On π gb-D-sets and Some Low Separation Axioms

D.Sreeja^{*} and C.Janaki^{**}

Asst.Professor, Dept. of Mathematics, CMS College of Science and Commerce Coimbatore-6.

Asst.Professor, Dept. of Mathematics, L.R.G Govt.Arts College for Women, Tirupur-4.

Abstract

This paper introduces and investigates some weak separation axioms by using the notions of π gbclosed sets. Discussions has been carried out on its properties and its various characterizations. **Mathematics Subject Classification**: 54C05

Keywords: π gb-R_i, π gb-D_i, π gb-D-connected, π gb-D-compact.

1.Introduction

Levine [16] introduced the concept of generalized closed sets in topological space and a class of topological spaces called T 1/2 spaces. The investigation of generalized closed sets leads to several new separation axioms. Andrijevic [3] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. This type of sets was discussed by Ekici and Caldas [11] under the name of γ -open sets. The class of b-open sets is contained in the class of semi-pre-open sets and contains all semi-open sets and pre-open sets. The class of b-open sets generates the same topology as the class of pre-open sets. Since the advent of these notions, several research paper with interesting results in different respects came to existence([1,3,7,11,12,20,21,22]). Extensive research on generalizing closedness was done in recent years as the notions of a generalized closed, generalized semiclosed, a-generalized closed, generalized semi-preopen closed sets were investigated in [2,8,16,18,19]. In this paper, we have introduced a new generalized axiom called π gb-separation axioms. We have incorporated $\pi gb-D_i$, $\pi gb-R_i$ spaces and a study has been made to characterize their fundamental properties.

2. Preliminaries

Throughout this paper (X, τ) and (Y, τ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no chance of confusion.

Let us recall the following definitions which we shall require later.

Definition 2.1: A subset A of a space (X, τ) is called (1) a regular open set if A= int (cl(A)) and a regular closed set if A= cl(int (A));

(2) b-open [3] or sp-open [9], γ –open [11] if A \subset cl(int(A)) \cup int (cl(A)).

The complement of a b-open set is said to be b-closed [3]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by bCl(A). The union of all b-open sets of X contained in A is called b-interior of A and is denoted by bInt(A). The family of all b-open (resp. α -open, semi-open, preopen, β -open, b-closed, preclosed) subsets of a space X is denoted by bO(X)(resp. α O(X), SO(X), PO(X), β O(X), bC(X), PC(X)) and the collection of all b-open subsets of X containing a fixed point x is denoted by bO(X, x). The sets SO(X, x), α O(X, x), PO(X, x), β O(X, x) are defined analogously.

Lemma 2.2 [3]: Let A be a subset of a space X. Then

(1) $bCl(A) = sCl(A) \cap pCl(A) = A \cup [Int(Cl(A)) \cap Cl(Int(A))];$

(2) $bInt(A) = sInt(A) \cup pInt(A) = A \cap [Int(Cl(A)) \cup Cl(Int(A))]:$

Definition 2.3 : A subset A of a space (X, τ) is called 1) a generalized b-closed (briefly gb-closed)[12] if

 $bcl(A) \subset U$ whenever $A \subset U$ and

U is open.

2) π g-closed [10] if cl(A) \subset U whenever A \subset U and U is π -open.

3) π gb -closed [23] if bcl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

By π GBC(τ) we mean the family of all π gb- closed subsets of the space(X, τ).

Definition 2.4: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called 1) π gb- continuous [23] if every f¹(V) is π gb- closed in (X, τ) for every closed set V of (Y, σ) .

2) π gb- irresolute [23] if f¹(V) is π gb- closed in(X, τ) for every π gb -closed set V in (Y, σ).

Definition[24]: $(X, \tau \Box)$ is $\pi gb-T_0$ if for each pair of distinct points x, y of X, there exists a πgb -open set containing one of the points but not the other.

Definition[24] : (X, τ) is $\pi gb-T_1$ if for any pair of distinct points x, y of X, there is a πgb -open set U in

X such that $x \in U$ and $y \notin U$ and there is a πgb -open

set V in X such that $y \in U$ and $x \notin V$.

Definition[24]: (X,τ) is π gb-T₂ if for each pair of distinct points x and y in X, there exists a π gb -open set U and a π gb -open set V in X such that $x \in U$, $y \in V$ and $U \cap V = \Phi$.

Definition: A subset A of a topological space (X, τ) is called:

(i)) D-set [25] if there are two open sets U and V such that U ${\neq}X$ and A=U -V .

(ii) sD-set [5] if there are two semi-open sets U and V such that $U \neq X$ and A=U -V.

(iii) pD-set [14] if there are two preopen sets U and V such that $U \neq X$ and A=U -V.

(iv) αD -set [6] if there are two U,V $\in \alpha O(X,\tau)$ such that U $\neq X$ and A=U-V.

(v) bD-set [15] if there are two U,V \in BO(X, τ) such that U \neq X and A=U-V.

Definition 2.6[17]: A subset A of a topological space X is called an \tilde{g}_{α} D-set if there are two \tilde{g}_{α} open sets U,V such that U \neq X and A=U-V.

Definition 2.7[4]: X is said to be (i)rga-R₀ iff rga-

 $\{x\} \subseteq G$ whenever $x \in G \in RGaO(X)$.

(ii) $rg\alpha - R_1$ iff for x, y $\in X$ such that $rg\alpha - \{x\} \neq rg\alpha$ -

 $\{y\}$, there exist disjoint U,V \in RG α O(X) such that

 $\operatorname{rga-} \{x\} \subseteq U \text{ and } \operatorname{rga-} \{y\} \subseteq V.$

Definition[13]: A topological space (X, τ) is said to be D-compact if every cover of X by D-sets has a finite subcover.

Definition[15]: A topological space (X, τ) is said to be bD-compact if every cover of X by bD-sets has a finite subcover.

