had 

performed  logical operations  and arithmetic 

operations like rotate word, modular addition 

modular multiplication, matrix multiplication, 

fixed coefficient multiplier ,mix column 

transform using binary extension field operations 

(2^m) for arbitrary  irreducible Polynomial. 

Using  our   proposed  field  arithmetic  units  we 

can   implement  Symmetric  Key  Cryptography 

algorithms .   Experimental  Results  Shows that  

developed  processor  working  with high  Speed , 

low  area  and low  path delay . 

 

Keywords: Cryptographic Processor, Pipeline, 

Finite field arithmetic (FFA), Symmetric Key 

Cryptography algorithms. 

 

1. Introduction 
The explosive growth in data 

communications and Internet services have made 
cryptography an important research topic. 

Cryptography is used for confidentiality, 

authentication, data integrity, and non-repudiation, 

which can be divided into two families:  

Asymmetric key cryptography: In public key 

cryptography, the data that is encrypted with the 

public key can only be decrypted with the 

corresponding private key.  

Symmetric key cryptography: The process of 

encryption and decryption of information by using a 

single key is known as Symmetric Key 

Cryptography. These are based on a mathematical 
function to encrypt a plain-text message and to 

produce cipher message. [8] 

In this Paper we are designing Symmetric 

key mathematical operations in a 32 bit pipelined 

processor. 

Implementing Symmetric Key operations 

in software seems to not only too slow for fast 

application such as Routers but also vulnerable to 

attacks. In contrast, in Hardware implementation, 

the higher data rate (G bits/second) is made possible 

by parallel and/or pipelining processing. Moreover, 
the implementations are physically  

Secure since tempering by an outside attacker is 

Difficult. With these supporting reasons we are 

looking at the hardware implementation.  

 

 

 

 

Implementing various symmetric-Key operations in 

a general-purpose Processor (GPP) is flexible but 

requires a lower throughput rate, more clock cycles 

for each instruction, more no. of addressing modes 

and larger power Consumption. 

So we developed processor that the 

instruction set can be hardwired to speed instruction 

execution. No microcode is needed for single cycle 

execution. All instructions are one word (fixed bit) 
in length. This simplifies the instruction fetch 

mechanism since the location of instruction 

boundaries is not a function of the instruction type. 

The processor has small number of addressing 

modes. Only load and store instructions access 

memory. There are no computational instructions 

that access memory; load/store instructions operate 

between memory and a register. Control hardware is 

simplified and the machine cycle time is minimized. 

 

The remainder of this paper is organized as 
follows. Section 2: Algorithms of Symmetric Key 

operations. Section 3: Implementation of 

Operations. Section 4 Proposed Architecture. 

Section 5: Modules design of ALU, Control unit, 

Multiplexers and general purpose registers. Section 

6. Results. Section7: Conclusion Section 8: 

References. 

 

2. Cryptographic algorithms for symmetric 

block ciphers. 

 
Advanced Encryption Standard (AES), 

RC6, RC5, Data Encryption Standard (DES), 

Blowfish, International Data Encryption Algorithm 

(IDEA). 

 
Blowfish is a symmetric block cipher that 

encrypts data in 8-byte (64-bit) blocks [3].   The 

algorithm has two parts, key expansion and data 

encryption.  Key expansion consists    of   

generating the initial contents of one   array 

Namely, eighteen 32-bit sub-keys, and four arrays 

(the S-boxes), each of size 256 by 32 bits, from a 

key of at most 448 bits (56 bytes).  The data 

encryption uses a 16-round Feistel Network .The F   

Function, regarded as   the  

Primary source of algorithm security [3], 

combines two simple functions: Addition modulo 

two (XOR) and Addition modulo 2^32. 
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AES [2] is a block cipher developed in effort to 

address threatened key size of Data Encryption 

Standard (DES).It allows the data length of 128, 192 

and 256 bits, and supporting three different key 

lengths, 128, 192, and 256 bits. AES can be divided 

into four basic operation blocks where data are 

treated at either byte or bit level. The array of bytes 
organized as a 4×4 matrix is also called "state" and 

those four basic steps;, Bytes Sub Shift Row or 

Rotate Word, Matrix Multiplication, Mix 

Column, and  AddRoundKey are also  known as 

layers. These four layer steps describe one round of 

the AES. The number of rounds is depended on the 

key length, i.e., 10, 12 and 14 rounds for the key 

length of 128, 192 and 256 bits respectively.  

 

RC5 is exactly designated as RC5-w/r/b, 

where the variable parameters   w, r, and b 

respectively denote the Word size (in bits), the 
number of rounds, and the length of secret key (in 

bytes).  The allowable value of w is 16, 32 and 64; 

the allowable values of r and b range from 0 to 255. 

