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Abstract: 
This paper describes the FPGA 

implementation of a Decimal Floating Point 

(DFP) ALU (Arithmetic logic unit). The design 

performs addition, subtraction, multiplication 

and division on 64-bit operands that use the 

IEEE 754-2008 decimal encoding of DFP 

numbers and is based on a fully pipelined circuit. 

The design presents a novel hardware for pre-

signal generation stage and an enhanced version 

of previously published leading zero stage. The 

design can operate at a frequency of 130 MHZ on 

a CYCLONE-III with a latency of 8 cycles. The 

presented DFP adder/subtractor supports 

operations on the decimal64 format and it is 

easily extendable for the decimal128 format. To 

our knowledge, this is the first hardware FPGA 

design for Floating point arithmetic unit based on  

IEEE 754-2008 using decimal64 encoding. 
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I. INTRODUCTION 
Digital arithmetic operations are very 

important in the design of digital processors and 

application-specific systems. Arithmetic circuits 

form an important class of circuits in digital systems. 

With the remarkable progress in the very large scale 

integration (VLSI) circuit technology, many 

complex circuits, unthinkable yesterday have 
become easily realizable today. Algorithms that 

seemed impossible to implement now have attractive 

implementation possibilities for the future. This 

means that not only the conventional computer 

arithmetic methods, but also the unconventional 

ones are worth investigation in new designs. The 

notion of real numbers in mathematics is convenient 

for hand computations and formula manipulations. 

However, real numbers are not well-suited for 

general purpose computation, because their numeric 

representation as a string of digits expressed in, say, 
base 10 can be very long or even infinitely long. 

Examples include π, e, and 1/3. In this thesis an 

arithmetic unit based on IEEE standard for floating 

point numbers has been implemented on ALTERA 

cyclone -III FPGA Board. The arithmetic unit 

implmented has a 64-bit processing unit which 

allows various arithmetic operations such as, 

Addition, Subtraction, Multiplication, Division and,  

 

 

 
on floating point numbers. Each operation can be 

selected by a particular operation code. Synthesis of 

the unit for the FPGA board has been done using 

QUARTUS-II. 

Implemented arithmetic unit is a part of a 

computer system specially designed to carry out 

operations on floating point numbers. Some systems 

(particularly older, microcode-based architectures) 

can also perform various transcendental functions 

such as exponential or trigonometric calculations, 

though in most modern processors these are done 

with software library routines. 
 

II. Floating Point Formats 
Several different representations of real 

numbers have been proposed, but by far the most 

widely used is the floating-point representation. 

Floating-point representations have a base b (which 

is always assumed to be even) and a precision p. If b 

= 10 and p = 3 then the number 0.1 is represented as 

1.00 × 10-1 
  If b = 2 and p = 22, then the decimal 

number 0.1 cannot be represented exactly but is 

approximately 1.100110011001100110011×2-4.  In 

general, a floating point number will be represented 

as ± d.dd… d × be, where d.dd… d is called the 

Significand and has p digits. More precisely ± d0 d1 

d2 ... dp-1 × be represents the number. The term 

floating-point number will be used to mean a real 

number that can be exactly represented in the format 

under discussion. Two other parameters associated 

with floating-point representations are the largest 
and smallest allowable exponents, emax and emin. 

Since there are be possible significands, and emax - 

emin + 1 possible exponents, afloating-point number 

can be encoded in bits, where the final +1 is for the 

sign bit. The most common situation is illustrated by 

the decimal number 0.1. Although it has a finite 

decimal representation, in binary it has an infinite 

repeating representation. Thus when b = 2, the 

number 0.1 lies strictly between two floating-point 

numbers and is exactly representable by neither of 

them. A less common situation is that a real number 

is out of range, that is, its absolute value is larger 
than b ×bemax or smaller than 1.0 × bemin 
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III. IEEE 754 Standard for Binary 

Floating-Point Arithmetic: 
The IEEE 754 Standard for Floating-Point 

Arithmetic is the most widely-used standard for 

floating-point computation, and is followed by many 

hardware (CPU and FPU) and software 
implementations.  