Definition[13]: A topological space (X, τ) is said to be D-connected if (X, τ) cannot be expressed as the union of two disjoint non-empty D-sets.

Definition[15]: A topological space (X, τ) is said to be bD-connected if (X, τ) cannot be expressed as the union of two disjoint non-empty bD-sets.

3. π gb-D-sets and associated separation axioms

Definition 3.1: A subset A of a topological space X is called π gb-D-set if there are two U,V $\in \pi$ GBO(X, τ) such that U \neq X and A=U-V.

Clearly every π gb-open set U different from X is a π gb-D set if A=U and V= Φ .

Example 3.2: Let $X=\{a,b,c\}$ and $\tau=\{\Phi,\{a\},\{b\},\{a,b\},X\}$. Then $\{c\}$ is a π gb-D-set but not π gb-open. Since π GBO $(X, \tau)=\{\Phi,\{a\},\{b\},\{b,c\},\{a,c\},\{a,b\},X\}$. Then $U=\{b,c\}\neq X$ and $V=\{a,b\}$ are π gb-open sets in X. For U and V, since U-V= $\{b,c\}-\{a,b\}=\{c\}$, then we have S= $\{c\}$ is a π gb-D-set but not π gb-open.

Theorem 3.3: Every D-set, α D-set,pD-set,bD-set,sD-set is π gb-D-set.

Converse of the above statement need not be true as shown in the following example.

Example 3.4:Let $X=\{a,b,c,d\}$ and $\tau=\{\Phi,\{a\},\{a,d\},\{a,b,d\},\{a,c,d\},\}$

X}. π GBO(X, τ)=P(X).Hence π gb-D-set=P(X).{b,c,d}

is a π gb-D-set but not D-set, α D-set,pD-set,bD-set,sD-set.

Definition 3.5: X is said to be

- π gb-D₀ if for any pair of distinct points x and y of X, there exist a π gb-D-set in X containing x but not y (or) a π gb-Dset in X containing y but not x.
- (ii) $\pi gb-D_1$ if for any pair of distinct points x and y in X, there exists a πgb -D-set of X containing x but not y and a πgb -D-set in X containing y but not x.
- (iii) $\pi gb-D_2$ if for any pair of distinct points x and y of X, there exists disjoint $\pi gb-D$ -sets G and H in X containing x and y respectively.

Example 3.6:Let $X=\{a,b,c,d\}$ and $\tau=\{\Phi,\{a\},\{a,b\},\{c,d\},\{a,c,d\},X\}$,then X is π gb-D_i, i=0,1,2.

Remark 3.7

(i)

(i) If (X, τ) is π gb-T_i, then (X, τ) is π gb-D_i,i=0,1,2. (ii) If (X, τ) is π gb-D_i,then it is π gb-D_{i-1}.i=1,2.

(ii) If (X, τ) is π gb- T_i , then it is π gb- T_{i-1} .i=1,2. (ii) If (X, τ) is π gb- T_i , then it is π gb- T_{i-1} .i=1,2.

(II) II (X, τ) IS π gd-1_i,then it IS π gd-1_{i-1};1=1,2.

Theorem 3.8: For a topological space (X, τ) the following statements hold.

(i) (X, τ) is $\pi gb-D_0$ iff it is $\pi gb-T_0$

(ii) (X, τ) is $\pi gb-D_1$ iff it is $\pi gb-D_2$.

Proof: (1)The sufficiency is stated in remark 3.7 (i) Let (X, τ) be π gb-D₀.Then for any two distinct points x,y $\in X$, atleast one of x,y say x belongs to π gbD-set G where $y\notin$ G.Let G=U₁-U₂ where U₁ \neq X and U₁ and U₂ $\in \pi$ GBO(X, τ).Then $x\in$ U₁. For $y\notin$ G we have two cases.(a) $y\notin$ U₁ (b) $y\in$ U₁ and $y\in$ U₂.In case (a), $x\in$ U₁ but $y\notin$ U₁;In case (b); $y\in$ U₂ and $x\notin$ U₂.Hence X is π gb-T₀.

(2) Sufficiency: Remark 3.7 (ii).

Necessity: Suppose X is $\pi gb-D_1$. Then for each distinct pair x, y \in X, we have πgbD -sets G_1 and G_2 such that $x \in G_1$ and $y \notin G_1$; $x \notin G_2$ and $y \in G_2$. Let $G_1 = U_1-U_2$ and $G_2 = U_3 - U_4$. By $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$

Now we have two cases(i)x $\notin U_3$.By $y \notin G$, we have two subcases (a) $y \notin U_1$.By $x \in U_1$ -U₂, it follows that $x \in U_1$ -(U₂U U₃) and by $y \in U_3$ -U₄, we have $y \in U_3$ -

 $(U_1 \cup U_4)$.Hence $(U_1 - (U_3 \cup U_4)) \cap U_3 - (U_1 \cup U_4) = \Phi.(b)y \in U_1$ and $y \in U_2$, we have $x \in U_1 - U_2$; $y \in U_2$. $\Rightarrow (U_1 - U_2) \cap U_2 = \Phi$.

(ii) $x \in U_3$ and $x \in U_4$. We have $y \in U_3$ - U_4 ; $x \in U_4 \Rightarrow (U_3 - U_4) \cap U_4 = \Phi$. Thus X is π gb-D₂.

Theorem 3.9: If (X, τ) is π gb-D₁, then it is π gb-T₀. **Proof:** Remark 3.7 and theorem 3.8

Definition 3.10: Let (X,τ) be a topological space. Let x be a point of X and G be a subset of X. Then G is called an π gb-neighbourhood of x (briefly π gb-nhd of x) if there exists an π gb-open set U of X

such that $x \in U \subset G$.

Definition 3.11: A point $x \in X$ which has X as a π gb-neighbourhood is called π gb-neat point.

