
Raja Gopal Surineedi, G.S.Siva Kumar, P.Sunitha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.1221-1225

1221 | P a g e

Arithmetic Unit Implementation Using A FPGA IEEE-754-2008

Decimal64 Floating-Point

Raja Gopal Surineedi, G.S.Siva Kumar, P.Sunitha
 M.Tech student, Associate professor, Associate professor,

Pragati engineering college, surampalem,

Abstract:
This paper describes the FPGA

implementation of a Decimal Floating Point

(DFP) ALU (Arithmetic logic unit). The design

performs addition, subtraction, multiplication

and division on 64-bit operands that use the

IEEE 754-2008 decimal encoding of DFP

numbers and is based on a fully pipelined circuit.

The design presents a novel hardware for pre-

signal generation stage and an enhanced version

of previously published leading zero stage. The

design can operate at a frequency of 130 MHZ on

a CYCLONE-III with a latency of 8 cycles. The

presented DFP adder/subtractor supports

operations on the decimal64 format and it is

easily extendable for the decimal128 format. To

our knowledge, this is the first hardware FPGA

design for Floating point arithmetic unit based on

IEEE 754-2008 using decimal64 encoding.

Keywords - About five key words in alphabetical

order, separated by comma

I. INTRODUCTION
Digital arithmetic operations are very

important in the design of digital processors and

application-specific systems. Arithmetic circuits

form an important class of circuits in digital systems.

With the remarkable progress in the very large scale

integration (VLSI) circuit technology, many

complex circuits, unthinkable yesterday have
become easily realizable today. Algorithms that

seemed impossible to implement now have attractive

implementation possibilities for the future. This

means that not only the conventional computer

arithmetic methods, but also the unconventional

ones are worth investigation in new designs. The

notion of real numbers in mathematics is convenient

for hand computations and formula manipulations.

However, real numbers are not well-suited for

general purpose computation, because their numeric

representation as a string of digits expressed in, say,
base 10 can be very long or even infinitely long.

Examples include π, e, and 1/3. In this thesis an

arithmetic unit based on IEEE standard for floating

point numbers has been implemented on ALTERA

cyclone -III FPGA Board. The arithmetic unit

implmented has a 64-bit processing unit which

allows various arithmetic operations such as,

Addition, Subtraction, Multiplication, Division and,

on floating point numbers. Each operation can be

selected by a particular operation code. Synthesis of

the unit for the FPGA board has been done using

QUARTUS-II.

Implemented arithmetic unit is a part of a

computer system specially designed to carry out

operations on floating point numbers. Some systems

(particularly older, microcode-based architectures)

can also perform various transcendental functions

such as exponential or trigonometric calculations,

though in most modern processors these are done

with software library routines.

II. Floating Point Formats
Several different representations of real

numbers have been proposed, but by far the most

widely used is the floating-point representation.

Floating-point representations have a base b (which

is always assumed to be even) and a precision p. If b

= 10 and p = 3 then the number 0.1 is represented as

1.00 × 10-1
 If b = 2 and p = 22, then the decimal

number 0.1 cannot be represented exactly but is

approximately 1.100110011001100110011×2-4. In

general, a floating point number will be represented

as ± d.dd… d × be, where d.dd… d is called the

Significand and has p digits. More precisely ± d0 d1

d2 ... dp-1 × be represents the number. The term

floating-point number will be used to mean a real

number that can be exactly represented in the format

under discussion. Two other parameters associated

with floating-point representations are the largest
and smallest allowable exponents, emax and emin.

Since there are be possible significands, and emax -

emin + 1 possible exponents, afloating-point number

can be encoded in bits, where the final +1 is for the

sign bit. The most common situation is illustrated by

the decimal number 0.1. Although it has a finite

decimal representation, in binary it has an infinite

repeating representation. Thus when b = 2, the

number 0.1 lies strictly between two floating-point

numbers and is exactly representable by neither of

them. A less common situation is that a real number

is out of range, that is, its absolute value is larger
than b ×bemax or smaller than 1.0 × bemin

Raja Gopal Surineedi, G.S.Siva Kumar, P.Sunitha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.1221-1225

1222 | P a g e

III. IEEE 754 Standard for Binary

Floating-Point Arithmetic:
The IEEE 754 Standard for Floating-Point

Arithmetic is the most widely-used standard for

floating-point computation, and is followed by many

hardware (CPU and FPU) and software
implementations.

