
Nidhi Maheshwari, Rajkumar Gehlot, Suruchi Gour / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.671-674

671 | P a g e

16-Bit Fully Functional Single Cycle Processor Based On FSM

Nidhi Maheshwari (Assistant Professor), Rajkumar Gehlot (Assistant

Professor), Suruchi Gour (Student)
*Electronics & Communication Engg. Department, Lord Krishna College of Technology, Indore, India

**Electronics & Communication Engg. Department, Lord Krishna College of Technology, Indore, India

***Electronics & Communication Engg. Department, Mandsaur Institute of Technology, Mandsaur, India

Abstract

The 16-bit fully functional single cycle processor is

described in terms of its architecture and its

functional capabilities. The procedure of design

and verification for a 16-bit processor is

introduced in this paper. The key architecture

elements are being described, as well as the

hardware block diagram and internal structure.

This processor is modify as a Very High Speed

Integrated Circuit Hardware Description

Language (VHDL) and gives access to every

internal signal. In order to consume fewer

resources, the design of arithmetic logical unit

(ALU) is optimized. The RTL views and verified

simulation results of processor are shown in this

paper. The synthesis report of the design is also

described. The design architecture is written in

Very High Speed Integrated Circuit Hardware

Description Language (VHDL) code using Xilinx

ISE 9.2i tool for synthesis and simulation.

Keywords:-Arithmetic logical unit (ALU), control

unit (CU), comparator, shifter, rotations,

instruction set, VHDL, Xilinx.

I. INTRODUCTION

Processors are divided into 3 categories:- 8-bit, 16-bit

and 32-bit processor, depending upon the demand of

performance, cost, power and programmability. 8-bit

processors have extreme low cost and consume less

power for simple control system. In contrast to 8-bit,

32-bit processors have high programmability, high

performance and are widely used in cellular phone

and PDA that need high computation but it has high
power consumption. On the other hand 16-bit

processors have high performance and power than 8-

bit processor and low power consumption than 32-bit

processor. They are often used in 16-bit applications

such as disk driver controller, cellular communication

and airbags.

The 16-bit fully functional single cycle

processor is applicable for real tasks and also used for

assembly language programming. We need to

participate in the process of processor design and to

understand the inner structure of processor. Therefore
its architecture is well structured and simple enough

so that it can be built by first grade students, without

any design experience. These all requirements can be

obtained by the FPGA based processor with Hardware

Description Language VHDL. Figure 1 shows the

basic steps to design the processor.

The remaining paper is organized as follows.

The next section of the paper describes the internal

architecture of 16-bit fully functional single cycle

processor, System operation and interaction between

different units, ALU and Instructions. Section III
introduces functional simulation results. Section IV

describes logic synthesis.

 Figure 1:-Design Flow Steps Methodology

II. GENERAL ARCHITECTURE OF TEACHING

PROCESSOR

A processor incorporates most or all of the functions
of a computer‟s Central Processing Unit (CPU) on a

single IC or microchip. In order to accomplish these

several innovative and unconventional design trade

offs have been made, without compromising the

goals. The general architecture of 16-bit teaching

processor is shown in figure 2. It contains number of

basic pieces. There is a register array of 8-bit and 16-

bit, a 16-bit ALU, a 16-bit shifter, a program counter,

an instruction register, a 16-bit comparator, an

address register and control unit. All of these units

communicate through a common 16-bit tri-state data

bus.

A. System Operations And Interaction

Between Different Units:-

The top level design consists of the

processor block and a memory block communicating

 Nidhi Maheshwari, Rajkumar Gehlot, Suruchi Gour / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.

672 | P a g e

through a bi-directional data bus, an address bus, and

few control lines. The processor fetches instructions

from external memory and executes these

instructions to run a program. These instructions are

stored in instruction register and decoded by control

unit. The control unit causes the appropriate signal

interaction for processor unit to execute the
instruction.

If the instruction is an add of two registers,

the control unit would cause the first register value to

be written in operational register (OpReg) for

temporary storage. The second register value would

then be placed on data bus. The ALU is now set at

add mode and result will be stored in output register

(OutReg). Output register stores the resulting value

until it is copied to the final destination. When

executing an instruction, number of steps takes place.

Program counter holds the address in memory of the

current instruction. After an instruction has finished
execution, the program counter is advanced to

where the next instruction is located. If the

processor is executing a linear stream of instructions,

this is the next instruction. If a branch is taken, the

program counter is loaded with next instruction

location directly. The processor values the address

register, which gives output as new address on the

address bus. At the same time, control unit sets the

R/W (read write signals) to „0‟ for read operation

and sets signal VMA (Valid Memory Address) to

„1‟, signaling the memory that the address is now
valid. Memory decodes the address and places the

memory data on data bus. When data has been placed

on data bus, memory set the READY signal to „1‟

indicating that the memory data is ready for

consumption.

Control unit causes the memory data to be

written into the instruction register. The control unit

is now access and decodes the instruction. The

decoded instruction executes, and process starts over

again.

Figure 2:- Internal architecture of 16-bit processor

B. Arithmetic Logical Unit (ALU):-

The arithmetic operations are comprised of addition,

addition with carry, subtraction, subtraction with

borrow. Most of the time behavioral method of

hardware description is employed using the following

expressions:

A+B

A+B+C

A-B

A-B-C
The behavioral capabilities of HDL can be

more powerful and more convenient for some

designs. However, in this case the behavioral

description will likely imply more adder unit usage in

order to realize these functions.

