
M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1718 | P a g e

Design of Custom Instructions in Cryptographic Processor

M. Lalitha Sowmya
1
, B.Divya

2
, S.Jagadeesh

3

 (Assistant Professor, Department of ECE, SSJ Engineering College, JNTU , Gandipet.)

(MTech Student, Department of ECE, SSJ Engineering College, JNTU, Gandipet.)

(Associate Professor and H.O.D, Department of ECE, SSJ Engineering College, JNTU, Gandipet.)

Abstract
In this paper, we are implementing 32

bit pipelined processor on FPGA and designed

using verilog. In this Processor , we had

performed logical operations and arithmetic

operations like rotate word, modular addition

modular multiplication, matrix multiplication,

fixed coefficient multiplier ,mix column

transform using binary extension field operations

(2^m) for arbitrary irreducible Polynomial.

Using our proposed field arithmetic units we

can implement Symmetric Key Cryptography

algorithms . Experimental Results Shows that

developed processor working with high Speed ,

low area and low path delay .

Keywords: Cryptographic Processor, Pipeline,

Finite field arithmetic (FFA), Symmetric Key

Cryptography algorithms.

1. Introduction
The explosive growth in data

communications and Internet services have made
cryptography an important research topic.

Cryptography is used for confidentiality,

authentication, data integrity, and non-repudiation,

which can be divided into two families:

Asymmetric key cryptography: In public key

cryptography, the data that is encrypted with the

public key can only be decrypted with the

corresponding private key.

Symmetric key cryptography: The process of

encryption and decryption of information by using a

single key is known as Symmetric Key

Cryptography. These are based on a mathematical
function to encrypt a plain-text message and to

produce cipher message. [8]

In this Paper we are designing Symmetric

key mathematical operations in a 32 bit pipelined

processor.

Implementing Symmetric Key operations

in software seems to not only too slow for fast

application such as Routers but also vulnerable to

attacks. In contrast, in Hardware implementation,

the higher data rate (G bits/second) is made possible

by parallel and/or pipelining processing. Moreover,
the implementations are physically

Secure since tempering by an outside attacker is

Difficult. With these supporting reasons we are

looking at the hardware implementation.

Implementing various symmetric-Key operations in

a general-purpose Processor (GPP) is flexible but

requires a lower throughput rate, more clock cycles

for each instruction, more no. of addressing modes

and larger power Consumption.

So we developed processor that the

instruction set can be hardwired to speed instruction

execution. No microcode is needed for single cycle

execution. All instructions are one word (fixed bit)
in length. This simplifies the instruction fetch

mechanism since the location of instruction

boundaries is not a function of the instruction type.

The processor has small number of addressing

modes. Only load and store instructions access

memory. There are no computational instructions

that access memory; load/store instructions operate

between memory and a register. Control hardware is

simplified and the machine cycle time is minimized.

The remainder of this paper is organized as
follows. Section 2: Algorithms of Symmetric Key

operations. Section 3: Implementation of

Operations. Section 4 Proposed Architecture.

Section 5: Modules design of ALU, Control unit,

Multiplexers and general purpose registers. Section

6. Results. Section7: Conclusion Section 8:

References.

2. Cryptographic algorithms for symmetric

block ciphers.

Advanced Encryption Standard (AES),

RC6, RC5, Data Encryption Standard (DES),

Blowfish, International Data Encryption Algorithm

(IDEA).

Blowfish is a symmetric block cipher that

encrypts data in 8-byte (64-bit) blocks [3]. The

algorithm has two parts, key expansion and data

encryption. Key expansion consists of

generating the initial contents of one array

Namely, eighteen 32-bit sub-keys, and four arrays

(the S-boxes), each of size 256 by 32 bits, from a

key of at most 448 bits (56 bytes). The data

encryption uses a 16-round Feistel Network .The F

Function, regarded as the

Primary source of algorithm security [3],

combines two simple functions: Addition modulo

two (XOR) and Addition modulo 2^32.

