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I. INTRODUCTION  
Study of electrocardiogram (ECG) signals 

plays a very vital role to diagnose the 

malfunctioning of the heart.  Electrocardiogram 

(ECG) machine permits deduction of many 

electrical and mechanical defects of the heart, by 

measuring potentials on the body surface.  The ECG 

can record non invasive measurements of heart 

activity, due to the confounds, created by mixing of 
volume-conducted signals at the body surface 

electrodes, however, a healthy subject could have 

abnormal heart rhythm and a known cardiac-

impaired instead of a normal heart rhythm.  Thus, 

diagnoses, based on visual observations of recorded 

ECG signals, may not be accurate.  So keeping this, 

we will use and compare the various methods and 

techniques to analyze electronic heart signals.  One 

such method is ICA which refers to a family of 

related algorithms that performs blind source 

separation, separating the recorded signals into 
component signals that are maximally statistically 

independent in some sense.  In this research work, 

we propose an approach to make use of independent 

component analysis (ICA) techniques to analyze 

electronic heart signals recorded using high-density 

montages.  Although ICA and principal component 

analysis (PCA), being linear decomposition 

technique, have been applied to analyze atrial 

activities in ECG. In these studies only conventional 

12-lead ECG data were used, and therefore, the 

number of cardiac sources that could be separated 
was limited to 12. Recordings with more channels 

have been used by other researchers, but they did 

not test the application of ICA to their data.  Here, 

98-channel ECG is recorded to facilitate use of ICA-

based spatial filter to separate different heart 

activities. A gradient ascent ICA algorithm is 

adopted to separate the P-wave, QRS complex, and 

T-wave. The separated components are further back-

projected to body surface potential maps. The 

experiments are conducted on five subjects to show 

the effectiveness of our approach.  Results from five 

subjects show that P-, QRS-, and T-waves can be 
clearly separated from the recordings, confirming 

that ICA might be an effective and useful tool for 

high-density ECG analysis, interpretation and 

diagnosis. 

The rest of the work is divided as given below : 

Section II –  Analysis Methods 

Section III- Methodology 

Section IV- Results and Analysis 

Section V- Conclusions & Future work 

 

 

II. ANALYSIS METHODS 
Basically our works depend on the theory 

of ICA, which was adopted to solve the problem of 

blind source separation [1].  Comon proposed the 

mathematical framework for Independent 

Component Analysis (ICA).  Previously ECG 

applications focused mainly on two directions :-  De 

Lathauwer first applied ICA to separate fetal ECG 
from maternal body surface ECG recordings [2][3], 

successfully addressing a longstanding problem.  

ICA was used to remove the artifacts from ECG 

recordings [4]-[6] and also used to remove artifacts 

from both animal [7] and human [8].  But it also to 

be noted that they only made use of the conventional 

12-lead ECG signal from which only ten channels of 

recorded data were available for analysis, also, did 

not instruct subjects to perform multiple activities.  

ICA separated components accounting for the QRS 

complex from those accounting for the P-wave and 
T-wave. However they were unable to further 

separate P-wave from T-wave.  Due to this, more 

reliable methods are designed to collect high-density 

ECG signals and used ICA to separate the 

underlying heart activities.  ICA concept and 

algorithm are as given hereunder: 

 

N source signals s={s1(t),…….sn(t)}, 

linearly mixed by multiplying a mixing matrix A, 

produce N mixture signals x={ x1(t),…….xn(t)} = 

As.  Given the signal mixtures x, we would like to 
recover a version u=Wx.  The key assumptions used 

in ICA to solve this problem is that the source 

signals are as statistically independent as possible 

during the time course of the recordings.  Statistical 

independence means the joint probability density 

function (pdf) of the output sources can be 

factorized to the product of the marginal pdfs of 

each source :  

p(u) = 
1

( )
N

i i

i

p u


    (1) 

 

In practice, however, some approximation 

to independence or to related quantities must be 

used for finite data lengths.  In our work, we 

employed the gradient ascent algorithm as 

implemented by Makeig [9] based on the infomax 

algorithm, which has been found to be effective for 

analysis of biomedical signals. 

To evaluate the resulting independent 

components, back-projection is used to plot body 
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surface projection maps for each component. From 

the ICA algorithm, we obtained unmixing matrix W.  

The signal mixing matrix will be W-1, i.e., x= W-1u. 