The standard specifies:

 Basic and extended floating-point number

formats

 Add, subtract, multiply, divide, square

root, remainder, and compare operations

 Conversions between integer and floating-

point formats

 Conversions between different floating-

point formats

 When it comes to their precision and width
in bits, the standard defines two groups:

basic and extended format. [3,4,8]

A. Formats

The standard defines five basic formats,

named using their base and the number of bits used

to encode them. There are three binary floating-point

formats (which can be encoded using 32, 64, or 128

bits) and two decimal floating-point formats (which

can be encoded using 64 or 128 bits). The first two

binary formats are the „Single Precision‟ and

„DoublePrecision‟ formats of IEEE 754-1985, and
the third is often called 'quad'; the decimal formats

are similarly often called 'double' and 'quad'.

B. Single Precision

The most significant bit starts from the left.

The three basic components are the sign,exponent,

and mantissa

Fig 1.Floating representation of single precision

C. Double Precision

The double precision format helps

overcome the problems of single precision floating

point. Using twice the space, the double precision

format has an 11-bit excess-1023 Precision exponent

and a 53 bit mantissa (with an implied H.O. bit of

one) plus a sign bit. This provides a dynamic range

of about 10±308 and 14-1/2 digits of precision,

sufficient for most applications. Double precision

floating point values take the form shown in
Figure2.2.[3]

Table 2.2 Representation of Single Precision floating

point numbers

 In order to help ensure accuracy during

long chains of computations involving double

precision floating point numbers, Intel designed the

extended precision format. The extended precision

format uses 80 bits. Twelve of the additional 16 bits
are appended to the mantissa; four of the additional

bits are appended to the end of the exponent. Unlike

the single and double precision values, the extended

precision format does not have an implied H.O. bit

which is always one. Therefore, the extended

precision format provides a 64 bit mantissa, a 15 bit

excess-16383 exponent, and a one bit sign. The

format for the extended precision floating point

value is shown in Figure 2.3.[3,4,8]

D. Exceptions

The IEEE standard defines five types of
exceptions that should be signalled through a one bit

status flag when encountered. Some arithmetic

operations are invalid, such as a division by zero or

square root of a negative number. The result of an

invalid operation shall be a NaN (Not a number).

There are two types of NaN, quiet NaN (QNaN) and

signaling NaN (SNaN). They have the following

format, where s is the sign bit:

QNaN = s 11111111 10000000000000000000000

SNaN = s 11111111 00000000000000000000001

The result of every invalid operation shall be a NaN

string with a QNaN or SNaN exception. The SNaN
string can never be the result of any operation, only

Raja Gopal Surineedi, G.S.Siva Kumar, P.Sunitha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.1221-1225

1223 | P a g e

the SNaN exception can be signaled and this

happens whenever one of the input operand is a

SNaN string otherwise the QNaN exception will be

signaled. The SNaN exception can for example be

used to signal operations with uninitialized

operands, if we set the uninitialized operands to

SNaN.

E. Range of Floating Point Numbers

By allowing the radix point to be

adjustable, floating-point notation allows
calculations over a wide range of magnitudes, using

a fixed number of digits, while maintaining good

precision. For example, in a decimal floating-point

system with three digits, the multiplication that

human would write as

0.12 × 0.12 = 0.0144 Would be expressed as

(1.2 × 10^−1) × (1.2 × 10^−1) = (1.44 × 10^2)

In a fixed-point system with the decimal

point at the left, it would be 0.120 × 0.120 = 0.014 A

digit of the result was lost because of the inability of

the digits and decimal point to 'float' relative to each

other within the digit string. The range of floating-
point numbers depends on the number of bits or

digits used for representation of the significand (the

significant digits of the number) and for the

exponent. On a typical computer system, a 'double

precision' (64-bit) binary floating point number has a

coefficient of 53 bits (one of which is implied), an

exponent of 11 bits, and one sign bit. Positive

floating-point numbers in this format have an

approximate range of 10^−308 to 10^308 (because

308 is approximately 1023 × log10 (2), since the

range of the exponent is [−1022, 1023]). The
complete range of the format is from about −10^308

through +10^308..