The standard specifies: 

  Basic and extended floating-point number 

formats  

  Add, subtract, multiply, divide, square 

root, remainder, and compare operations  

  Conversions between integer and floating-

point formats  

  Conversions between different floating-

point formats  

  When it comes to their precision and width 
in bits, the standard defines two groups: 

basic and extended format. [3,4,8] 

A. Formats 

The standard defines five basic formats, 

named using their base and the number of bits used 

to encode them. There are three binary floating-point 

formats (which can be encoded using 32, 64, or 128 

bits) and two decimal floating-point formats (which 

can be encoded using 64 or 128 bits). The first two 

binary formats are the „Single Precision‟ and 

„DoublePrecision‟ formats of IEEE 754-1985, and 
the third is often called 'quad'; the decimal formats 

are similarly often called 'double' and 'quad'. 

 
B. Single Precision 

The most significant bit starts from the left. 

The three basic components are the sign,exponent, 

and mantissa 

 
Fig 1.Floating representation of single precision 

 
 

C. Double Precision 

The double precision format helps 

overcome the problems of single precision floating 

point. Using twice the space, the double precision 

format has an 11-bit excess-1023 Precision exponent 

and a 53 bit mantissa (with an implied H.O. bit of 

one) plus a sign bit. This provides a dynamic range 

of about 10±308 and 14-1/2 digits of precision, 

sufficient for most applications. Double precision 

floating point values take the form shown in 
Figure2.2.[3] 

Table 2.2 Representation of Single Precision floating 

point numbers 

 

 In order to help ensure accuracy during 

long chains of computations involving double 

precision floating point numbers, Intel designed the 

extended precision format. The extended precision 

format uses 80 bits. Twelve of the additional 16 bits 
are appended to the mantissa; four of the additional 

bits are appended to the end of the exponent. Unlike 

the single and double precision values, the extended 

precision format does not have an implied H.O. bit 

which is always one. Therefore, the extended 

precision format provides a 64 bit mantissa, a 15 bit 

excess-16383 exponent, and a one bit sign. The 

format for the extended precision floating point 

value is shown in Figure 2.3.[3,4,8] 

D. Exceptions  

The IEEE standard defines five types of 
exceptions that should be signalled through a one bit 

status flag when encountered. Some arithmetic 

operations are invalid, such as a division by zero or 

square root of a negative number. The result of an 

invalid operation shall be a NaN (Not a number). 

There are two types of NaN, quiet NaN (QNaN) and 

signaling NaN (SNaN). They have the following 

format, where s is the sign bit:  

QNaN = s 11111111 10000000000000000000000  

SNaN = s 11111111 00000000000000000000001  

The result of every invalid operation shall be a NaN 

string with a QNaN or SNaN exception. The SNaN 
string can never be the result of any operation, only 
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the SNaN exception can be signaled and this 

happens whenever one of the input operand is a 

SNaN string otherwise the QNaN exception will be 

signaled. The SNaN exception can for example be 

used to signal operations with uninitialized 

operands, if we set the uninitialized operands to 

SNaN.  

E. Range of Floating Point Numbers 

By allowing the radix point to be 

adjustable, floating-point notation allows 
calculations over a wide range of magnitudes, using 

a fixed number of digits, while maintaining good 

precision. For example, in a decimal floating-point 

system with three digits, the multiplication that 

human would write as 

0.12 × 0.12 = 0.0144  Would be expressed as 

(1.2 × 10^−1) × (1.2 × 10^−1) = (1.44 × 10^2) 

In a fixed-point system with the decimal 

point at the left, it would be 0.120 × 0.120 = 0.014 A 

digit of the result was lost because of the inability of 

the digits and decimal point to 'float' relative to each 

other within the digit string. The range of floating-
point numbers depends on the number of bits or 

digits used for representation of the significand (the 

significant digits of the number) and for the 

exponent. On a typical computer system, a 'double 

precision' (64-bit) binary floating point number has a 

coefficient of 53 bits (one of which is implied), an 

exponent of 11 bits, and one sign bit. Positive 

floating-point numbers in this format have an 

approximate range of 10^−308 to 10^308 (because 

308 is approximately 1023 × log10 (2), since the 

range of the exponent is [−1022, 1023]). The 
complete range of the format is from about −10^308 

through +10^308.. 

The number of normalized floating point numbers in 

a system F(B, P, L, U) (where B is the base of the 

system, P is the precision of the system to P 

numbers, L is the smallest exponent representable in 

the system, and U is the largest exponent used in the 

system) is:  

2 * (B - 1) * B^(P-1) * (U - L + 1) + 1. The one is 

added because the number could be zero. There is a 

smallest positive normalized floating-point number, 

Underflow level = UFL = B^L which has a 1 as the 
leading digit and 0 for the remaining digits of the 

mantissa, and the smallest possible value for the 

exponent. There is a largest floating point number, 

Overflow level = OFL = B^ (U + 1) * (1 - B^ (-P)) 

which has B - 1 as the value for each digit of the 

mantissa and the largest possible value for the 

exponent. Any number larger than OFL cannot be 

represented in the given floating-point system and 

no number smaller than the UFL can be represented 

in the floating point system. 