M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1719 | P a g e

AES [2] is a block cipher developed in effort to

address threatened key size of Data Encryption

Standard (DES).It allows the data length of 128, 192

and 256 bits, and supporting three different key

lengths, 128, 192, and 256 bits. AES can be divided

into four basic operation blocks where data are

treated at either byte or bit level. The array of bytes
organized as a 4×4 matrix is also called "state" and

those four basic steps;, Bytes Sub Shift Row or

Rotate Word, Matrix Multiplication, Mix

Column, and AddRoundKey are also known as

layers. These four layer steps describe one round of

the AES. The number of rounds is depended on the

key length, i.e., 10, 12 and 14 rounds for the key

length of 128, 192 and 256 bits respectively.

RC5 is exactly designated as RC5-w/r/b,

where the variable parameters w, r, and b

respectively denote the Word size (in bits), the
number of rounds, and the length of secret key (in

bytes). The allowable value of w is 16, 32 and 64;

the allowable values of r and b range from 0 to 255.

The parameter of RC5-32/12/16 is commonly

chosen there are three routines in RC5: key

expansion, encryption, and decryption. These

routines consist of three primitive operations (and

their inverse): words addition , bitwise XOR,

and data-dependent left rotation of x by y

denoted by x <<< y. Note that only the log2(w)

low order bits of y affect this rotation. In the
key-expansion routine, the user provided secret key

is expanded to fill a key table whose size depends

on the number of rounds. The key table is then used

in both encryption and decryption.

RC6 [7] is a symmetric-key algorithm

which encrypts 128-bit plaintext blocks to 128-bit

cipher text blocks. The encryption process involves

four operations: Integer addition modulo 2
W

,

Bitwise exclusive or of two w-bit words,. Rotation

to the left, and

f(X) = (X(2X + 1)) mod 2
W

.

IDEA [8] algorithm of the encryption

process, we provide the original (128bits) cipher key

to the mentioned unit. When necessary, the Key

Generator Unit produces different sub-keys by

performing circular left shift operation (by 25bits)

on the current key and provides the sub-keys to

other units. The unit named as “Multiplication

modulo 216 + 1”, is used to perform all the

multiplication modulo 2^16+1 operation, when

required. The same is for unit

“Addition modulo 2^16” and unit “Bitwise

XOR”. or the parallel implementation of IDEA

algorithm, the entire encryption process can be

performed in several steps and performing

operations in parallel wherever possible. Parallelism

in operations can be achieved both in software and

using hardware.

3. Implementation of Algorithm operations.

 3.1 Modular Addition Two.

The addition of two elements in a finite

field is achieved by “adding” the coefficients for the

corresponding powers in the polynomials for the

two elements. The addition is

Performed with the XOR operation (denoted by)

i.e., modulo 2 -so that 1 1 = 0, 1 0 = 1, and 0

0 = 0.

Require: Binary Polynomials a (z), b (z) with

maximum degree m-1.

Ensure: c (z) =a (z) + b (z).

1: for i from 0 to M-1 do

2: C[i] A[i] B[i].

3: end for

4: Return(c).

3.2 .Modular Multiplication 2^8

 In the polynomial representation,

multiplication in GF 2^8 (denoted by •) corresponds
with the multiplication of polynomials modulo an

irreducible polynomial of degree 8. A polynomial

is irreducible if its only divisors are one and itself.

For the AES algorithm, this irreducible polynomial

is

 m(x) = x8.

. For Example,{57}.{83}={C1},because

(x6
 + x + x2 +x +1) (x 7 + x + 1) =

x 13 + x11 + x9 + x8 + x7 + x7 + x 5+ x 3 +x 2 + x +

x 6 + x 4 + x 2 + x + 1 =

 x 13+ x 11+ x 9 + x8 + x 6 + x 5 + x 4 + x 3 + 1.

And

x 13+ x 11+ x 9 + x8 + x 6 + x 5 + x 4 + x 3 + 1 modulo

x 8..

In Prime Field operations modulo means divide it

requires more time .so in binary field operation it

requires less time with simple addition.

x 13+ x 11+ x 9 + x8 + x 6 + x 5 + x 4 + x 3 + 1 x 8..

 = x 6 + x 5 + x 4 + x 3 + 1.

 {101011011110} {0000010000000} =

{111101}.