The number of normalized floating point numbers in

a system F(B, P, L, U) (where B is the base of the

system, P is the precision of the system to P

numbers, L is the smallest exponent representable in

the system, and U is the largest exponent used in the

system) is:

2 * (B - 1) * B^(P-1) * (U - L + 1) + 1. The one is

added because the number could be zero. There is a

smallest positive normalized floating-point number,

Underflow level = UFL = B^L which has a 1 as the
leading digit and 0 for the remaining digits of the

mantissa, and the smallest possible value for the

exponent. There is a largest floating point number,

Overflow level = OFL = B^ (U + 1) * (1 - B^ (-P))

which has B - 1 as the value for each digit of the

mantissa and the largest possible value for the

exponent. Any number larger than OFL cannot be

represented in the given floating-point system and

no number smaller than the UFL can be represented

in the floating point system.

The IEEE standard goes further than just
requiring the use of a guard digit. It gives an

algorithm for addition, subtraction, multiplication,

division and square root, and requires

IV. DESIGN OF ARITHMETIC UNIT
Decimal arithmetic plays a key role in

many commercial and financial applications, which

process decimal values and perform decimal

rounding. However, current software

implementations are prohibitively slow [1],

prompting hardware manufacturers such as IBM to

add decimal floating point (DFP) arithmetic support
to their microprocessors [2]. Furthermore, the IEEE

has developed the newly IEEE 754-2008 [3]

standard for Floating-Point Arithmetic adding the

decimal representation to the IEEE 754-1985

standard. There are several works focused on fixed-

point addition [4, 5]. For example, in [4, 5], Busaba,

and Haller propose combined decimal and binary

adders using pre-sum and pre-selection logic. Only a

few previous recent papers focused on decimal

floating-point addition [6-8]. The proposed adder by

Cohen et al. [8] and Bohlender et al. [6] have long
latencies and produces one result digit each cycle. In

[7] presents the first IEEE 754 decimal floating point

adder. Nevertheless, recently appears the first

publications in decimal arithmetic applications on

FPGA [9]. Several hardware designs were

synthesized using other platforms than FPGA [10],

this is why it is believed that it can be one of the first

implementation on FPGA for addition/subtraction

using decimal64 encoding. A recent work [9]

presents a DFP adder for FPGA but using Binary

Integer Decimal (BID) encoding, whose results will

be used in our comparisons. Because of the BID
adder occupies less area [9] than our proposed

design, it may be argued that the BID format is well

suited for hardware implementation but considering

the latency-area tradeoff.

1) A .Floating Point Number System

Every real number can be approximated by

a floating point number in the IEEE 754 standard

[ANSI 85] as long as that number is within specific

range. The floating point number format is based on

scientific notation with limited size for each field.
For a normalized floating point number in the IEEE

754 single precision standard where the integer part

is always equals to 1, the sign bit is 1 bit in size. The

integer part is omitted as it is always equals to 1. The

size of fraction part is 23 bit and the size of exponent

is 8 bit. The base is always equal to 2 and the total

size of a single precision floating point number is 32

bits. In general, an IEEE 754 floating point number

F can be expressed as follows: where s stands for the

sign bit, f stands for the fraction and e stands for the

biased exponent. In order to express a negative

exponent, there is an exponent bias b associated with
the exponent field. The actual exponent is the value

of the exponent field minus the bias. The value of

bias depends on the size of exponent e size as in

equation 2.2. The term significand represents 1.f in

which integer field and fraction field are packed

together.

Raja Gopal Surineedi, G.S.Siva Kumar, P.Sunitha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.1221-1225

1224 | P a g e

Fig 2.Area utilization report.

2) Arithmetic operations

The outline of the paper is as follows. In the

next Section, it is described the background

information on decimal floating-point. It describes

the challenge of adding decimal64 encoded

numbers, and presents the technique and theory for

addition and subtraction. Section 4 presents

synthesis results for our proposed adder and

comparisons with the adder from [9]. Finally,

Section 5 presents our conclusions.