The block diagram of the ALU is shown in

Figure 3. It consumes only one adder unit and can co-

operate with the multiplexer to realize different

calculations. Table 1 shows consumed resources of

the two methods.

Figure 3:- ALU Block Diagram

Table 1:- Consumed Resources Report

 Behavior

Description

Structural

Description

Number of Slices 54 49

Number of 4 input LUTs 80 77

An alternative way adopted, structural

description is to split the ALU into two modules,

Logic module and Arithmetic module. During a
component design experiment, to facilitate the

manual operation, the parameter is set as 4 bits;

otherwise, for a principal machine design, only the

parameter needs to be changed to 16 bits to become a

16-bit ALU.

The advanced ALU has basic arithmetic and

logical operations including addition (+), subtraction

(-), multiplication (*), negation (^), and in addition of

some other operations such as bit shifts (<<,>>),

bitwise logic operations (&,/,^,~), and logical

operations (&&, !,װ).

C. Instructions:-

Instructions can be divided into five major

categories:-

 CPU Control – instructions like NOP,

STOP or SET do not generate numeric result

but alter the processor‟s state. The SET and

 Nidhi Maheshwari, Rajkumar Gehlot, Suruchi Gour / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.

673 | P a g e

CLR instructions allow setting and clearing

of any status or control flag.

 Data Transfer – instructions like MOV,

LOAD or PUSH copy the content of an

internal register to another register, a

memory location, or load the data from these

sources to register file.
 Branch and Subroutine -- instructions like

JMP, CALL or RET alter the value of

program counter and access the call stack.

 Arithmetic and Logic -- instructions like

ADD, NEG or XOR generate numeric result

as a function of two source operands, in

unsigned integer depending of the state of

SF flag.

 Multiplication and Division -- these

instructions generate two results during

execution. The multiplication will output a 32-

bit result and the division will output a
quotient and a remainder.

 Table 2:- Instruction Table

INSRUCTIONS TYPE NOTE

NOP No operation

SET Set operation

CLR Clear operation

JMP Jump operation

CALL Call operation

LOAD Load register

STORE Store register

MOVE Move value to register

LOADI Load register with

immediate value

BRANCHI Branch to immediate

address

INC Increment

DEC Decrement

AND AND two register

OR OR two register

XOR XOR two register

NOT NOT a register

ADD Add two register

SUB Subtract two register

ZERO Zero a register

SHL Shift left

SHR Shift right

ROTR Rotate right

Figure 4:- Finite State Machine

III .FUNCTIONAL SIMULATION RESULTS

Functional simulation is the way to verify a design. In

our design we verify the components of processor by
the functional simulation and obtained the simulated

data which confirms the work ability of our design.

Here we also found that functional simulation is also

verified for the whole processor.

Figure 5:-Simulation Result of ALU

Figure 6:-Simulation Result of Shifter

Figure 7:- Simulation Result of Comparator

Figure 8:- Simulation Result of Biregister

Figure 9:- Simulation Result of Triregister

Figure 10:- Simulation Result of RAM

Figure 11:- Simulation Result of Control Unit

 Nidhi Maheshwari, Rajkumar Gehlot, Suruchi Gour / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

 Vol. 2, Issue 5, September- October 2012, pp.

674 | P a g e

Figure 12:- Simulation Result of CPU

III. LOGIC SYNTHESIS
The RTL description of a design is taken through

logic synthesis in an EDA tool, which generates a

gate-level description (net list) automatically. It

converts the VHDL code into gate level architecture.

Figure 13:-RTL View of ALU

Figure 14:-RTL View of Shifter

Figure 15:-RTL View of Comparator

Figure 16:-RTL View of RAM

Figure 17:-RTL View of Control Unit

Figure 18:-RTL View of CPU

If we push the top-level design we can find the

internal structure like this.

Figure 19:-Internal Structure of the CPU

IV. CONCLUSION
The 16-bit fully functional single cycle processor was

described using VHDL. The design of ALU was
optimized so that it consumes fewer resources.

Compared with the existing commercial micro-

processors, it has advantage because it is an open

core which benefits with an in-depth understanding

of the microprocessor‟s interior structure. Functional

simulation shows that the processor executes for all

the various instructions. We verified all the result and

found them too correctly.

REFERENCES
1. Andrei-Sorin F., Corneliu B., “Savage 16-16

bit RISC Architecture General Purpose

Microprocessor” in Proc. IEEE Journal

2010.

2. Venelin Angelov, Volker L., “The

Educational Processor Sweet-16” in Proc.

IEEE Conference 2009.

3. Xiao Tiejun, Liu Fang, “16-bit Teaching

Microprocessor Design and Application” in

Proc. IEEE International Symposium on It
in Medicine and Education, April 2008.

4. Cross, J.E. and Soetan, R. A., “Teaching

Microprocessor Design using the 8086

Microprocessor” in Proc. IEEE Conference

on Southeastcon‟88, pp. 175-180, April

1988.

5. Jarrod D. Luker and Vinod B. Prasad,

“RISC System Design in an FPGA” in Proc.

IEEE Conference 2001.

6. J. O. Hamblen and M. D. Furman, Rapid

Prototyping of Digital Systems. Springer,

2001.
7. D. L. Perry, VHDL, 3rd ed. McGraw-Hill,

1998.

8. J. Reichardt and B. Schwarz, VHDL-

Synthesis. Oldenburg, 2001.

9. Bannatyne, R, “Migrating from 8 to 16-bit

Processors” in proc. Northcon/98

conference, pp. 150-158, Oct 1998.

