
Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1624 | P a g e

Generation of Software Artifacts and Models at Analysis Phase

Prof. D.M.Thakore *, Ravi P.Patki**
*(Department of Computer Engineering, Bharti Vidyapeeth College of Engineering, Pune)

** (Department of Computer Engineering, Bharti Vidyapeeth College of Engineering, Pune)

ABSTRACT
The main objective of Object Oriented

Analysis (OOA) is to capture a Complete,

Unambiguous and Consistent picture of the

requirement of system and what system must do

to satisfy the user requirement and needs. This is

accomplished by constructing several models of

system such as use case model, class model. To

take out the basic building blocks such as actor,

use cases, candidate classes, their attributes and

relationships to construct OOA models from the

unstructured textual requirement specification

document expressed in English like natural

language is not an easy task. There are plenty

Nouns (Real Time Entities or Classes), Nouns

which represent the values (Class Attributes),

verbs or verbs phrases (Events), in the system

requirement document. Also the size of

unstructured source requirement document,

writing style, vocabulary and ambiguity present

in Natural Language (NL) works as barriers to

find out the analysis model artifacts.

Thus analyzing requirements and

generating the software artifacts to build analysis

model are huge and complex task which need

automated support. In the last two decades,

major tools that can automatically analyze the

Natural Language requirement specification and

generate the analysis models are developed.

However, none of the tool generates more than

one model at analysis phase. Most of the attempts

are concentrating on generation of incomplete

class model. Also none of these tools cannot be

used in real time software development as they

provide with quite less coverage and accuracy

(60% to 75%) in generating software artifacts.

The key reason of lesser accuracy that has been

identified by various researchers is ambiguous

and informal nature of natural languages.

To conquer some of these issues in

automating the analysis phase this paper

proposes a techniques that aims at to automatic

generation of software artifacts at analysis phase.

Initially this technique converts the NL

requirements in to some formal, controlled

middle representation of software requirement

such as Semantic Business Vocabulary and Rules

(SBVR) Language (Standard introduced by

OMG) to increase in accuracy of generated

artifacts and models. Then it focuses on

identifying the software artifacts such as actors,

use cases, classes, attributes, methods,

relationships, multiplicity and many more to

generate analysis phase models such as use case

and class diagram. Finally this technique

generates XML Metadata Interchange (XMI)

Files to visualize generated models in UML

modeling tool having XMI import feature.

Keywords- Class Diagram, POS Tagging, OOA,

UML, Use case, XMI.

I. INTRODUCTION

Software development process invariably

begins with some human being needs, wants and

desire to explore or solve any business problem. In

such early phases of software development natural

language are used to describe the exact business

problem need to be solved. But the natural language
are often complex, vague and ambiguous, sentences

are vague when they contain generalization. Some

time they are missing important information such as

subject or object needed by the verb for

completeness or contains pronouns. All these

difficulty arise when any one discuss the business

problem in using natural language. On other hand

software requires more precision, correctness and

cleanness that are not found in natural language.

Analysis is process of transforming a problem

defining from fuzzy set of facts and myths in to
coherent statement of system‟s requirements. The

main objective of Object Oriented Analysis (OOA)

is to capture a entire, definite and consistent picture

of the requirement of system and what system must

do to satisfy the user requirement and needs. This is

accomplished by constructing several models of

system. In this process user‟s needs and wants are

transformed in to set off problem statement and

requirements specification document called as

Software Requirement Specification (SRS) in

natural language (NL). After that this natural
language (Such as English) SRS are translated to the

formal specifications such as UML models. This

translation consists of generation of structural model

of the system such as identifying the actors and

related use cases, identify classes, their attributes,

methods, and relationships among them [1].

However requirement (SRS) explained in

NL can often uncertain, imperfect, and incoherent.

In addition the explanation and understanding of

anything described in natural language has potential

of being influenced by geological, mental and

sociological factors. It is usually job of requirement

Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1625 | P a g e

business analyst to detect and fix potential

ambiguities, inconsistencies and incompleteness in

such natural language SRS. But due to business

analyst can overlook defects in SRS document in

Natural language which can lead to multiple

interpretations and difficulties in recovering implicit

requirements if analysts do not have enough domain
knowledge. Also fault occurred in this stage of

software development process can be quite

expensive to fix on in later stages of development.

Thus evaluating requirements and generating the

software artifacts to build analysis model are

massive and difficult task which need some

automated support.