3.3 .Mix Columns () Transformation.

 The Mix column () Transformation

operates on the state column-by-column as a four-

term polynomial .The columns are considered as

polynomials over GF(2^8) and multiplied modulo

x^4 + 1 with a fixed polynomial a(x), given by a(x)

= {03}x
3

+ {01}x
2

+ {01}x + {02} .

M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1720 | P a g e

Fig 1: Mix Column Transform.

To derive a suitable Mix Column transform

architecture, the trans formation matrix given in

Fig can be rewritten as s’
(x) =s(x) .a(x)mod(x

4
 + 1),,

where • denotes finite field polynomial

multiplication i.e.,

As a result of this multiplication, the four bytes in a

column are replaced by the following.

S1
0,c = ({02} .So,c) ({03} .S1,c) S2,c S3,c

S1
1,c = So,c ({02} .S1,c) ({03} .S2,c) S3,c

S1
2,c = .So,c S1,c ({02} . S2,c) ({03} .S3,c)

S1
3,c = ({03} .So,c) .S1,c S2,c ({02}.S3,c)

 Fig .2 Mix Columns Transform Architecture

 There are many ways to implement a finite

field multiplier. An originally proposed one in the

AES takes the form of XTime () which is
essentially multiplied by x or left-shift with {1B}

feedback. That could imply either a bit-serial or a

bit-parallel architecture. Rudra [3] proposed the

implementation of Rijndael system with composite

field arithmetic. We are considering a fast

multiplier, simple, small area, and support pipeline

architecture (if needed). Notice of the fix-value

multiplications (by {02} or by {03}) leads us to a

fixed-coefficient multiplication in GF (2^8) that

fulfils our requirements. We are investigating this

multiplier...

3.5. Fixed Coefficients Multiplier.

Let Si, c = B(x) be an element to be multiplied. B(x)

can also be written in the polynomial form as;

B (x) = b0 + b1x + b 2 x 2 + b 3 x
3 + b4 x

4
 b 5 x 5 + b 6 x 6 + b 7 x

7 (Eq 3.5.1)

 Where b € (0,1).

Multiplications used in the Mix Column

transformation are {03}.B(x) = (x+1)B(x) and

{02}.B(x) = x.B (x).

The resulted multiplications are:

{03}.B (x) = (b0 b7) + (b0 b1)x + (b1 b2) x 2

+ (b2 b3)x
3 + (b3 b4) x 4 + (b4 b5) x 5 +

 (b5 b6) x
6
 + (b6 b7) x

7
. (Eq: 3.5.2)

{02}.B(x) = b7 + (b0) x + b 1 x 2 + b 2 x
3 + b3 x 4

+ b 4 x 5 + b 5x 6 +b6 x
7 (Eq 3.5.3)

Implementations of above equations are

simple since Additions are simply XORs. As an

example the circuit to Compute x.Bi is shown in

Fig (3) below. The implementation of (x + 1) Bi

shown in Fig (4). Can be done similarly. According

to terms given in (2), and an architecture shown in

Fig.(4) , the maximum delay time is expected to be

that of the a delay unit of a 2-input XOR gate.

Fig 3: A×2 Fixed Coefficient Multiplier.

Fig 4: A×3 Fixed Coefficient Multiplier.

M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1721 | P a g e

3.6 Multiplier X (2X + 1) Modulo 2^8.

Let,

X = b0 + b1x + b 2 x
2
+ b 3 x

3
 + b4 x

4

 b 5 x 5 + b 6 x 6 + b 7 x
7 . (Eq 3.6.1)

Now,

{02}.B(x) + 1 = (b7+ 1) + (b0) x + b 1 x 2 + b 2 x
3 +

b3 x
4 + b 4 x 5 + b 5x 6 + b6 x

7 (Eq 3.6.2)

x. ({02}.x + 1} mod 28 = x. ({02}. {x} +1) x 8

 (Eq 3.6.3)

Eq (3.6.3), operation requires less time to implement

Rc6 Algorithm.

3.7 Shift Row Transform.

In the Shift Rows() transformation, the

bytes in the last three rows of the State are

cyclically shifted over

Different numbers of bytes.