Example

3.12:LetX={a,b,c}. τ ={ Φ ,{a},{b},{a,b},X}. π GBO(X, τ)={ Φ ,{a},{b},{a,b},{b,c},{a,c}, X}. The point {c} is a π gb-neat point.

Theorem 3.13: For a π gb-T₀ topological space (X, τ), the following are equivalent.

(i)(X, τ) is a π gb-D₁

(ii)(X, τ) has no π gb-neat point.

Proof: (i) \Rightarrow (ii).Since X is a π gb-D₁,then each point x of X is contained in an π gb-D-set O=U-V and hence in U.By definition,U \neq X.This implies x is not a π gb-neat point.

(ii) \Rightarrow (i) If X is π gb-T₀, then for each distinct points x, y \in X, at least one of them say(x) has a π gb-neighbourhood U containing x and not y. Thus U \neq X is a π gbD-set. If X has no π gb-neat point, then y is not a π gb-neat point. That is there exists π gb-neighbourhood V of y such that V \neq X. Thus y \in (V-U) but not x and V-U is a π gb-D-set. Hence X is π gb-D₁.

Remark 3.14 : It is clear that an π gb-T₀ topological space (X, τ) is not a π gb-D₁ iff there is a π gb-neat point in X. It is unique because x and y are both π gb-neat point in X, then atleast one of them say x has an π gb-neighbourhood U containing x but not y. This is a contradiction since U \neq X.

Definition 3.15: A topological space (X, τ) is π gb-symmetric if for x and y in X, $x \in \pi$ gb-cl($\{y\}$) $\Rightarrow y \in \pi$ gb-cl($\{x\}$).

Theorem 3.16: X is π gb-symmetric iff {x} is π gbclosed for x \in X.

Proof: Assume that $x \in \pi \text{gb-cl}(\{y\})$ but $y \notin \pi \text{gb-cl}(\{x\})$. This implies $(\pi \text{gb-cl}(\{x\})^c \text{ contains y.Hence})$ the set $\{y\}$ is a subset of $(\pi \text{gb-cl}(\{x\})^c \text{ .This implies } \pi \text{gb-cl}(\{y\})$ is a subset of $(\pi \text{gb-cl}(\{x\})^c \text{ .Now } (\pi \text{gb-cl}(\{x\})^c \text{ contains } x \text{ which is a contradiction.})$

Conversely, Suppose that $\{x\} \subset E \in \pi GBO(X, \tau)$ but $\pi gb-cl(\{y\})$ which is a subset of E^c and $x \notin E$. But this is a contradiction.

Theorem 3.17 : A topological space (X, τ) is a π gb- T_1 iff the singletons are π gb-closed sets.

Proof:Let (X, τ) be $\pi gb-T_1$ and x be any point of X. Suppose $y \in \{X\}^c$. Then $x \neq y$ and so there exists a πgb -open set U such that $y \in U$ but $x \notin U$. Consequently, $y \in U \subset (\{x\})^c$. That is $(\{x\})^c = \cup \{U/y \in (\{x\})^c\}$ which is π gb-open.

Conversely suppose $\{x\}$ is π gb-closed for every $x \in X$. Let x, $y \in X$ with $x \neq y$. Then $x \neq y \Rightarrow y \in (\{x\})^c$. Hence $(\{x\})^c$ is a π gb-open set containing y but not x. Similarly $(\{y\})^c$ is a π gb-open set containing x but not y. Hence X is π gb-T₁-space.

Corollary 3.18 : If X is π gb-T₁, then it is π gb-symmetric.

Proof: In a π gb-T₁ space, singleton sets are π gb-closed. By theorem 3.17, and by theorem 3.16, the space is π gb-symmetric.

Corollary 3.19: The following statements are equivalent

(i)X is π gb-symmetric and π gb-T₀

(ii)X is π gb-T₁.

Proof: By corollary 3.18 and remark 3.7, it suffices to prove (1) \Rightarrow (2).Let $x\neq y$ and by $\pi gb-T_0$, assume that $x\in G_1 \subset (\{y\})^c$ for some $G_1\in \pi GBO(X)$. Then $x\notin \pi gb\text{-cl}(\{y\})$ and hence $y\notin \pi gb\text{-cl}(\{x\})$. There exists a $G_2 \in \pi GBO(X, \tau)$ such that $y\in G_2\subset (\{x\})^c$. Hence (X, τ) is a $\pi gb\text{-}T_1$ space.

Theorem 3.15: For a π gb-symmetric topological space(X, τ), the following are equivalent.

(1) X is π gb-T₀

(2) X is π gb-D₁

(3) X is π gb-T₁.

Proof: (1) \Rightarrow (3):Corollary 3.19

 $(3) \Rightarrow (2) \Rightarrow (1)$:Remark 3.7.

4. Applications

Theorem 4.1: If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a πgb continuous surjective function and S is a D-set of (Y, σ) , then the inverse image of S is a πgb -D-set of (X, τ)

Proof: Let U_1 and U_2 be two open sets of (Y, σ) .Let $S=U_1-U_2$ be a D-set and $U_1 \neq Y$.We have $f^1(U_1) \in \pi GBO(X, \tau)$ and $f^1(U_2) \in \pi GBO(X, \tau)$ and $f^1(U_1) \neq X$.Hencef¹(S)=f¹(U₁-U₂)=f¹(U₁)-f¹(U₂).Hence f¹(S) is a π gb-D-set.

Theorem 4.2 J: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a π gb-irresolute surjection and E is a π gb-D-set in Y,then the inverse image of E is an π gb-D-set in X.

Proof: Let E be a π gbD-set in Y.Then there are π gbopen sets U₁ and U₂ in Y such that E= U₁-U₂ and U₁ \neq Y.Since f is π gb-irresolute, f¹(U₁) and f¹(U₂) π gbopen in X.Since U₁ \neq Y, we have f¹(U₁) \neq X.Hence f¹(E) = f¹(U₁-U₂) = f¹(U₁)- f¹(U₂) is a π gbD-set.