In automated software development process

the software requirements described in natural

language are transformed in to some formal

specification means that the business models or

computation independent models are transformed in
to some platform independent module which are

very near to the any of the platform specific models

or development environment. In last few years there

are so many attempts has been made to transform

the natural language business models in to platform

independent models. It includes CM Builder,

LIDA, GOOAL, LOLITA (NL-OOPS), NL-OOML,

Event Extractor, Li, SUGER, and many more. But

these tools are not used in real time software

development process due there lesser accuracy and

coverage in generating the formal models of system.
Such tools produce 65 to 70 percentages of accuracy

and coverage. The main reason behind failure of

these tools is ambiguous and casual nature of natural

languages. Also business model described in natural

language are very complex to computational process

due to inherent semantic inconsistencies in a natural

language. Also majority natural language words

have multiple senses and single senses can be

replicated by multiple words. A better solution to

this problem is to convert the natural language

business model in to some formal representation

which is very simple for computation or machine
process and also easy to understand by human being

as natural language. Semantic Business Vocabulary

and rule (SBVR) specification is the standard

developed by Object Management Group fulfills this

need. This specification defines the vocabulary and

rules for documenting the semantics of business

vocabularies, business information, and business

rules. This specification is applicable to the domain

of business vocabularies and business rules of all

kinds of business activities of all kinds of

organizations.
Thus to analyze, extract and transform the

hidden facts in natural language to some formal

model has so many challenges and obstacles. To

overcome some of these obstacles in software

analysis there should be some mean or a technique

which aims at to generate software artifacts to build

the formal models such as UML diagrams. Initially

such technique should convert the NL business

requirements in to some formal intermediate

representation to increase in accuracy of generated

artifacts and models. Then it focuses on identifying

the various software artifacts to generate analysis

phase models. Finally this technique provide output

in the format understood by model visualizing tool
This paper proposes such approach to

analyze, extract, transform and generate software

artifacts from natural language business model to

build the formal semantic models of the system.

Proposed approach first convert the natural language

requirement documents in to intermediate SBVR

format for better accuracy. Then by doing some

semantic and syntactic analysis on such SBVR

intermediate result it focuses on identifying the

software artifacts such as actors, use cases, classes,

attributes, methods, relationships, multiplicity and

many more to generate analysis models such as use
case and class diagram. Finally this technique

produces XML Metadata Interchange (XMI) Files to

envision generated models in UML modeling tool

having XMI importation characteristic.

II. BASIC CONCEPTS
In this section, a brief introduction about

the basic concepts of the OOA, UML Use Case and

Class Model, SBVR is provided

2.1 Object Oriented Analysis (OOA):

Analysis is concerned with devising a

precise, concise, understandable model of the real

world business. Object oriented analysis consist of

identifying, extracting the needs of business and

what system must do to satisfy the business

requirements. The goal of object oriented analysis

first is to understand the system‟s responsibilities by

understanding how the user (Actor) use or will use

the system. Next, the artifacts or elements (classes)
that make up the system must be identified and their

responsibilities and relationships among them. OOA

concentrate on the describing what system does?

Rather than the how it does it? This is accomplished

by constructing the several models of the system

from fuzzy set of system description such as use

case model and class model. Use case model

represent the user‟s view of the system or user‟s

needs. Another activity in the OOA is to identify the

classes and subparts such as attributes, methods and

relationships among them in the system.

2.2 UML Use Case Model:

“Use case model is nothing but a sequence

of transition in a system whose task is to yield to

result of measureable value to an individual actor of

the system”

A use case model is graph or diagram of

actors, a set of use cases and communication

relationships between actor and use cases. Use case

Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1626 | P a g e

model defines the outside (Actor) and inside (Use

Case) of system‟s behavior.

A use case is a special flow of events

through the system. An actor is a user playing a role

with respect to the system. Actor is a key to findings

the correct use cases. Actor carries out the use

cases. In use case model single actor can perform
many use cases or a use case may have many actors

performing it. A use case must help actor to perform

a task that has some identifiable value.

2.3 UML Class Model:

The UML class model is the main static

analysis model. This model shows the static

structure of the system to be analyzed. A class

model is nothing but the collection of the static

modeling artifacts such as classes and their

relationships, and multiplicity among them

connected as graph to each other and to their
contents. The key element of class model is he

classes and relationships among them. The class can

have sub artifacts as attributes, and methods. Such

model represents the mapping of objects in the real

world to actual objects to be used in computer

program.