The parameter of RC5-32/12/16 is commonly 

chosen there are three routines in RC5: key 

expansion, encryption, and decryption.  These 

routines consist of  three primitive operations (and  

their  inverse):  words addition  ,  bitwise  XOR,  

and  data-dependent  left rotation  of  x  by  y 

denoted by   x <<< y. Note that only the log2(w) 

low  order  bits  of  y  affect this  rotation. In the 
key-expansion routine, the user provided secret key 

is expanded  to fill a key table whose size depends 

on the number of rounds. The key table is then used 

in both encryption and decryption.  

 

RC6 [7] is a symmetric-key algorithm 

which encrypts 128-bit plaintext blocks to 128-bit 

cipher text blocks. The encryption process involves 

four operations: Integer addition modulo 2
W

, 

Bitwise exclusive or of two w-bit words,. Rotation 

to the left, and  

f(X) = (X(2X + 1)) mod 2
W

. 

 

IDEA [8] algorithm of the encryption 

process, we provide the original (128bits) cipher key 

to the mentioned unit. When necessary, the Key 

Generator Unit produces different sub-keys by 

performing circular left shift operation (by 25bits) 

on the current key and provides the sub-keys to 

other units. The unit named as “Multiplication 

modulo 216 + 1”, is used to perform all the 

multiplication modulo 2^16+1 operation, when 

required. The same is for unit  

“Addition modulo 2^16” and unit “Bitwise 

XOR”. or the parallel implementation of IDEA 

algorithm, the entire encryption process can be 

performed in several steps and performing  

operations in parallel wherever possible. Parallelism 

in operations can be achieved both in software and 

using hardware. 

 

3. Implementation of Algorithm operations. 

 
 3.1 Modular Addition Two. 

The addition of two elements in a finite 

field is achieved by “adding” the coefficients for the 

corresponding powers in the polynomials for the 

two elements. The addition is  

Performed with the XOR operation (denoted by  ) 

i.e., modulo 2 -so that 1 1 = 0, 1  0 = 1, and 0    

0 = 0. 

 

Require:   Binary Polynomials a (z), b (z) with 

maximum   degree m-1. 

Ensure: c (z) =a (z) + b (z). 

1: for i from 0 to M-1 do 

2: C[i] A[i]  B[i]. 

3: end for 

4: Return(c). 

 

3.2 .Modular Multiplication 2^8 

 In the polynomial representation, 

multiplication in GF 2^8 (denoted by •) corresponds 
with the multiplication of polynomials modulo an 

irreducible polynomial of degree 8. A polynomial 

is irreducible if its only divisors are one and itself. 

For the AES algorithm, this irreducible polynomial 

is    

 m(x)  = x8. 

 

.             For Example,{57}.{83}={C1},because 

 

(x6
 + x + x2 +x +1)  (x 7 + x + 1)   =   

 
x 13 + x11 + x9 + x8 +  x7   + x7 + x 5+ x 3  +x 2 + x +                                                           

x 6 + x 4 + x 2  + x  + 1     =   

          x 13+ x 11+ x 9 + x8 + x 6 + x 5 + x 4 + x 3 + 1.                                                                                                                                                

And  

x 13+ x 11+ x 9 + x8 + x 6 + x 5 + x 4 + x 3 + 1  modulo  

x 8..    

In Prime Field operations modulo means divide it 

requires more time .so in binary field operation it 

requires less time with simple addition. 

x 13+ x 11+ x 9 + x8 + x 6 + x 5 + x 4 + x 3 + 1     x 8..  

                                    = x 6 + x 5 + x 4 + x 3 + 1. 

 {101011011110}    {0000010000000} = 

{111101}. 

 
3.3 .Mix Columns () Transformation. 

 The Mix column () Transformation 

operates on the state column-by-column as a four-

term polynomial .The columns are considered as 

polynomials over GF(2^8) and multiplied modulo 

x^4 + 1 with a fixed polynomial a(x), given by  a(x) 

= {03}x
3 

+ {01}x 
2 

+ {01}x + {02} .  
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Fig 1: Mix Column Transform. 

 

To derive a suitable Mix Column transform 

architecture, the trans formation matrix given  in  

Fig   can  be rewritten as s’
(x) =s(x) .a(x)mod(x

4
  + 1),, 

where • denotes finite field polynomial 

multiplication i.e., 

 
As a result of this multiplication, the four bytes in a 

column are replaced by the following. 