Theorem 4.3: If (Y, σ) is a D_1 space and $f:(X, \tau) \rightarrow (Y, \sigma)$ is a πgb -continuous bijective function ,then (X, τ) is a $\pi gb-D_1$ -space.

Proof: Suppose Y is a D₁space.Let x and y be any pair of distinct points in X,Since f is injective and Y is a D₁space,yhen there exists D-sets S_x and S_y of Y containing f(x) and f(y) respectively that $f(x)\notin S_y$ and $f(y)\notin S_x$. By theorem 4.1 $f^{-1}(S_x)$ and $f^{-1}(S_y)$ are π gb-D-sets in X containing x and y respectively such that $x\notin f^{-1}(S_y)$ and $y\notin f^{-1}(S_x)$.Hence X is a π gb-D₁-space.

and

Theorem 4.4: If Y is π gb-D₁ and f: $(X,\tau) \rightarrow (Y,\sigma)$ is π gb-irresolute and bijective, then (X,τ) is π gb-D₁.

Proof: Suppose Y is $\pi gb-D_1$ and f is bijective, πgb irresolute.Let x,y be any pair of distinct points of X.Since f is injective and Y is $\pi gb-D_1$, there exists $\pi gb-D$ -sets G_x and G_y of Y containing f(x) and f(y)respectively such that $f(y) \notin G_z$ and $f(x) \notin G_y$. By theorem 4.2, $f^{-1}(G_z)$ and $f^{-1}(G_y)$ are πgbD -sets in X containing x and y respectively.Hence X is $\pi gb-D_1$.

Theorem 4.5: A topological space (X, τ) is a π gb-D₁ if for each pair of distinct points $x,y \in X$, there exists a π gb-continuous surjective function f: $(X,\tau) \rightarrow (Y,\sigma)$ where (Y,σ) is a D₁ space such that f(x) and f(y) are distinct.

Proof: Let x and y be any pair of distinct points in X, By hypothesis,there exists a π gb-continuous surjective function f of a space (X, τ) onto a D₁-space (Y, σ) such that $f(x) \neq f(y)$. Hence there exists disjoint D-sets S_xand S_y in Y such that $f(x) \in S_x$ and $f(y) \in S_y$. Since f is π gb-continuous and surjective, by theorem 4.1 f⁻¹(S_x) and f⁻¹(S_y) are disjoint π gb-D-sets in X containing x and y respectively. Hence (X, τ) is a π gb-D₁-set.

Theorem 4.6: X is π gb-D₁ iff for each pair of distinct points x, y \in X ,there exists a π gb-irresolute surjective function f: (X, τ) \rightarrow (Y, σ),where Y is π gb-D₁ space such that f(x) and f(y) are distinct.

Proof: Necessity: For every pair of distinct points x, $y \in X$, it suffices to take the identity function on X.

Sufficiency: Let $x \neq y \in X.By$ hypothesis ,there exists a π gb-irresolute, surjective function from X onto a π gb-D₁ space such that $f(x) \neq f(y)$.Hence there exists disjoint π gb-D sets $G_x, G_y \subset Y$ such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is π gb-irresolute and surjective, by theorem 4.2, $f^1(G_x)$ and $f^1(G_y)$ are disjoint π gb-Dsets in X containing x and y respectively. Therefore X is π gb-D₁ space.

Definition 4.7: A topological space (X, τ) is said to be π gb-D-connected if (X, τ) cannot be expressed as the union of two disjoint non-empty π gb-D-sets.

Theorem 4.8: If $(X, \tau) \rightarrow (Y, \sigma)$ is π gb-continuous surjection and (X, τ) is π gb-D-connected, then (Y, σ) is D-connected.

Proof: Suppose Y is not D-connected. Let Y=AUB where A and B are two disjoint non empty D sets in Y. Since f is π gb-continuous and onto, X=f¹(A)Uf¹(B) where f¹(A) and f¹(B) are disjoint non-empty π gb-D-sets in X. This contradicts the fact that X is π gb-D-connected. Hence Y is D-connected.

Theorem 4.9: If $(X,\tau) \rightarrow (Y,\sigma)$ is π gb-irresolute surjection and (X, τ) is π gb-D-connected, then (Y, σ) is π gb-D-connected.

Proof: Suppose Y is not π gb-D-connected.Let Y=AUB where A and B are two disjoint non empty π gb-D- sets in Y.Since f is π gb-irreesolute and onto,X=f¹(A)Uf¹(B) where f¹(A) and f¹(B) are disjoint non-empty π gb-D-sets in X.This contradicts the fact that X is π gb-D-connected. Hence Y is π gb-D-connected.

Definition 4.10: A topological space (X,τ) is said to be π gb- D-compact if every cover of X by π gb-D-sets has a finite subcover.

Theorem 4.11: If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is π gb-continuous surjection and (X,τ) is π gb-D-compact then (Y, σ) is D-compact.

Proof:Let f: $(X, \tau) \rightarrow (Y,\sigma)$ is π gb-continuous surjection.Let $\{A_i:i\in\Lambda\}$ be a cover of Y by Dset.Then $\{f^1(A_i):i\in\Lambda\}$ is a cover of X by π gb-Dset.Since X is π gb-D-compact, every cover of X by π gb-D set has a finite subcover ,say $\{f^1(A_1), f^1(A_2), \dots, f^1(A_n)\}$.Since f is onto, $\{A_1, A_2, \dots, A_n\}$ is a cover of Y by D-set has a finite subcover.Therefore Y is D-compact.

Theorem 4.12: If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is π gb-irresolute surjection and (X, τ) is π gb-D-compact then (Y, σ) is π gb-D-compact.