Fig 3.Architecture of FLU

In the rest of this paper, AX and BX are the

significands and EAX, EBX andF EX are the

exponents respectively. X is a digit that denotes the

outputs of different units. The symbol (N)Z T“ refers

to Tth bit of the Zth digit in a number N, where the

least significant bit and the least significant digit

have index 0.

Fig 4.Basic modules of arithmetic operation

V.CONCLUSION
 Several different representations of real

numbers have been proposed, but by far the most

widely used is the floating-point representation.

Floating-point representations have a base b (which

is always assumed to be even) and a precision p.

Finally we implement all basic arithmetic operations

involved in any DSP applications in Floating point

.With the help of this FPU core we can do any kind

of DSP applications. Here we achieve high speed of
130MHz by various pipelining stages.

REFERENCES:
[1] M. F. Cowlishaw, “Decimal floating-point:

algorism for computers,” in Proc. 16th

IEEE Symp. Computer Arithmetic, 2003,

pp. 104–111.

[2] E. M. Schwarz, J. S. Kapernick, and M. F.

Cowlishaw, “Decimal floating-point
support on the IBM System z10 processor,”

2009, iBM Journal of Research and

Development.

[3] “IEEE Standard for Floating-Point

Arithmetic,” pp. 1–58, 2008, iEEE Std 754-

2008.

[4] F. Y. Busaba, C. A. Krygowski, W. H. Li,

E. M. Schwarz, and S. R. Carlough, “The

IBM z900 decimal arithmetic unit,” in

Proc. Conf Signals, Systems and Computers

Record of the Thirty-Fifth Asilomar Conf,
vol. 2, 2001, pp. 1335–1339.

[5] Xilinx Inc. Virtex-5 Libraries Guide for

VHDL design, v12.1 ed., Xilinx Inc., June

2009. [Online]. Available:

http://www.xilinx.com

[6] Xilinx Inc, DS335: Floating-Point

Operator v5.0, June 2009.

[7] J. Thompson, N. Karra, and M. J. Schulte,

“A 64-bit decimal floating-point adder,” in

Proc. IEEE Computer society Annual

Symp. VLSI, 2004, pp. 297–298.

[8] M. S. Cohen, T. E. Hull, and V. C.
Hamacher, “CADAC: A Controlled-

Precision Decimal Arithmetic Unit,” no. 4,

pp. 370–377, 1983.

[9] A. Farmahini-Farahani, C. Tsen, and K.

Compton, “FPGA implementation of a 64-

Bit BID-based decimal floatingpoint

Raja Gopal Surineedi, G.S.Siva Kumar, P.Sunitha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 5, September- October 2012, pp.1221-1225

1225 | P a g e

adder/subtractor,” in Proc. Int. Conf. Field-

Programmable Technology FPT 2009,

2009, pp. 518–521.

[10] C. Tsen, S. Gonzalez-Navarro, and M.

Schulte, “Hardware design of a Binary

Integer Decimal-based floating-point

adder,” pp. 288–295, 2007, computer

Design, 2007. ICCD 2007. 25th

International Conference on.

[11] C. Minchola and G. Sutter, “A FPGA
IEEE-754-2008 Decimal64 Floating-Point

Multiplier,in Proc. Int. Conf.

Reconfigurable Computing and FPGAs

ReConFig ’09, 2009, pp. 59–64.

[12] L.-K. Wang and M. J. Schulte, “Decimal

Floating-Point Adder and Multifunction

Unit with Injection-Based Rounding,in

Proc. 18th IEEE Symp. Computer

Arithmetic ARITH ’07, 2007, pp. 56–68.

[13] M. Vazquez, G. Sutter, G. Bioul, and J. P.

Deschamps, “Decimal Adders/Subtractors

in FPGA: Efficient 6-input LUT
Implementations,” in Proc. Int. Conf.

Reconfigurable Computing and FPGAs

ReConFig ’09, 2009, pp. 42–47.

[14] Xilinx Inc. XST User Guide 12.1, v12.1 ed.,

Xilinx Inc., June 2009. [Online]. Available:

http://www.xilinx.com

[15] Xilinx Inc. Xilinx ISE Design Suite 12.1

Software Manuals, v12.1 ed., Xilinx Inc.,

June 2009. [Online]. Available:

http://www.xilinx.com