Let W-1 (:i) denote ith column of W-1 , and u(i:) 

denote the ith row of u, then the back-projection of 

component i,pi is   

pi=W-1(:i)xu(i:).      (2) 
 

The column vector W-1 (:i) represents the 

relative (signed) weight of the ith component in 

each body surface channel.  The back-projection 

map of each component may be plotted for each 

subject.  The computation of back-projection maps 

is strongly reminiscent of more general body surface 

potential mapping (BSPM) techniques, as is the use 

of high density electrodes.  In BSPM, 32 to 256 

ECG electrodes are used to recird the body surface 

potential field created by the beating heart.  The 

BSPM system has been used in several hundreds of 
patient recording representing most common cardiac 

diseases such as is chemic heart disease and 

ventricular and supraventricular arrhythmias [30]–

[32]. The main advantage of BSPM, compared to 

12-lead ECG, is the ability to visualize the cardiac 

potential distribution across the whole thorax. 

Several methods have been proposed for detecting 

the vulnerability to life-threatening arrhythmias 

from BSPM recordings and from near-equivalent 

magnetocardiographic signals [30], [31]. In such 

methods, the signals from each channel are analyzed 
by signal processing methods such as beat-locked 

averaging, late potential analysis, spectral 

turbulence analysis, QRST integral analysis, and 

spatial parameter mapping. High-density ECG 

recording makes more signals available for analysis, 

necessitating automated signal processing methods, 

and making the method more robust to individual 

channel noise or dropouts. However, different from 

previous methods, we visualize the back-projection 

of each individual ECG source to the body surface, 

obtained by ICA decomposition, instead of 

visualizing the sum of these sources, i.e., the whole 
recorded body surface signals. The back-projected 

component maps may reflect properties of each 

ECG signal component, providing us with more 

information about different heart activities 

compared to BSPM visualizations of the whole 

signal mixtures. 

 

III. EXPERIMENTS 
A. Equipments and Setup 

Our experiments use BioSemi’s Active 

Two base system.  A list of the main necessary 

equipment is as follows : 

1. 16 x 8-channel amplifier/converter modules; 

2. 4 x 32 pin-type electrodes; 

3. Packer Signa electrode gel; 

4. 128 electrode holders; 

5. Common mode sense (CMS)/driven right 

leg(DRL) electrodes; 

6. LabView software; 

7. adhesive pads; 

The Biosemi system incorporated 128 pin-

type electrodes designed for EEG recordings with 

latex head caps dotted with plastic electrode holders 

At most, 101 of these were used in our experiments. 

The electrode holders were attached to the skin of 
the chest and back of the subject by adhesive pads. 

The active Ag/AgCl electrodes do not require skin 

preparation, but do require electrode gel to act as a 

conductor between the skin and the electrodes. The 

signals recorded at the electrodes are synchronously 

converted to 24-bit digital format at 256 Hz per 

channel, and are saved in a computer. 

 

B. Procedures 

The experiments were performed on five 

electrocardiographically normal volunteer subjects 

as approved by an Institutional Review Board. We 
started each experiment by attaching 36–49 

electrode wells to the chest and an equal number to 

the back of the subject. Then, after an adequate 

amount of electrode gel was injected into each well, 

the electrodes were plugged in. Three additional 

electrodes were placed on the subject’s left arm, 

right arm, and left leg as unipolar limb leads to form 

the Wilson central terminal, and a grounding node 

electrode was placed on the subject’s waist before 

the electrodes are connected to the recording 

system. A DRL circuit is used in order to minimize 
the artifacts. The DRL circuit is able to read what it 

believes to be noise (usually common mode noise) 

and feeds a very small amount of electricity back 

into the body to actively negate this noise. This 

technique is highly effective and has been used in 

medical recording devices such as ECG and EEG. 

Subjects were recorded in a relaxed standing 

position. Although a supine position is ideal in ECG 

recording, it was not used in this case because of the 

risk of damage to the electrodes placed on the back 

of the subject.  Subjects were asked to do the 

following four kinds of activities: 
1) Stand still and breathe normally for 90 s. This 

was used as a baseline for comparison to   

     signals recording, during the other activities. 

2) Breathe in and hold the breath for intervals of 10 

s during a period of 90 s. This was     

     used to tire the cardiac muscles so that the 

contractions of the various muscles would   

     begin to separate as shown in the wave forms. 

3) Maintain a horse stance for 60 s, followed by 

ECG recording. This exercise was used  

    to tire subjects so that their heart would beat 
faster and the differing cardiac muscles  

    contractions would allow better ICA separations. 

