
Mr. Amitkumar S Manekar, Mr. Mukesh D Poundekar, Prof. Hitesh Gupta,

Prof. Malti Nagle

/International Journal of Engineering Research and Applications

(IJERA)ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1914-1918

1914 | P a g e

A Pragmatic Study and Analysis of Load Balancing Techniques

In Parallel Computing

1
Mr. Amitkumar S Manekar,

2
Mr. Mukesh D Poundekar,

3
Prof. Hitesh

Gupta,
 4
Prof. Malti Nagle

1
Research scholar, PIES, Bhopal

2
Research scholar, PCST, Bhopal

3
Assistant Professor, HOD CSE PCST, Bhopal

4
Assistant Professor, HOD PIES, Bhopal

Abstract
Allocation of the work load in to small

processes is known as Load Balancing .Parallel

programming is based on four phases finding

Concurrency (by understanding the available

concurrency and expose in algorithm design),

Algorithm structure (programmer develop high

level structure for organizing parallel algorithm),

Supporting structure (in this code analyzing

techniques used to manage data), Implementation

mechanism (final steps to look specific software

construct for parallel program

implementation).The middle two phases based on

patterns. With availability of parallle

programming models OpenMP(Shared Memory

Model) MPI(Distributed Memory Model) ande

Hybrid(OpemMP and MPI) there is various

aspects while doing load balancing in High

Performance Computing also there are typical

load balancing approach, Static and Dynamic are

broadly categories. For this review paper keeping

vision on efficiency and speed we have discussed

the aspect and issues associated with typical

categorised load balancing techniques.

Keywords:-OpenMP (shared), MPI (Distributed),

Parallel computing, Distributed Computing, Load

balancing.

1. Introduction
Load balancing involves assigning a task to

each processor by minimizing execution of program

[1].distributed system is tremendous performance on

much application everywhere. Processor speed or

performance emerges supercomputer used in many

sector like Science, Engineering, Industries,

Commerce for their day to day needs. This demand

transform serial computer to supercomputer and

supercomputers to parallel distributed computing

with MPC (Massively Parallel Computers). MPC is a

group of processor linked with memory modules

through network such as mesh, hypercube or tours

[7]. Distribution of load to processing elements is

simply called as the load balancing problem [1].

For better performance potential, applications have to

be parallelized by re-written in to explicit parallelism.

There are head tick problem to develop parallel

programming (1) as it is complex and error prone

with respect to sequential programming.

(2)Programmer’s skill is not useful to device parallel

algorithm and data structure due to lack of training.

For parallel programming it is advisable that simple

parallel programming models such as Bulk

Synchronization Parallel (BSP) model as they are

capable for (1) they are flexible enough to be mapped

for wide range of parallel architecture and (2)

Simple enough to provide a good basis for the design

and analysis of parallel algorithm and data structure

that offers compatible extension of the execution

theory [2].

Why load balancing?

Performance on the basis of runtime in parallel

programming on specific execution platform is

evaluated. Parallel runtime Tp (n) of a program is the

time between the start of program and end of

execution on participating processes independent of

local computation, Exchange of data,

synchronization, waiting times. Table 1 will illustrate

parallel programming models [2].

Progr.

Model

Control

Structure

Data

View

Main

Restricti

on

Examp

l-es

Messag

e

Passing

Asynchrono

us, MIMD

Loca

l

None MPI

Shared

Memor

y

Asynchrono

us, MIMD

Shar

ed

None Pthread

s,

OpenM

P,

UPC,

Cilk

Data-

Parallel

Synchronou

s, SIMD

Shar

ed

SIMD-

like

Control

HPF

PRAM Synchronou

s, MIMD

Shar

ed

None Fork

Mr. Amitkumar S Manekar, Mr. Mukesh D Poundekar, Prof. Hitesh Gupta,

Prof. Malti Nagle

/International Journal of Engineering Research and Applications

(IJERA)ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1914-1918

1915 | P a g e

BSP Bulk-

synchr.,

MIMD

Loca

l

Superste

p

Structure

BSPlib,

PUB

NestSte

p-BSP

Nested BSP Shar

ed

Superste

p

Structure

NestSte

p

Table 1- Parallel Programming Models

II. Literature survey
In upcoming years degree of on chip

parallelism wills significantly increases and processor

are of 10 to 100 cores [6]. For demanding speech and

image reorganization or parallel browsers used web

based application will generate tremendous

commercial importance on availability of cheap

thread type parallelism [8]. Current operating system

is capable of writing and optimizing the multi-

programmed. In parallel application there is higher

level of inter thread interaction. Parallel application

based on high level of inters thread interaction,

consequently; balancing with data synchronization

dependences. Specifically design for parallel

computing provided new ad hoc work stealing

solution for load balancing e.g. Adaptive MPI [11]

and Click [10].