 

S1
0,c  =  ( {02} .So,c)     ({03} .S1,c)     S2,c   S3,c 

S1
1,c  =   So,c    ({02} .S1,c)     ({03} .S2,c )  S3,c 

S1
2,c =  .So,c    S1,c     ({02} . S2,c )   ({03} .S3,c) 

S1
3,c  =  ({03} .So,c)     .S1,c     S2,c    ({02}.S3,c) 

 

 
 

  Fig .2 Mix Columns Transform Architecture 

 

 There are many ways to implement a finite 

field multiplier. An originally proposed one in the 

AES takes the form of XTime ( ) which is 
essentially multiplied by x or left-shift with {1B} 

feedback. That could imply either a bit-serial or a 

bit-parallel architecture. Rudra [3] proposed the 

implementation of Rijndael system with composite 

field arithmetic. We are considering a fast   

multiplier, simple, small area, and support pipeline 

architecture (if needed). Notice of the fix-value 

multiplications (by {02} or by {03}) leads us to a 

fixed-coefficient multiplication in GF (2^8) that 

fulfils our requirements. We are investigating this 

multiplier... 

 

 

3.5. Fixed Coefficients Multiplier. 

Let Si, c = B(x) be an element to be multiplied. B(x) 

can also be written in the polynomial form as; 

 

 

B (x )  =  b0 + b1x + b 2 x 2 + b 3 x
3 +  b4 x

4   
                 b 5 x 5 +   b 6 x 6 + b 7  x

7                    (Eq 3.5.1) 

 

 Where    b € (0,1).     

                       

Multiplications used in the Mix Column 

transformation are  {03}.B( x) = ( x+1 )B( x ) and  

{02}.B( x ) = x.B ( x ). 

The resulted multiplications are: 

 

{03}.B (x ) = (b0   b7 ) + (b0   b1)x  + (b1  b2) x 2                     

+  (b2   b3 )x
3 + (b3   b4) x 4 + (b4   b5 ) x 5 + 

             (b5   b6) x 
6
 + (b6   b7 ) x 

7
.       (Eq: 3.5.2) 

{02}.B(x)    =   b7   + (b0) x + b 1 x 2 + b 2 x
3 +   b3 x 4                          

+  b 4  x 5 +   b 5x 6 +b6 x
7                                (Eq 3.5.3)    

                     

Implementations   of   above equations are 

simple since Additions are simply XORs. As an 

example the   circuit to Compute x.Bi is shown in 

Fig (3) below. The implementation of (x + 1) Bi 

shown in Fig (4).  Can be done similarly. According 

to terms given in (2), and an architecture shown in 

Fig.(4) , the maximum delay time is expected to be 

that of the a delay unit of a 2-input XOR gate. 
 

 
Fig 3: A×2 Fixed Coefficient Multiplier. 

 

 
Fig 4: A×3 Fixed Coefficient Multiplier. 
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3.6 Multiplier X (2X + 1) Modulo 2^8. 

 

Let, 

X   =  b0 + b1x + b 2 x 
2 
+ b 3 x

3
 +  b4 x

4
   

                  b 5 x 5 +   b 6 x 6 + b 7  x
7  .               (Eq 3.6.1) 

    

Now, 

 

{02}.B(x) + 1 = (b7+ 1)   + (b0) x + b 1 x 2 + b 2 x
3 +                                                                               

b3 x
4  + b 4  x 5 +   b 5x 6 + b6 x

7                            (Eq 3.6.2)                          

   

  

x. ({02}.x + 1} mod 28   = x. ({02}. {x} +1)    x 8        

                                                                  (Eq 3.6.3) 

 

Eq (3.6.3), operation requires less time to implement 

Rc6 Algorithm. 

 

3.7 Shift Row Transform. 

 
In  the  Shift Rows()  transformation,  the 

bytes  in the     last  three  rows   of  the State  are 

cyclically   shifted  over  

Different numbers of bytes. 
 

 
 

          Fig 5.  Shift Rows Architecture. 

 

4. Cryptography Processor. 

 

The architecture of an 32 bit processor is 

shown in Fig 6. The processor [1] is designed with 

load/store architecture. Separate memory for 

instructions (program) and data Different     stages 

of the pipeline perform    simultaneous Accesses to 

memory. This Harvard style of architecture can 
Either   be   used   with two completely different 

memory Spaces, a single dual-port memory space 

with separate data and instruction.. Three stages of 

pipelining have been incorporated in the design 

which increases the speed of operation.  

The processor presented instruction set and uses a 

Single Instruction – Single Data (SISD) execution 

order. Its main characteristics are: 

• Sixteen 32-bit general purpose registers. 

•ALU with basic arithmetic and logical operations. 

In this processor we are performing various 

operations of cryptography so we called as 

cryptography processor.  

 

 
 

Fig 6.  Cryptography Processor Architecture. 

 

4.1 Instruction Set. 
For a complete design, it was necessary to 

create a specific instruction set and its own 

assembly code with its proper instruction format. 
The Instructions are classified into two groups. 

 

•Data Manipulation (Load and Storage).  