4) Lean toward different orientations. One subject 

was asked to lean forward and to the  

     left, and the other four subjects were asked to 

lean to all four cardinal orientations  

     (forward, backward, left, and right). Ninety-
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second recordings were made during each  

     orientation. 

Only the last 50 s recording of each ECG 

recording is analyzed, to avoid the higher noise 

levels in the early phase of the recordings. We used 

multiple activity conditions to make the heart 

perform slightly differently based on the concept 
that ICA could then pick up the subtle differences in 

activity patterns, and thereby better decompose the 

recorded signals into different components 

accounting for P-waves, QRS complex, and T-

waves. 

IV. EXPERIMENTAL RESULTS AND 

ANALYSIS 

We performed six experiments on five 

subjects, with 72 electrodes (two 6 × 6 

matrices on the chest and the back) and 98 

electrodes (two 7 × 7 matrices on the chest and 

the back), respectively. Two experiments on subject 

1 were performed to verify the stability of our 

results. the 98 electrodes (or channels) are numbered 

as shown in Fig. 1—note that the left and right 

orientations on the chest and back are reversed so 

they can form a circle around the body. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.1      
LAYOUTS OF  

ELECTRODES 

In the 6 × 6 case, they are arranged in a 

similar fashion. For the first subject, five activities 

are recorded: still standing, holding breath, horse 

stance, and leaning forward and left; for the other 

four subjects, seven activities are recorded, 

including the additional leaning backward and 

rightward poses. The recorded raw data were first 

processed by two-way least square finite impulse 

response (FIR) filtering, with the low-edge 

frequency in pass band 0.1 Hz and the high-edge 

frequency in pass band 40 Hz. Fig. 2 shows some 

recorded raw mixture signals from subject 1. The 

left portions of the two figures show the wave forms 

during standing still, and the right portions the wave 

forms following the horse stance. Notice that the 

electrodes on the chest receive much stronger 

signals than those on the back. This is reasonable 
since the human heart is closer to the front of the 

body.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig.2  Subject 1 mixture waveforms. (a) Still 

standing. (b) Horse stance. 

 

A-Separated Components 

The ICA algorithm was then applied to the 
recorded signals concatenated across all recordings 

for each subject. By definition, W is a square matrix; 

therefore, 72 and 98 components were produced, 

respectively. However, for each subject, only a few 

of them had relatively large amplitudes and 

meaningful waveforms. We believe that the rest 

account for breath related and other noise, and thus, 

ignored them in further analysis. From the results, 

we made the following observations: 

1) The ICA algorithm was able to identify and 

separate the overlapping spatial projections of the P-

wave, QRS complex, and T-wave. In the 
experiments for all subjects, the T-wave is clearly 

separated from the QRS complex. P-waves are 

identified in three out of five subjects—through 

observing the original recorded signals, we 

confirmed that in the two cases where P-waves are 

not separated, the P-waves have very small 

magnitude and thus are buried in noise. We believe 

this is reasonable because QRS complex, which 

reflects the depolarization of the ventricles, is a 

complicated process that may consist of multiple 

heart activities. The separation results confirmed 
that high-quality solutions can be obtained using a 

dense channel array. Only the conventional 12-lead 

ECG signals were used in [5]. In their experiments, 

P-waves and T-waves could not be separated, and 

the separation of T-waves from QRS-complex is not 

as clear as ours. This suggests that high-density 

channels are beneficial in separation. We tried 
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reducing the number of channels in our experiments 

in [33]. We showed that using 12 or 24 channels, the 

ICA algorithm is still able to separate different 

components, though the quality is compromised. 

Also,the positions of these 12 or 24 channels should 

be carefully chosen to obtain good results. This 

requires further investigation. 
2) Recordings during or following a variety of 

activities are highly useful for successful ICA 

source separation. Decomposing different 

combinations of recordings associated with different 

activities showed that recordings during or 

following at least three activities were needed to 

separate the T-waves, and that decomposing more 

recordings produced better separation. We believe 

this is because different sources exhibit different 

behaviors under various circumstances, For 

example, the shape of the T-waves and their latency 

relative to the QRS complex were different for 
different activities. In addition, since ICA must learn 

the relatively large unmixing matrix, more data are 

required to decompose more channels.  For 

example, to separate 100 channels, ICA must learn 

100 × 100 unmixing weights, typically requiring 

some multiple of this many data points (e.g., some 

multiple of 40 s using 256 Hz sampling). For 

successful decomposition of 100 or more EEG 

channels, the scaling factor may be 30 or more. An 

equivalent requirement, for our recordings, would 

call for using 11–20 min or more of data. Here, our 
best results were obtained by concatenating all the 