Proof:Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is πgb irresolutesurjection.Let $\{A_i:i\in\Lambda\}$ be a cover of Y by πgb -D-set.Hence $Y = \bigcup A_i$ Then $X = f^{-1}(Y) = f^{-1}(\bigcup A_i) =$

 $\bigcup_{i} f^{-1}(A_{i}).$ Since f is π gb-irresolute, for each $i \in \Lambda$, {f

¹(A_i):i∈Λ} is a cover of X by π gb-D-set.Since X is π gb-D-compact, every cover of X by π gb-D set has a finite subcover ,say{ $f^1(A_1), f^1(A_2)..., f^1(A_n)$ }.Since f is onto,{A₁,A₂...,A_n) is a cover of Y by π gb-D-set has a finite subcover.Therefore Y is π gb-D-compact.

5. π gb-R₀ spaces and π gb-R₁ spaces

Definition 5.1: Let (X, τ) be a topological space then the π gb-closure of A denoted by π gb-cl (A) is defined

by π gb-cl(A) = \cap { F | F $\in \pi$ GBC (X, τ) and F \supset A}. **Definition 5.2:** Let x be a point of topological space X.Then π gb-Kernel of x is defined and denoted by

Ker $_{\pi gb}{x} = \cap {U: U \in \pi GBO(X) \text{ and } x \in U}.$

FCIII

Definition 5.3: Let F be a subset of a topological space X. Then π gb-Kernel of F is defined and denoted by Ker $_{\pi gb}(F) = \cap \{U: U \in \pi GBO(X) \text{ and }$

Lemma 5.4: Let (X, τ) be a topological space and x

 \in X.Then Ker $_{\pi gb}(A) = \{x \in X | \pi gb-cl(\{x\}) \cap A \neq \Phi\}.$

Proof:Let $x \in \text{Ker}_{\pi gb}(A)$ and $\pi gb\text{-cl}(\{x\}) \cap A = \Phi$. Hence $x \notin X - \pi gb\text{-cl}(\{x\})$ which is an $\pi gb\text{-open set}$

containing A. This is impossible, since $x \in \text{Ker}_{\pi gb}$ (A).

Consequently, π gb- cl({x}) $\cap A \neq \Phi$ Let π gb- cl({x}) \cap A $\neq \Phi$ and x \notin Ker $_{\pi gb}$ (A). Then there exists an π gbopen set G containing A and x \notin G. Let y $\in \pi$ gbcl((x)) $\cap A$ Hence G is an π gh, paighbourhood of y

cl({x})∩A. Hence G is an π gb- neighbourhood of y where x ∉G. By this contradiction, x ∈ Ker $_{\pi gb}(A)$.

Lemma 5.5: Let (X, τ) be a topological space and x

 $\in X$. Then $y \in Ker_{\pi gb}(\{x\})$ if and only if $x \in \pi gb-Cl(\{y\})$.

Proof: Suppose that $y \notin \text{Ker }_{\pi gb}(\{x\})$. Then there exists an πgb -open set V containing x such that $y \notin V$. Therefore we have $x \notin \pi gb\text{-}cl(\{y\})$. Converse part is similar.

Lemma 5.6: The following statements are equivalent for any two points x and y in a

topological space (X, τ) :

(1) Ker_{π gb} ({x}) \neq Ker_{π gb}({y});

(2) π gb-cl({x}) $\neq \pi$ gb-cl({y}).

Proof: (1) \Rightarrow (2): Suppose that Ker $_{\pi gb}(\{x\}) \neq$ Ker $_{\pi gb}(\{y\})$ then there exists a point z in X such that z \in X such that z \in Ker $_{\pi gb}(\{x\})$ and z \notin Ker $_{\pi gb}(\{y\})$. It follows from z \in Ker $_{\pi gb}(\{x\})$ that $\{x\} \cap \pi gb\text{-cl}(\{z\})$ $\neq \Phi$.This implies that x $\in \pi gb\text{-cl}(\{z\})$. By z \notin Ker $_{\pi gb}(\{y\})$, we have $\{y\} \cap \pi gb\text{-cl}(\{z\}) = \Phi$. Since x $\in \pi gb\text{-cl}(\{z\})$, $\pi gb\text{-cl}(\{x\}) \subset \pi gb\text{-cl}(\{z\})$ and $\{y\} \cap \pi gb\text{-cl}(\{z\}) = \Phi$. Therefore, $\pi gb\text{-cl}(\{x\}) \neq \pi gb\text{-cl}(\{x\}) \neq \pi gb\text{-cl}(\{x\}) = \Phi$.

 π gb-cl({z}) = Φ . Therefore, π gb-cl({x}) $\neq \pi$ gb-cl({y}). Now Ker $_{\pi gb}(\{x\})\neq$ Ker $_{\pi gb}(\{y\})$ implies that π gb-cl({x}) $\neq \pi$ gb-cl({y}).

(2) \Rightarrow (1): Suppose that $\pi gb-cl(\{x\}) \neq \pi gb-cl(\{y\})$.

Then there exists a point $z \in X$ such that $z \in \pi gb-cl(\{x\})$ and $z \notin \pi gb-cl(\{y\})$. Then, there exists an πgb -open set containing z and hence containing x but not y, i.e., $y \notin Ker(\{x\})$. Hence $Ker(\{x\}) \neq Ker(\{y\})$. **Definition5.7:** A topological space X is said to be

 π gb-R₀ iff π gb-cl{x} \subseteq G whenever $x \in G \in \pi$ GBO(X). **Definition5.8:** A topological space (X,τ) is said to be π gb-R₁ if for any x,y in X with π gb-cl({x}) $\neq \pi$ gbcl({y}),there exists disjoint π gb-open sets U and V such that π gb-cl({x}) \subseteq U and π gb-cl({y}) \subseteq V

Example5.9:Let $X = \{a, b, c, d\}. \tau = \{\Phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}. \pi GBO$ $(X, \tau) = P(X)$ Then X is $\pi gb-R_0$ and $\pi gb-R_1$.