2.4 SBVR

SBVR is a short form of “Semantic

Business Vocabulary and Rules” which has been

introduced by Object Management Group (OMG) to
reduce the gap between Business analyst and IT

persons. This is an contemporary an better way of

capturing the business requirements in natural

language like structure which is very easy to

understand for human beings and also very simple to

machine process due to its higher order of logic

foundation. One can generate a business model of

the system using the SBVR with the same

communicative influence of standard natural

language. In SBVR all specific expressions and

definition of facts and concepts used by an

organization in course of business are considered as
vocabulary. Also in SBVR a formal presentation

under the business influence are considered as rules

which are used to express the operation of particular

business entity under certain conditions.

III. BACKGROUND AND COMPARATIVE

ANALYSIS
Many approaches and techniques have been

proposed up till now to automate the process of

various model generations from natural language

requirement specification. However theses

approaches are not used in real world system

development due to their limitations in coverage and

accuracy generation. Also majority of models

concentrates on the class model only and require the

high order of human interaction to complete the

generated models

CM-Builder aims at supporting the analysis stage of

development in an Object-Oriented framework. CM-

Builder uses robust Natural Language Processing

techniques to analyze software requirements texts

written in English and build an integrated discourse

model of the processed text, represented in a

Semantic Network. This Semantic Network is then
used to automatically construct an initial UML Class

Model. The initial model can be directly input to a

graphical CASE tool for further refinements by a

human analyst.

CM- Builder analyzes the requirements text

and build initial class diagram only. This model can

be visualized in graphical case tool by converting it

into standard data interchange format where human

analyst can make further refinements to generate

final class model. Also CM-builder makes the

extensive use of NLP techniques.

A Natural Language Object Oriented
Production System (NL- OOPS) [3] generates object

oriented analysis model from SemNet obtained by

parsing NL SRS document. It considers noun as

objects and identifies the relationships among

objects using links. This approach lacks in accuracy

in selecting the objects for large systems and cannot

differentiate between class nouns and attribute

nouns.

Linguistic assistant for Domain Analysis

(LIDA), provide linguistic assistance in the model

development process. It presents a methodology to
conceptual modeling through linguistic analysis.

Then gives overview of LIDA's functionality and

present its technical design and the functionality of

its components. Finally, it presents an example of

how LIDA is used in a conceptual modeling task.

This tool identifies model elements through

assisted text analysis and validates by refining the

text descriptions of the developing model. LIDA

needs extensive user interaction while generating

models because it identifies only a list of candidate

nouns, verbs and adjectives, which need to be

categorized into classes, attributes or operations
based on user‟s domain knowledge.

"GOOAL" (Graphic Object Oriented

Analysis Laboratory) [5] receives a natural language

(NL) description of problem and produces the object

models taking decisions sentence by sentence. The

user realizes the consequences of the analysis of

every sentence in real time. Unique features of this

tool are the underlying methodology and the

production of dynamic object models. GOOAL

produces the class diagram by considering the

validation threshold of 50% and its coverage
accuracy (Precision matrices) is very minimum that

is 78%

NL-OOML [6] presents an approach to

extract the elements of the required system by

subjecting its problem statement to object oriented

analysis. This approach starts with assigning the

parts of speech tags to each word in the given input

Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1627 | P a g e

document. The text thus tagged is restructured into a

normalized subject-verb -object form. Further, to

resolve the ambiguity posed by the pronouns, the

pronoun resolutions are performed before

normalizing the text. Finally the elements of the

object-oriented system namely the classes, the

attributes, methods and relationships between the
classes, the use-cases and actors are identified by

mapping the „parts of speech- tagged‟ words of the

natural language text onto the Object Oriented

Modeling Language elements using mapping rules.

But approximately 12.4 % of additional classes and

7.4 % of additional methods are identified in all the

samples taken each of around 500 words. These

additionally identified candidates are those that will

usually be removed by human by intuition. Since the

system lacks this knowledge, they were also listed as

classes. Coverage accuracy is 82%

An evaluation methodology proposed by
Hirschman and Thompson [9] is used for the

performance evaluation of all above existing tools.

According to this methodology the most enduring

metrics of performance that have been applied to

information extraction are termed as recall

(Coverage of tool) and precision (Coverage

Accuracy of tool).These metrics may be viewed as

judging effectiveness from the application user's

perspective. In the case of in information extraction,

a correct output is a relevant fact.