recordings for the subject (in all, 4–6 min of data). It 

is true that concatenating multichannel ECG data 

acquired with different conditions can potentially 

introduce more components. However, such a 

variety is good to create differences in the 

composition of QRS complex or other ECG feature 

waveforms. For example, the interval between Q 

and S waves may be changed in different recording 

conditions. Thus, when ICA sees the variability of 

the Q-S interval, it may separate these two important 

features into two or more different components. 
However, if we only decompose channel ECG data 

with single condition, wherein the Q-S interval is 

pretty much fixed, then we would not be able to 

separate the S-wave from the Q. As a result, this 

helps us to more consistently decompose the ECG 

recordings into more independent components.  To 

be able to see more independent components is 

exactly the purpose here. Accordingly, to be able to 

acquire more ECG channels would also be essential 

to increase the possibility to cover the components 

we potentially increased by concatenating ECG 
channel data recorded in different conditions. 

3)Typically, ICA separated seven to eight different 

meaningful components from the original 

waveforms.  Multiple components accounted for the 

QRS components, indicating that the QRS complex 

is generated by a collection of underlying sources or 

by a moving wave of activity. For subject 2, the T-

wave was also decomposed to two components, 

suggesting that the T-wave probably does not have a 

spatially fixed source. 

4) Note that the components accounting for the QRS 

com- plex have different peak latencies (in the 

figure, they have been sorted in ascending order). 

This could represent a wave propagation sequence.  
Thus, further analysis of these components 

should prove useful, particularly modeling of the 

physical positions of the sources that produce these 

components.  To show that our experimental results 

could be stably reproduced, we conducted the same 

experiments on subject 1 once more. The same 

analysis was performed on the obtained data.  Very 

similar components were obtained from both 

experiments. To evaluate this similarity, we 

calculated the peak time difference of the related 

components from both experiments, with respect to 

the peak time of the first component. The results are 
shown in Table I.   

TABLE 1 

PEAK TIME DIFFERENCE FOR TWO 

EXPERIMENTSON SUBJECT 1 

Compon

ent 

1 2 3 4 5 6 7 

Experime

nt 1 

0 

m

s 

11.

2 

ms 

23.

2 

ms 

39.

0 

ms 

45.

5 

ms 

59.

4 

ms 

252.

4 

ms 

Experime

nt 2 

0 

m

s 

15.

8 

ms 

28.

8 

ms 

41.

3 

ms 

45.

7 

ms 

63.

1 

ms 

257.

9 

ms 

 

The peak latency difference among 

components in the two experiments, reflecting the 
propagation speed of the cardiac waves, are very 

close except for the second and third components. 

Thus, our results were reproduceable. The 

discrepancy on the second and third components 

may be due to the different body conditions or due 

to numerical errors, which need to be further 

investigated. 

 

B. Back Projection 

The back-projections of different 

components are computed according to (2) and 

compared with the original channel waveforms. The 
purpose is to show that the separated components 

account for different sections of the cardiac cycle. 

We find that each component accounts for different 

parts of QRS complex, confirming that ICA 

separates sources of different sections of the cardiac 

cycle.  As an example, the back-projection maps for 

each meaningful component of subject 2 are plotted. 

In the leftmost column, the column vectors W−1 (:, 

i), which represent (signed) weight of the ith 

component in each body surface channel, are 

plotted. For each vector, the 98 elements are 
organized, reflecting their physical locations in the 

chest and back of the subjects. The differing 

weights, proportional to different potential values in 
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the body surface, are mapped to different colors, 

where red represents the largest magnitude and blue 

represent the smallest one. When plotting, we use 

finer grid rather than the original two 7 × 7 matrices 

and interpolate the values in order to obtain smooth 

maps. For each component, we also show the 3-D 

maps, together with the estimated dipole vectors that 
point from the most negative potential position to 

the most positive potential position. The left 3-D 

map is shown from the front view and the right one 

from a side view. The most right column shows the 

time course of the most relevant independent 

component. In most of the maps, the weights are 

concentrated in the right frontal chest, as expected. 