Theorem 5.10 : X is π gb-R₀ iff given $x \neq y \in$; π gb-cl{x} \neq \pigb-cl{y}.

Proof: Let X be π gb-R₀ and let $x \neq y \in X$. Suppose U is

a π gb-open set containing x but not y, then $y \in \pi$ gbcl{y} \subset X-U and hence $x \notin \pi$ gb-cl{y}.Hence π gbcl{x} $\neq \pi$ gb-cl{y}.

Conversely, let $x \neq y \in X$ such that $\pi gb-cl\{x\} \neq \pi gb-cl\{y\}$. This implies $\pi gb-cl\{x\} \subset X$ - $\pi gb-cl\{y\}=U(say)$, a πgb -open set in X. This is true for every $\pi gb-cl\{x\}$. Thus $\cap \pi gb-cl\{x\} \subseteq U$ where $x \in \pi gb-cl\{x\} \subset U \in \pi GBO(X)$. This implies $\cap \pi gb-cl\{x\} \subseteq U$ where $x \in U \in \pi GBO(X)$. Hence X is $\pi gb-R_0$.

Theorem 5.11 : The following statements are equivalent

(i)X is π gb-R₀-space

(ii)For each $x \in X, \pi gb-cl\{x\} \subset Ker_{\pi gb}\{x\}$

(iii)For any π gb-closed set F and a point x \notin F,there exists U $\in \pi$ GBO(X) such that x \notin U and F \subset U,

(iv) Each π gb-closed F can be expressed as F= \cap {G:G is π gb-open and F \subset G}

(v)) Each πgb open G can be expressed as G=U{A:A is πgb -closed and A⊂G}

(vi) For each π gb-closed set, $x \notin F$ implies π gb-cl{x} $\cap F=\Phi$.

Proof: (i) \Rightarrow (ii): For any $x \in X$, we have Ker $_{\pi gb}{x} = \bigcap \{U: U \in \pi GBO(X)\}$. Since X is $\pi gb-R_0$ there exists πgb -open set containing x contains $\pi gb-cl{x}$. Hence $\pi gb-cl{x} \subset Ker_{\pi gb}{x}$.

(ii) \Rightarrow (iii): Let $x \notin F \in \pi GBC(X)$. Then for any $y \in F$, $\pi gb\text{-}cl\{y\} \subset F$ and so $x \notin \pi gb\text{-}cl\{y\} \Rightarrow y \notin \pi gb\text{-}cl\{x\}$. That is there exists $U_y \in \pi GBO(X)$ such that $y \in U_y$ and $x \notin U_y$ for all $y \in F$. Let $U=\cup \{U_y \in \pi GBO(X)$ such that $y \in U_y$ and $x \notin U_y\}$. Then U is $\pi gb\text{-}open$ such that $x \notin U$ and $F \subset U$.

(iii) \Rightarrow (iv): Let F be any π gb-closed set and N= \cap {G:G is π gb-open and F \subset G}. Then F \subset N---(1).Let $x\notin$ F, then by (iii) there exists G \in π GBO(X) such that $x\notin$ G and F \subset G, hence $x\notin$ N which implies $x\in$ N \Rightarrow x \in F. Hence N \subset F.--(2).From (1) and (2), each π gb-closed F= \cap {G:G is π gb-open and F \subset G}.

 $(iv) \Rightarrow (v)$ Obvious.

(v) ⇒(vi) Let $x \notin F \in \pi GBC(X)$. Then X-F=G is a πgb open set containing x. Then by (v),G can be expressed as the union of πgb -closed sets A ⊆G and so there is an M $\in \pi GBC(X)$ such that $x \in M \subseteq G$ and hence πgb cl{x}⊂G implies πgb - cl{x}∩F= Φ .

(vi)⇒(i) Let $x \in G \in \pi GBO(X)$. Then $x \notin (X-G)$ which is π gb-closed set. By (vi) π gb- cl{x}.∩(X-G)= Φ .⇒ π gb- cl{x}⊂G. Thus X is π gb-R₀-space.

Theorem 5.12 :A topological space (X, τ) is an π gb-R₀ space if and only if for any x and y in X, π gbcl({x}) $\neq \pi$ gb-cl({y}) implies π gb-cl({x}) $\cap \pi$ gbcl({y}) = Φ .

Proof: Necessity. Suppose that (X, τ) is π gb-R and x, y \in X such that π gb-cl({x}) $\neq \pi$ gb-cl({y}). Then, there exist z $\in \pi$ gb-cl({x}) such that $z\notin \pi$ gb-cl({y}) (or z \in cl({y})) such that z $\notin \pi$ gb-cl({x}). There exists V $\in \pi$ GBO(X) such that y \notin V and z \in V. Hence x \in V. Therefore, we have x $\notin \pi$ gb-cl({y}). Thus x $\in (\pi$ gb-cl({y})) c $\in \pi$ GBO(X), which implies π gb-cl({x}) $\subset (\pi$ gb-cl({y})) c π gb-cl({x}) $\cap \pi$ gb-cl({y}) = Φ .

Sufficiency. Let $V \in \pi GBO(X)$ and let $x \in V$. To show that $\pi gb-cl_{({x})} \subset V$. Let $y \notin V$, i.e., $y \in V^c$. Then $x \neq y$ and $x \notin \pi gb-cl({y})$. This showsthat $\pi gb-cl({x}) \neq \pi gb-cl({y})$. By assumption $,\pi gb-cl({x}) \cap \pi gb-cl({y}) = \Phi$. Hencey $\notin \pi gb-cl({x})$ and therefore $\pi gb-cl({x}) \subset V$.

Theorem 5.13 : A topological space (X, τ) is an π gb- R₀ space if and only if for anypoints x and y in X, Ker $_{\pi gb}(\{x\}) \neq \text{Ker }_{\pi gb}(\{y\})$ implies Ker $_{\pi gb}(\{x\}) \cap \text{Ker }_{\pi gb}(\{y\}) = \Phi$.