Recall = no of Relevant-returned facts / actual
relevant facts

Precision = no of relevant-returned facts / total no.

of returned facts

Following TABLE I show the comparison of results

of available tools that can perform automated or

semi-automated analysis of the Natural Language

requirement specifications.

Recall value was not available for some of the tools.

Table I - A Comparison of Performance

Evaluation of Existing Available Tools

Tools
Recall

Value

Precisio

n Value

CM-Builder (Harmain, 2003) 73.00% 66.00%

GOOAL (Perez-Gonzalez,

2002)
--- 78.00%

NL-OOML (Anandha, 2006) ---- 82.00%

LIDA (Overmyer, 2001) 71.32% 63.17%

Extract (only Event
Extraction) (2009)

92.00% 85.00%

As the existing system uses natural

languages as direct input to tool so that their recall

and precision values are very less. Such results are

there due to problems associated with Natural

Languages such as

 Ambiguous and informal nature

 Inherent semantic inconsistencies

 Complex to machine process.

 Informal sentence structure

Moreover, the various functionalities supported by

existing tools are also compared as shown in

TABLE II

Table II – Functionality Support Comparison of

Existing Available System

Tool

Function

ality

NL

-

OO

PS

CM-

Build

er

LI

DA

GO

OA

L

NL

-

OO

ML

Ext

ract

Use-Case

Model
NO NO NO NO NO NO

Classes
YE

S
YES

YE

S
YES

YE

S
YES

Attribute

s

YE

S
YES

YE

S
YES

YE

S
YES

Methods
YE

S
YES

YE

S
YES

YE

S
YES

Associati

ons

YE

S
YES

YE

S

In

Semi

NL

NO NO

Multiplici

ty
NO YES

YE

S
NO NO NO

Aggregati

on
NO YES NO NO NO NO

Generaliz

ation

YE

S
NO NO NO NO NO

Instances
YE
S

NO NO NO NO NO

XMI

Support
NO YES NO NO NO NO

Normaliz

e

Requirem

ent

NO YES NO NO NO NO

User

Interactio

n

Hig

h

Medi

um

Hig

h
High

Hig

h
Low

Table II shows that there are very few tools

those can extract information such as multiplicity,

aggregations, generalizations, instances from

Natural language requirement. None of the tool

generates the OCL representation of output model

and thus they are inadequate to capture the
nonfunctional requirements.

As every event itself is a single interaction

i.e. atomic unit of interaction (Below Use-case) that

captures functional requirements in terms of an

interaction from a scenario. Proposed system

supports the functionality to capture the events from

requirement statement and generates Event Meta

Model/Template to capture the event from natural

language requirement

Thus, the results of this initial performance

evaluation show that there is still potential for
automation and provide motivation for approach

proposed here.

Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1628 | P a g e

IV. SBVR
The Semantics of Business Vocabulary and

Business Rules (SBVR)[9] is an adopted standard of

the Object Management Group (OMG) proposed to

be the root for proper and detailed natural language
declarative explanation of a complex thing, such as a

business. SBVR is planned to formalize complex

compliance rules, such as operational rules for an

enterprise, security policy, standard compliance, or

regulatory compliance rules. Such formal

vocabularies and rules can be interpreted and used

by computer systems. SBVR is an integral part of

the OMG‟s Model Driven Architecture (MDA).

SBVR defines the vocabulary and rules for

documenting the semantics of business vocabularies,

business facts, and business rules

SBVR include a vocabulary for conceptual
modeling and captures expressions based on this

vocabulary as formal logic structures. The SBVR

vocabulary allows one to formally specify

representations of concepts, definitions, instances,

and rules of any information domain in natural

language. These features make SBVR well suited for

describing business domains and requirements for

business processes and information systems to

employ business models.

4.1 Elements of SBVR
Business vocabulary and business rules are

the major key component of OMG‟s SBVR

specification.

4.1.1 Business Vocabulary

A business vocabulary include all the

specialized terms, names, and fact type forms of

concepts that a given business domain or community

uses in their talking and writing in the course of

doing business. SBVR includes two specialized

vocabularies:
Vocabulary for Describing Business

Vocabularies, this element of specification deals

with all types of terms and meanings. Vocabulary

for Describing Business Rules, this element of

specification deals with the meaning of business

rules, and builds on the previous one.