Furthermore, portion of the chest and back receiving 

the most concentrated signal is different for different 

components. The maximal projection of the 

different QRS components moves downward and 

the ensuing T-wave projection maximum is still 
lower. This is consistent with the physiological 

understanding of the origins of these features.  The 

QRS complex represents the depolarization of the 

ventricle, while the T wave indicates the 

repolarization of the ventricle.  Since the 

depolarization needs to spread from the 

atrioventricular (AV) node to all parts of the 

ventricles, the electrical sources effectively moves 

downward, as reflected in the body surface 

projection maps for the different components 

accounting for the QRS complex. 
 

V. DISCUSSION AND FUTURE WORK 
Here, we report a novel experimental 

approach to collecting stable, high-density ECG 

signals and application of ICA to separate spatially 

fixed and temporally independent source activities 

from the recorded signals. The major contributions 

of this research are as follows. 

1) We design experiments to record high-density (98 
channels) ECG from the body surface. The recorded 

signals have high quality and are stable when 

subjects do various activities. Moreover, multi-

channel recording is necessary to use ICA to 

separate underlying components. 

2) We employ a gradient ascent ICA algorithm to 

separate signal components from the recorded body 

surface mixtures.  For all five subjects, we are able 

to separate the somewhat different but highly 

overlapping projections to the body surface of the P-

wave, QRS complex, and T-wave, and to recover 

the continuous signals projecting from their cardiac 
generators, demonstrating that our method is 

effective for identifying individual sources of ECG 

signals. 

3) Our approach appears promising for 

distinguishing between different underlying cardiac 

conditions, compared to traditional ECG analysis. 

Although results of applying ICA to high-

density ECG show great promise, the analysis 

method is still in its infancy. Fruitful directions for 

further research include the following: 

1) We design experiments to record high-density (98 

channels) ECG from the body surface. The recorded 

signals have high quality and are stable when 

subjects do various activities. Moreover, multi-

channel recording is necessary to use ICA to 
separate underlying components.  

 2) We employ a gradient ascent ICA algorithm to 

separate signal components from the recorded body 

surface mixtures. For all five subjects, we are able to 

separate the somewhat different but highly 

overlapping projections to the body surface of the P-

wave, QRS complex, and T-wave, and to recover 

the continuous signals projecting from their cardiac 

generators, demonstrating that our method is 

effective for identifying individual sources of ECG 

signals. 

3) Our approach appears promising for 
distinguishing between different underlying cardiac 

conditions, compared to traditional ECG analysis.  

Although results of applying ICA to high-density 

ECG show great promise, the analysis method is 

still in its infancy. Fruitful directions for further 

research include the following. 

1) Determining the best placements for the 

electrodes. One possibility is to place more 

electrodes on the chest closer to the heart and fewer 

on other body locations. However, non uniform 

placement should be based on more knowledge and 
understanding of heart physiology. 

2) The relationship between the number of 

electrodes, the length of the recording, and the 

performance of source separation (and subsequent 

source localization) should be studied 

systematically. In preliminary experiments, we 

attempted to reduce the number of electrodes, but 

found the results to be inferior [33]. We plan to 

perform a more comprehensive study to assess the 

performance of ICA as a function of the number of 

sensors since in actual clinical applications, it is 

preferable to reduce the number of channels if 
possible, as this would reduce both the time required 

and the cost of the supplies and equipment. 

3) It is of importance to discover to what extent 

different cardiac sources can be decomposed using 

recordings during or following different activities. 

Currently, we use seven conditions in our 

experiments; from these, components accounting for 

the P-wave, QRS complex, and T-wave could be 

separated. It should be interesting to determine 

whether these components are ―atomic,‖ i.e., 

whether each of them is generated by a single 
cardiac source, and consequently, cannot be further 

decomposed. Possible ways of testing this 

conjecture include adding additional activities to the 

experiments, acquiring more data, or comparing 

results of different algorithms for decomposing the 

mixed body surface signals. 
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4) Finally, sources obtained from body surface 

recordings by ICA might be verified more directly 

using intra-cardiac recordings. For this, we will need 

to collaborate with electro-physiologists to analyze 

simultaneous high-density surface ECG and intra-

cardiac recordings from patients, to verify the 

source activities obtained by ICA. However, note 
that direct recordings from the heart surface should 

differ depending on the size of the electrode and 

location, and the size of the reference electrode. 

Thus, even in this case, performing a ―ground truth‖ 

comparison may not prove straightforward. If our 

approach could be validated by this rigorous 

process, it would likely be quickly accepted into 

practical clinical diagnosis, since the procedure is 

noninvasive, the analysis may be automated, and the 

results can be well visualized. 
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