 Fig 5. Shift Rows Architecture.

4. Cryptography Processor.

The architecture of an 32 bit processor is

shown in Fig 6. The processor [1] is designed with

load/store architecture. Separate memory for

instructions (program) and data Different stages

of the pipeline perform simultaneous Accesses to

memory. This Harvard style of architecture can
Either be used with two completely different

memory Spaces, a single dual-port memory space

with separate data and instruction.. Three stages of

pipelining have been incorporated in the design

which increases the speed of operation.

The processor presented instruction set and uses a

Single Instruction – Single Data (SISD) execution

order. Its main characteristics are:

• Sixteen 32-bit general purpose registers.

•ALU with basic arithmetic and logical operations.

In this processor we are performing various

operations of cryptography so we called as

cryptography processor.

Fig 6. Cryptography Processor Architecture.

4.1 Instruction Set.
For a complete design, it was necessary to

create a specific instruction set and its own

assembly code with its proper instruction format.
The Instructions are classified into two groups.

•Data Manipulation (Load and Storage).

• Operations (Arithmetic and Logical).

 The Logical operations like Shift Left,

Shift Right, and Rotate Word Which requires only

one Source Register. Shown in Type 3.

The Arithmetic Operations like addition ,modular

functions ,etc to execute these operations we

requires two source registers and to tore result in

destination register. Shown in Type 2.
The Load instructions and store instructions

Requires address from different data sources shown

in Type 1.

 Table 1 describes complete Instruction set.

Each Instruction having its own Opcode.As the

complete set contains 13 instructions; 4 bits are

enough to represent them.

Table:1 Instruction Set Of The Developed

Processor.

M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1722 | P a g e

Type1.

 31 29 2524 2019 1615 0

Type2.

 31 29 2524 2019 1615 0

 Type3.

31 29 2524 2019 1615 0

5. Modules Design of Architecture.

5.1 Control Unit.

The control unit design is based on using

FSM (Finite State Machine) and we designed it in a

way that allows each state to run at one clock cycle,

the first state is the reset which is initializes the CPU

internal registers and variables. The machine goes to

the reset state by enabling the reset signal for a

certain number of clocks. Following the reset state

Would be the instruction fetching and decoding

states which will enable the appropriate signals for

reading instruction data from the ROM then

decoding the parts of the instruction. The decoding
state will also select the next state depending on the

instruction, since every instruction has its own set of

states, the control unit will jump to the correct state

based on the instruction given. After all states of a

running instruction are finished, the last one will

return to the fetch state which will allow us to

process the next instruction in the program. Fig7:

shows the state diagram for the control unit.

Fig 7. State Diagram of Control Unit.

Fig 8: Top Block of Control and Decode.

5.2 General Purpose Registers.

General Purpose Registers (GPRs) store

and save operands And results during program

execution. ALU and memories must be able to

write/read those registers, so a set of Sixteen 32-bit

registers were used, along with multiplexers and
control& decoder which register is read or written.

These two registers are the Operands to ALU which

performs the operation.

Fig 9: Simulated Timing diagram of General

Purpose Registers.

5.3 Instruction Register.

 Instruction registers store the instruction

which read from the program memory, and keep it

as an output for the decoder, which separates the
operation code, Source Registers, Operand address

and operands and these values will set to General

purpose registers, Multiplexers and ALU to execute

the command. This is achieved simply using buffers

to translate data to/from the processor.

Fig 10: Simulated Timing diagram of Instruction

Register

5.4 Arithmetic logical unit (ALU).

 The Arithmetic-Logic Unit has 12

operations; each one of them was created and

converted into a symbol, then, a multiplexor was

placed in order to obtain a 4 bit selector

The ALU design comprises of 2 units. One unit is
meant for logic operation and the other unit is

meant f or Arithmetic operations shown in Table .1.

M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1723 | P a g e

Fig 11: Top Block of ALU

Fig 12: Simulated Timing diagram of ALU

.

Fig 13: Top Block of 32 Bit Processor.