These two have been separated so that the

Vocabulary for Describing Business Vocabularies

could be used independently.

4.1.2 Business Rule

Business Rules are rules that are under business

jurisdiction. Means that a business can, fit, enact,

revise, and discontinue the business rules that

govern and guide it. Thus, „business rule‟ means

sense of „guide for conduct or action‟ in business.

Business rules serve as criteria for making decisions.

The SBVR‟s interpretation of „rule‟ therefore

encompasses the sense of „criteria‟ as given by

authoritative glossary. An additional in the SBVR‟s

treatment of „rule‟ is consistency with formal logics.

The best treatment for the SBVR‟s understanding of

rules would involve obligation and necessity claims.

Consequently, in SBVR, a Rule is “an element of
guidance that introduces an obligation or a

necessity.”

The two fundamental categories of Rule are:

• Structural Rule: These are rules about how the

business chooses to organize (i.e., „structure‟) the

things it deals with. Structural Rules supplement

definitions

 • Operative Rule: These are rules that govern the

conduct of business activity.

In contrast to Structural Rules, Operative Rules are

ones that can be directly violated by people involved

in the dealings of the business
In SBVR, rules are always constructed by

applying necessity or obligation to fact types. SBVR

realizes a the basic principal of the Business Rules

Approach at the business level, which is states that

“Business rules build on fact types, and fact types

build on concepts as expressed by terms.” This

blueprint allows SBVR‟s support for concepts to be

optionally used on its own for building business

vocabularies.

V. PROPOSED SYSTEM METHODOLOGY
This section describes the used

methodology to identify the artifacts which are used

to generate the models at analysis phase from natural

language. This methodology consist of automatic

conversion of natural language software requirement

specification conversion to controlled intermediate

SBVR format and secondly to identification of

software artifacts and model generation, finally

visualization of generated models. Used
methodology works in different phases organized in

pipelined fashion as follows.

1. Preprocess Analysis

This phase stars with the by reading the given

English input and tokenizing the whole input

in to individual tokens. To do so java

tokenizer class is used. After tokenizing each

token is stored in separate array list. While

tokenizing the English input sentence splitter

is used to identify the boundary of each

sentence.

2. Tagging
This processed text is further given as input to

Part Of Speech (POS) tagger to identify the

basic POS tags. To do so Standard POS

tagger is used which identifies the 44 basic

POS tags.

3. Morphological Analysis

To remove the suffixes attached to noun

phrases and verb phrases this type of analysis

is performed on the tagged output from

Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1629 | P a g e

pervious phase. In this type of analysis

WordNet is used to convert the plural into

singular form also suffixes attached to verb

phrases such as “ed” are also removed.

4. Pronoun Resolution

In this phase JavaRAP is used to replace all

possible pronouns with correct noun form up
to third person.

5. Parse Tree Generation

Stanford Parser is used to generate parse tree

from pos tagged output for each

requirements. This phase is very useful to

find out artifacts such as actors, use cases to

model the use case diagram.

6. Role Labeling and Element/Concept

Identification

In this phase role labels are identified from

preprocessed text such as performer, co

actors, events, objects and receiver in the
sentences. Also in this phase SBVR concept

identification is done according to some

identification constraints such as all proper

nouns are identified to individual concepts,

all common nouns are identified as noun

concepts or object type, all action verbs are

identified as verb concepts, all auxiliary verbs

are identified as fact types, possessed nouns

are identified as characteristics or attributes,

indistinct articles, plural nouns and cardinal

numbers are identified as quantification.
Output of this phase is stored in an array list.

7. Rule Generation

To generate the SBVR rule we have to first

produce fact types, in the form of sentences

which represents some relationships between

the concepts identified in the previous phase.

For that purpose use the template such as

noun-verb-noun to establish the relationship

between two concepts. Thus a fact type is

created by combining the noun concepts and

verb concepts from pervious phase array list.

Generated fact type is used to create the
SBVR rule by applying various logical

formulation such as use of logical expression

AND, OR and NOT etc, Quantification token

conversion rules, possibility and obligation

formulation rules are used.