• Operations (Arithmetic and Logical). 

 The Logical operations like Shift Left, 

Shift Right, and Rotate Word Which requires only 

one Source Register. Shown in Type 3. 

The Arithmetic Operations like addition ,modular 

functions ,etc  to execute these operations we  

requires two source registers and to tore result in 

destination register. Shown in Type 2. 
The Load instructions and store instructions 

Requires address from different data sources shown 

in Type 1. 

            Table 1 describes complete Instruction set. 

Each Instruction having its own Opcode.As the 

complete set contains 13 instructions; 4 bits are 

enough to represent them. 

Table:1  Instruction  Set   Of  The  Developed  

Processor. 
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Type1. 

 
 31                 29                      2524       2019                1615                        0        

 
 

Type2.  

  
 31                 29                      2524       2019                1615                        0        

 
 

 Type3.  
 
31                 29               2524       2019                1615                        0       

 
 

5. Modules Design of Architecture. 

 
5.1 Control Unit. 

The control unit design is based on using 

FSM (Finite State Machine) and we designed it in a 

way that allows each state to run at one clock cycle, 

the first state is the reset which is initializes the CPU 

internal registers and variables. The machine goes to 

the reset state by enabling the reset signal for a 

certain number of clocks. Following the reset state  

Would be the instruction fetching and decoding 

states which will enable the appropriate signals for 

reading instruction data from the ROM then 

decoding the parts of the instruction. The decoding 
state will also select the next state depending on the 

instruction, since every instruction has its own set of 

states, the control unit will jump to the correct state 

based on the instruction given. After all states of a 

running instruction are finished, the last one will 

return to the fetch state which will allow us to 

process the next instruction in the program. Fig7: 

shows the state diagram for the control unit. 

 
Fig 7. State Diagram of Control Unit. 

 

 

 

Fig 8: Top Block   of Control and Decode. 

 

5.2 General Purpose Registers. 

General Purpose Registers (GPRs) store 

and save operands And results during program 

execution. ALU and memories must be able to 

write/read those registers, so a set of Sixteen 32-bit 

registers were used, along with multiplexers and 
control& decoder which register is read or written. 

These two registers are the Operands to ALU which 

performs the operation.  

 

 
Fig 9:  Simulated Timing diagram of General 

Purpose Registers.  
 

5.3   Instruction Register.  

 Instruction registers store the instruction 

which read from the program memory, and keep it 

as an output for the decoder, which separates the 
operation code, Source Registers, Operand address 

and operands and these values will set to General 

purpose registers, Multiplexers and ALU to execute 

the command. This is achieved simply using buffers 

to translate data to/from the processor. 

 

 

 
 

Fig 10:  Simulated Timing diagram of Instruction 

Register 

 

5.4 Arithmetic logical unit (ALU). 

 The Arithmetic-Logic Unit has 12 

operations; each one of them was created and 

converted into a symbol, then, a multiplexor was 

placed in order to obtain a 4 bit selector 

The ALU   design comprises of 2 units. One unit is 
meant for    logic operation   and the   other unit is 

meant f or  Arithmetic operations shown in Table .1. 
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Fig 11:  Top Block of ALU 

 

 
 

Fig 12: Simulated Timing diagram of ALU 

. 

 

 
 

Fig 13: Top Block of 32 Bit Processor. 

 

6. Results:  
 The ISE of the 32 bit processor was 

described using the Verilog .The tool chain  

 

 

including the Active HDL simulator and synthesized 

with the Xilinx 9.2i tool; 

 After synthesized the Hardware resource 

consumption for the complete processor 

implemented in a Xilinx Virtex4 XC4VlX15-

12Sf363 FPGA is shown in Table 2, The number of 
slice flip flops   utilization is minimal due to the 

combinational nature of the processor being capable 

of executing an instruction in few clock cycles. 

 

Table 2: Hardware Resource Consumed

 
 

For complete processor  the total 

equivalent gate count for the complete processor  is  

14,518 gates , Maximum combinational path  delay 

is  6.509ns Maximum  Frequency :  92.659MHz , 

the  area  utilized only  13%. 

 

7. Conclusion. 
Thus the 32 bit cryptographic Processor 

perform mathematical computations used in 

Symmetric Key Algorithms has been designed using 

verilog the simulations are done with Active HDL 

simulator. The design is verified through exhaustive 

simulations. Thus processor architecture follows 

that one instruction executes in one clock cycle. By 

this we increase overall performance of the speed 
with low area and low propagation delay. In order to 

obtain a more sophisticated architecture is necessary 

to add some advanced techniques pipelining this 

processor can also perform floating point operations. 

And differential equations. Apart from this it can be 

used in portable gaming kits, Smart cards, ATMs. 
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