6. Results:
 The ISE of the 32 bit processor was

described using the Verilog .The tool chain

including the Active HDL simulator and synthesized

with the Xilinx 9.2i tool;

 After synthesized the Hardware resource

consumption for the complete processor

implemented in a Xilinx Virtex4 XC4VlX15-

12Sf363 FPGA is shown in Table 2, The number of
slice flip flops utilization is minimal due to the

combinational nature of the processor being capable

of executing an instruction in few clock cycles.

Table 2: Hardware Resource Consumed

For complete processor the total

equivalent gate count for the complete processor is

14,518 gates , Maximum combinational path delay

is 6.509ns Maximum Frequency : 92.659MHz ,

the area utilized only 13%.

7. Conclusion.
Thus the 32 bit cryptographic Processor

perform mathematical computations used in

Symmetric Key Algorithms has been designed using

verilog the simulations are done with Active HDL

simulator. The design is verified through exhaustive

simulations. Thus processor architecture follows

that one instruction executes in one clock cycle. By

this we increase overall performance of the speed
with low area and low propagation delay. In order to

obtain a more sophisticated architecture is necessary

to add some advanced techniques pipelining this

processor can also perform floating point operations.

And differential equations. Apart from this it can be

used in portable gaming kits, Smart cards, ATMs.

References.
[1] Antonio H. Zavala “RISC Based

Architecture for Computer Hardware

Introduction Edición,, 2011 IEEE.

[2] NIST, "Advanced Encryption Standard

(AES), (FIPPUB 197)", November 26,

2001, http://csrc.nist.gov/publications/.

[3] A. Rudra et. al., "Efficient Implementation

of Rijndael Encryption with Composite

Field Arithmetic", Proc.CHES2001, LNCS

Vol. 2162, pp.175-188, 2001.

[4] Rohit Sharma, Vivek Kumar Sehgal, Nitin

Nitin1, Pranav Bhasker, Ishita Verma,
2009, “Design And Implementation Of 64-

Bit RISC Processor Using Computer

Modeling And Simulation, pp. 568 – 573.

[5] R. Uma / International Journal of

Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

http://csrc.nist.gov/publications/

M. Lalitha Sowmya, B.Divya, S.Jagadeesh / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1718-1724

1724 | P a g e

Vol. 2, Issue 2, Mar-Apr 2012, pp.053-058

Design and Performance Analysis of 8-bit

RISC Processor using Xilinx Tool

[6] IEEE TRANSACTIONS on very large

scale integration (VLSI) systems, vol. 18,

No 8, August 2010 1145 A High-

Performance Unified-Field Reconfigurable
Cryptographic Processor Jun-Hong Chen,

Ming-Der Shieh, Member, IEEE, and Wen-

Ching Lin.

[7] FPGA Implementations of the RC6 Block

Cipher Jean-Luc Beuchat Laboratoire de

l’Informatique du arall´elisme, Ecole

Normale Sup´erieure de Lyon,46, All´ee

d’Italie, F–69364 Lyon Cedex 07,Jean-

Luc.Beuchat@ens-lyon.fr.

[8] Some Guidelines for Implementing

Symmetric-Key Cryptosystems on

Reconfigurable-Hardware Arturo ³az-
P¶erez, Nazar A. Saqib, and Francisco

Rodrguez-Henriquez Computer Science

Section, Electrical Engineering Department

Centro de Investigacion y de Estudios

Avanzados del IPN Av. Instituto

Politecnico Nacional No. 2508, Mexico

D.F.fnabbas@

computacion.cs.cinvestav.mx, adiaz,

Francisco @cs. cinvestav.mxg.

[9] Imyong lee, Dongwook Lee, Kiyoung choi

“ODALRISC: A Small, Low power and
Configurable 32-bit RISC processor”

International SOC design conference 2008.

[10]. Wayne Wolf, FPGA Based System Design ,

Prentice Hall, 2005.

[11] R. Razdan and M.D. Smith, “A High-

Performance Micro architecture with

Hardware-Programmable Functional

Units,”Proc. Micro-27, IEEE Computer

Society, 1994, pp. 172-180.

[12]. Vincen t P. Heuring, and Ha rry F. Jordan,

“Computer Systems Design and

Architecture”, 2n d E dition, 2003.