Proof. Suppose that (X, τ) is an πgb - R_0 space. Thus by Lemma 5.6, for any points x and y in X if $\operatorname{Ker}_{\pi gb}(\{x\})\neq\operatorname{Ker}_{\pi gb}(\{y\})$ then πgb -cl $(\{x\})\neq\pi gb$ cl $(\{y\})$.Now to prove that $\operatorname{Ker}_{\pi gb}(\{x\})\cap\operatorname{Ker}_{\pi gb}(\{y\})$

= Φ . Assume that $z \in Ker_{\pi gb}(\{x\}) \cap Ker_{\pi gb}(\{y\})$. By z $\in \text{Ker}_{\pi g b}(\{x\})$ and Lemma 5.5, it follows that $x \in \pi g b$ $cl(\{z\})$. Since $x \in \pi gb - cl(\{z\})$; $\pi gb - cl(\{x\}) = \pi gb - cl(\{x\}) =$ $cl(\{z\})$. Similarly, we have $\pi gb-cl(\{y\}) = \pi gb$ $cl(\{z\})=\pi gb-cl(\{x\})$. This is a contradiction. Therefore, we have Ker $_{\pi gb}(\{x\}) \cap Ker_{\pi gb}(\{y\}) = \Phi$

Conversely, let (X, τ) be a topological space such that for any points x and y inX such that $\pi gb-cl\{x\}\neq \pi gb$ $cl\{y\}.Ker_{\pi gb}(\{x\}) \neq Ker_{\pi gb}(\{y\}) \text{ implies Ker }_{\pi gb}(\{x\})$ $\cap \text{Ker}_{\pi gb}(\{y\}) = \Phi.\text{Since } z \in \pi gb - cl\{x\} \Rightarrow x \in \text{Ker}_{\pi gb}(\{z\})$ and therefore Ker $_{\pi gb}(\{x\}) \cap \text{Ker} _{\pi gb}(\{y\}) \neq \Phi.By$ hypothesis, we have $\text{Ker}_{\pi gb}(\{x\}) = \text{Ker}_{\pi gb}(\{z\})$. Then z $\in \pi gb-cl(\{x\}) \cap \pi gb-cl(\{y\})$ implies that $\operatorname{Ker}_{\pi gb}(\{x\}) =$ $\operatorname{Ker}_{\pi gb}(\{z\}) = \operatorname{Ker}_{\pi gb}(\{y\})$. This is a contradiction. $\pi gb-cl({x}) \cap \pi gb-cl({y}) = \Phi; By$ Hence theorem 5.12, (X, τ) is an π gb-R₀ space.

Theorem 5.14 : For a topological space (X, τ) , the following properties are equivalent.

(1) (X, τ) is an π gb-R₀ space

(2) $x \in \pi gb-cl(\{y\})$ if and only if $y \in \pi gb-cl(\{x\})$, for any points x and y in X.

Proof: (1) \Rightarrow (2): Assume that X is π gb- R₀. Let x $\in \pi gb-cl(\{y\})$ and G be any πgb - open setsuch that $y \in G$. Now by hypothesis, $x \in G$. Therefore, every π gb- openset containing y contains x. Hence y $\in \pi$ gb- $Cl({x}).$

(2) \Rightarrow (1) : Let U be an π gb- open set and x \in U.If y \notin U, then x \notin π gb-cl({y}) and hence y \notin π gb-cl({x}). This implies that $\pi gb-cl(\{x\}) \subset U$. Hence (X, τ) is $\pi gb-R_0$.

Theorem 5.15 : For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is an π gb-R₀ space;

(2) π gb-cl({x}) = Ker_{π gb}({x}) for all $x \in X$.

Proof: (1) \Rightarrow (2) : Suppose that (X, τ) is an π gb-R₀ space. By theorem $5.11,\pi gb-cl(\{x\}) \subset Ker_{\pi gb}(\{x\})$ for each x \in X. Let y \in Ker_{π gb}({x}), then x \in π gb $cl(\{y\})$ and so $\pi gb-cl(\{x\}) = \pi gb-cl(\{y\})$. Therefore, y $\in \pi gb-cl(\{x\})$ and hence $Ker_{\pi gb}(\{x\}) \subset \pi gb-cl(\{x\})$. This shows that π gb- cl({x}) = Ker_{\pi gb}({x}).

(ii) \Rightarrow (i) Obvious from 5.13E.

Theorem 5.16: For a topological space (X,τ) , the following are equivalent.

- (X,τ) is a $\pi gb-R_0$ space. (i)
- (ii) If F is π gb-closed, then F=Ker_{π gb}(F).
- If F is π gb-closed, and x \in F, then (iii) $Ker({x}) \subset F.$

If $x \in X$, then $\text{Ker}_{\pi gb}(\{x\}) \subset \pi gb\text{-cl}(\{x\})$. (iv)

Proof :(i) \Rightarrow (ii) Let F be a π gb-closed and x \notin F.Then X-F is π gb-open and contains x. Since (X, τ) is a π gb- $R_0,\pi gb-cl(\{x\})\subseteq X-F$. Thus $\pi gb-cl(\{x\})\cap F=\Phi$. And by lemma 5.4, $x \notin \pi gb$ -Ker(F). Therefore πgb -Ker(F)=F.

(ii) \Rightarrow (iii) If A \subseteq B, then Ker_{π gb}(A) \subseteq Ker_{π gb}(B).

From (ii), it follows that $\operatorname{Ker}_{\pi gb}(\{x\}) \subseteq \operatorname{Ker}_{\pi gb}(F)$.

(iii) \Rightarrow (iv) Since x $\in \pi$ gb-cl({x}) and π gb-cl({x}) is π gb-closed.By(iii),Ker_{π gb}({x}) $\subset \pi$ gb-cl({x}).