The IEEE standard goes further than just 
requiring the use of a guard digit. It gives an 

algorithm for addition, subtraction, multiplication, 

division and square root, and requires 

 

IV. DESIGN OF ARITHMETIC UNIT 
Decimal arithmetic plays a key role in 

many commercial and financial applications, which 

process decimal values and perform decimal 

rounding. However, current software 

implementations are prohibitively slow [1], 

prompting hardware manufacturers such as IBM to 

add decimal floating point (DFP) arithmetic support 
to their microprocessors [2]. Furthermore, the IEEE 

has developed the newly IEEE 754-2008 [3] 

standard for Floating-Point Arithmetic adding the 

decimal representation to the IEEE 754-1985 

standard. There are several works focused on fixed-

point addition [4, 5]. For example, in [4, 5], Busaba, 

and Haller propose combined decimal and binary 

adders using pre-sum and pre-selection logic. Only a 

few previous recent papers focused on decimal 

floating-point addition [6-8]. The proposed adder by 

Cohen et al. [8] and Bohlender et al. [6] have long 
latencies and produces one result digit each cycle. In 

[7] presents the first IEEE 754 decimal floating point 

adder. Nevertheless, recently appears the first 

publications in decimal arithmetic applications on 

FPGA [9]. Several hardware designs were 

synthesized using other platforms than FPGA [10], 

this is why it is believed that it can be one of the first 

implementation on FPGA for addition/subtraction 

using decimal64 encoding. A recent work [9] 

presents a DFP adder for FPGA but using Binary 

Integer Decimal (BID) encoding, whose results will 

be used in our comparisons. Because of the BID 
adder occupies less area [9] than our proposed 

design, it may be argued that the BID format is well 

suited for hardware implementation but considering 

the latency-area tradeoff. 

 

1) A .Floating Point Number System 

Every real number can be approximated by 

a floating point number in the IEEE 754 standard 

[ANSI 85] as long as that number is within specific 

range. The floating point number format is based on 

scientific notation with limited size for each field. 
For a normalized floating point number in the IEEE 

754 single precision standard where the integer part 

is always equals to 1, the sign bit is 1 bit in size. The 

integer part is omitted as it is always equals to 1. The 

size of fraction part is 23 bit and the size of exponent 

is 8 bit. The base is always equal to 2 and the total 

size of a single precision floating point number is 32 

bits. In general, an IEEE 754 floating point number 

F can be expressed as follows: where s stands for the 

sign bit, f stands for the fraction and e stands for the 

biased exponent. In order to express a negative 

exponent, there is an exponent bias b associated with 
the exponent field. The actual exponent is the value 

of the exponent field minus the bias. The value of 

bias depends on the size of exponent e size as in 

equation 2.2. The term significand represents 1.f in 

which integer field and fraction field are packed 

together. 
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Fig 2.Area utilization report. 

 

2) Arithmetic operations 

The outline of the paper is as follows. In the 

next Section, it is described the background 

information on decimal floating-point. It describes 

the challenge of adding decimal64 encoded 

numbers, and presents the technique and theory for 

addition and subtraction. Section 4 presents 

synthesis results for our proposed adder and 

comparisons with the adder from [9]. Finally, 

Section 5 presents our conclusions.  

 

 
Fig 3.Architecture of FLU 

 

In the rest of this paper, AX and BX are the 

significands and EAX, EBX andF EX are the 

exponents respectively. X is a digit that denotes the 

outputs of different units. The symbol (N)Z T“ refers 

to Tth bit of the Zth digit in a number N, where the 

least significant bit and the least significant digit 

have index 0. 

 

 
Fig 4.Basic modules of arithmetic operation 

 

V.CONCLUSION 
   Several different representations of real 

numbers have been proposed, but by far the most 

widely used is the floating-point representation. 

Floating-point representations have a base b (which 

is always assumed to be even) and a precision p. 

Finally we implement all basic arithmetic operations 

involved in any DSP applications in Floating point 

.With the help of this FPU core we can do any kind 

of DSP applications. Here we achieve high speed of 
130MHz by various pipelining stages.  
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