8. Applying Notations

In this phase SBVR notations are applied to

generate rules such as noun concepts are

underlined, verb concepts are italicized,

keywords are bolded, individual concepts or

attributes are double underlined.
9. Artifacts Extraction

In this phase produced SBVR vocabulary and

rules are further processed to extract the basic

building blocks or artifacts of models such as

use case and class diagram etc. all SBVR

noun concepts and object type are tends to be

actor for use case model and classes for class

model. All verb concepts associated to noun

concepts are tend to be use cases of that actor

for use case model and methods for the class

model. Association between actor and use

cases are identified with the help of parse tree

generated as well as from the SBVR unary

fact types in the form of template noun-verb
or binary fact types created in phase 7. All

SBVR characteristics associated with the

noun concepts and object type are mapped to

the data items in class model. SBVR

Quantifications identified with respective

noun concepts are mapped to the multiplicity

between two classes.

10. XMI Generation and Model Visualization

Finally in this phase the output of above

phases are generated in the form of XML

meta data interchange (XMI) file format.

Such file is further given as input to UML
modeling tool having XMI import feature to

visualize the generated models.

Following fig1 shows the process architecture of the

proposed methodology.

Figure 1 Process Architecture of System

VI. SYSTEM WORKFLOW

Take the input from user, a document which is

written in English like natural language. Then we do

the preprocessing of this natural language

specification document using different natural
language processing tools and technologies to do

tagging, morphological analysis, pronoun resolution

and parse tree generation. After doing so this

preprocessed text is converted into controlled

intermediate format such as SBVR Concepts and

Rules which are then mapped to software artifacts to

build the models at analysis level. These models are

finally visualized using the UML compliment tool

having XMI import features. Following fig2 shows

the sequenced steps to be followed to generate the

analysis level models of software specification.

Prof. D.M.Thakore, Ravi P.Patki / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.1624-1630

1630 | P a g e

Figure 2 Workflow of System

VII. UTILITY
 Proposed system may be used across all

domain over unlimited requirement size
expressed in Natural Language to generate

analysis phase software elements and

models.

 Proposed system would be very useful in

understanding functional requirements

because it gives list of events that

represents the behavior of system

 Non functional requirements are basically

constraints in Natural Language

Requirement Specification and proposed

system will be useful to find out such non-
functional requirement in the form of OCL

Specification.

 Proposed system may be used to for

summarization and for extraction of

important software elements in Objects

Oriented Analysis Process.

VIII. CONCLUSION
This approach describes a computerized way to

take out the software element at analysis phase. It

uses Natural Language Processing techniques to

consider business level software requirements and

builds an incorporated analysis level model.

This approach can be used for the

identification of software elements such as event list,

use cases, classes, their attributes, and the static

relationships among them with increase in accuracy

due to use of intermediate format SBVR. The

outcome achieved have shown the utility of this

approach

 Across all domain over unlimited

requirement size expressed in Natural

Language to generate analysis phase

software elements and models.

 in understanding functional requirements

because it gives list of events that

represents the behavior of system

 For summarization and for extraction of

important software elements in Objects

Oriented Analysis Process.

REFERENCES
[1] Ali Bahrami, Chapter 6, Object Oriented

Analysis Process, in Object Oriented
System Development.

[2] H. M. Harmain and R. Gaizauskas, CM-

Builder: An Automated NL Based CASE

tool, in IEEE International Conference on

automated software engineering (2000)

[3] Mich L., NL-OOPS: From natural language

to object oriented requirement using natural

language processing system (1996)

[4] Overmyer, S. P., Benoit, L. and Owen R.,

Conceptual modeling through linguistic

analysis using LIDA. International
Conference of Software Engineering

(ICSE), (2001)

[5] Hector G perez-Gonzalez and Jugal K.

Kalita, GOOAL : A Graphical Object

Oriented Analysis laboratory, ACM 1-

58113-626-9/02/0011 (2002)

[6] G.S. Anandha Mala, J. Jayaradika, and G.

V. Uma, Restructuring Natrual Language

Text to Elicit Software Requirements, in

proceeding of the International Conference

on Cognition and Recognition (2006)

[7] Sanddep K. Singh, Reetesh Gupta,
Sangeeta Sabharwal, and J.P. Gupta, E-

xtract : A tool for extraction, Analysis and

Classification of Events from Textual

Requirements, in IEEE 2009 international

Conference on Advances in Recent

technologies in communication and

Computing.

[8] Hirschman L., and Thompson, H.S. 1995.

Chapter 13 Evaluation: Overview of

evaluation in speech and natural language

processing. In Survey of the State of the
Art in Human Language Technology.

[9] OMG. 2008. Semantics of Business

vocabulary and Rules. (SBVR) Standard

v.1.0.