 $(iv) \Rightarrow (i)$ We prove the result using theorem 5.11.Let $x \in \pi gb-cl(\{y\})$ and by theorem B,y E

 $\operatorname{Ker}_{\pi \circ b}(\{x\})$. Since $x \in \pi \operatorname{gb-cl}(\{x\})$ and $\pi \operatorname{gb-cl}(\{x\})$ is π gb-closed,then by (iv) we get y ∈ Ker_{π gb}({x})⊆ π gb $cl({x})$, Therefore $x \in \pi gb - cl({y}) \Rightarrow y \in \pi gb - cl({x})$. Conversely, let $y \in \pi gb-cl(\{x\})$.By lemma 5.5, x $\in \text{Ker}_{\pi gb}(\{y\})$. Since $y \in \pi gb-cl(\{y\})$ and $\pi gb-cl(\{y\})$ is π gb-closed, then by (iv) we get x \in Ker_{\pi vb}(\{y\}) \subseteq \pigb $y \in \pi gb-cl(\{x\}) \Rightarrow x \in \pi gb-cl(\{y\}).By$ $cl(\{v\})$. Thus theorem 5.14, we prove that (X,τ) is $\pi gb-R_0$ space. **Remark 5.17:** Every π gb-R₁ space is π gb-R₀ space.

Let U be a π gb-open set such that x \in U. If y \notin U,then since $x \notin \pi gb-cl(\{y\}), \pi gb-cl(\{x\}) \neq \pi gb-cl(\{y\})$. Hence there exists an π gb-open set V such that $y \in V$ such that $\pi gb-cl(\{y\}) \subset V$ and $x \notin V \Rightarrow y \notin \pi gb-cl(\{x\})$. Hence π gb-cl({x}) \subseteq U. Hence (X, τ) is π gb-R₀.

Theorem 5.18: A topological space (X, τ) is $\pi gb-R_1$ iff for x,y $\in X$, Ker_{$\pi gb}({x}) \neq \pi gb-cl({y})$, there exists</sub> disjoint π gb-open sets U and V such that π gb $cl({x}) \subset and\pi gb-cl({y}) \subset V.$

Proof: It follows from lemma 5.5.

References

- D. Andrijevic, Semipreopen sets, [1] Mat. Vesnik 38 (1986), 24-32.
- [2] S. Ρ. Arya and Τ. M. Nour. Characterizations of s-normal spaces, Indian J. Pure Appl. Math.21 (1990), no. 8, 717-719.
- D. Andrijevic, On b-open sets, Mat. Vesnik [3] 48 (1996), 59-64.
- S.Balasubramanian, [4] rgα-separation axioms, Scientia Magna, Vol.7(2011), No.2, 45-58.
 - M. Caldas, A separation axioms between
- [5] semi-T0 and semi-T1, Mem. Fac. Sci.Kochi Univ. Ser. A Math. 181(1997) 37-42.
- [6] M.Caldas, D.N.Georgiou S.Jafari, and Characterizations of low separation axioms via α-open sets and α -closure operator, Bol.Soc.Paran.Mat.(3s) v.21 1/2 (2003):1-14.
- M. Caldas and S. Jafari, On some [7] applications of b-open sets in topological spaces, Kochi J.Math. 2 (2007), 11-19.
- J. Dontchev, On generalizing semi-preopen [8] sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 16 (1995), 35-48.
- J. Dontchev and M. Przemski, On the [9] various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71(1996),109-120.
- [10] J.Dontchev and T.Noiri, Quasi Normal Spaces and π g-closed sets ,Acta Math. Hungar., 89(3)(2000), 211-219.
- [11] E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana. Mat. (3) 22 (2004), 63-74. M. Ganster and M. Steiner, On some questions about b-open sets, Answers Gen. Topology 25 Questions (2007), 45-52.

- [12] M. Ganster and M. Steiner, On bτ-closed sets, Appl. Gen. Topol. 8 (2007), 243-247.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89-96.
- [14] M.Lellis Thivagar and Nirmala Rebecca Paul, A New Sort of Separation Axioms,Bol.Soc.Paran.Mat.v.31 2(2013):67-76 IN PRESS
- [15] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized αclosed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 15 (1994), 51-63.
- [16] H. Maki, J. Umehara and T. Noiri , Every topological space is $pre-T_{1/2}$, Mem. Fac. Sci. Kochi Univ. Ser. A Math. **17** (1996), 33-42.
- [17] E. Hatir and T. Noiri, On separation axiom C-Di, Commun. Fac. Sci. Univ.Ank. Series A1, 47(1998), 105-110.
- [18] S. Jafari, On a weak separation axiom, Far East J. Math. Sci. (to appear).
- [19] A.Keskin and T.Noiri ,On bD and associated separation axioms,Bulletin of the Iranian Mathematical Society Vol.35 No.1(2009)pp 179-198
- [20] Nasef.A.A, On b-locally closed sets and related topics, Chaos Solitons Fractals 12 (2001),1909- 1915.
- [21] Nasef.A.A, Some properties of contra-continuous functions, Chaos Solitons Fractals 24 (2005), [2],471-477.
- [22] J. H. Park, Strongly θ-b-continuous functions, Acta Math.Hungar. 110 (2006), no.4,347-359.
- [23] D. Sreeja and C. Janaki ,On πgb- Closed Sets in Topological Spaces,International Journal of Mathematical Archive-2(8), 2011, 1314-1320.
- [24] D. Sreeja and C. Janaki, A Weaker Form of Separation Axioms in Topological Spaces, Proceedings of International Conference on Mathematics and its Applications-A NEW WAVE(ICMANW-2011), Avinashilingam Institute for Home Science and Higher Education for Women.
- [25] J. Tong, A separation axioms between T0 and T1, Ann. Soc. Sci. Bruxelles 96 II(1982) 85-90