By load balancing it is possible to every

processor equally busy and to finish the work

approximately at the same time [1]. Load balancing

operation is based on three rules. Location Rule,

Distribution Rule and Selection Rule [12] [13] [14]

[16] [17]. In practice load balancing decision are

taken jointly by location and distribution rule [13]

[17]. Balancing load is categories as LOCAL and

GLOBAL.

Local Balancing- balancing decision is taken from

group of nearest neighbors by exchanging the local

workload information [1].

Global balancing- balancing decision is taken by

triggering transfer patterns across the whole system

and it exchange workload information globally [1].

Further load balancing types for optimizing problem

is shown in fig 1.

Advantages of load balancing
(1) In load balancing overall system performance is

enhance by improving the performance of each node.

(2) Less job idle time.

(3) Long starvation is avoided for small jobs.

(4) Utilization of resources is high with shorter

response time.

(5) High throughput, reliability with low cost but

high gain.

(6) Extendable and incremental approach.

Fig1- Different Types of Load Balancing Techniques

III. Issues in load balancing

Processing element and processor

(processor) execute stream of instructions is depend

on both hardware and software. In some

programming environments, each workstation is

treated as executing a single instruction stream; in

this case, a processing element is a workstation.

However some may treat as individual processor.

Data Processing according to Flynn’s

classification of parallel architecture SISD(Single

Instruction Single Data) process only one stream of

instructions and one stream of data, SIMD (Single

Instruction Multiple Data) the control unit transmits

the same instruction, simultaneously to all processing

elements, MISD (Multiple Instruction Single Data),

multiple instructions operate on a single data stream.

Using MIMD (Multiple Instruction Multiple Data),

multiple autonomous processing elements

simultaneously execute different instructions on

different data [15].

Some goals of load balancing algorithms is pointed

as [3]

(1)Performance Improvement- By reducing task

response time while keeping acceptable delay.

(2) Job equality- equally treatment for all jobs in

system beside of considering their origin.

(3) Fault tolerance- partially failure of system will

not have endurance on performance.

Mr. Amitkumar S Manekar, Mr. Mukesh D Poundekar, Prof. Hitesh Gupta,

Prof. Malti Nagle

/International Journal of Engineering Research and Applications

(IJERA)ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1914-1918

1916 | P a g e

(4)Modifiability-ability of modify.

There are levels of parallelism stated as

Instruction level parallelism, Statement level

parallelism, Loop level parallelism and Function

level parallelism, which gives different granularity

result. Table 2 illustrates the different granularity

between these levels.

Level Of

Parallelism

Task Performed Granularity

Instruction or

statement

level

Small number of

instructions or

statement are group

to form a task

Fine grained

Functional

level

Function used to

form a task comprise

significant amount of

computation

Coarse

grained

Loop level One loop or iteration

consist of several

statement

Medium

grained

Table 2 Different Granularity

Aspects of load balancing in mainstream

architecture of HPC (OpenMp, MPI and Hybrid)

In High Performance Computing performance gain

depends on settlement of point in Multi-socket

Multicore shared memory computer nodes coupled

via high speed interconnection [4].Fig 2 Shows

typical Multi-socket, Multi-core SMP cluster.

Fig 2- Typical Multi-socket, Multi-Core SMP Cluster

[4]

MPI- Message Passing Interface with explicit control

of parallelism in distributed memory model has static

scheduling. Data placement problem are rarely

observed and synchronization occurs implicitly with

subroutine call and hence minimized naturally.

Decomposition and debugging of application can

may demand time and code change which overhead

code granularity and latency problem. With MPI,

global operation is very expensive [5]. Fig 3 shows

Distributed Memory model MPI (Message Passing

Interface).

Fig3- MPI (Distributed memory model)

OpenMP- OpenMP for shared memory model is

industry standard depend upon combination of

compilers directives, library routines and

environment variables [18]. it provide implicit

communication with runtime scheduling for both fine

and coarse grain parallelism with shared memory

parallelism data placement may be bottleneck

problem. Explicit synchronization is required just like

MPI.

Fig4-Fully Hybrid(MPI+OpenMP)

Hybrid- Combining OpenMP and MPI for MPI’s

data placement and finer grain parallelism of

OpenMP based on hierarchical model. At top level

MPI parallelization for hybrid the noteworthy thing is

that consideration of how each paradigm’s carries out

parallelization and whether combining two

parameters provide an optimal parallelization

strategy. Fig 4 shows Fully Hybrid Memory Model

and fig 5 shows Mixed Model more than one MPI

process per node [4].

Mr. Amitkumar S Manekar, Mr. Mukesh D Poundekar, Prof. Hitesh Gupta,

Prof. Malti Nagle

/International Journal of Engineering Research and Applications

(IJERA)ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1914-1918

1917 | P a g e

Fig5- Mixed Model more than one MPI process

per node

Comparison of static vs. Dynamic Load

balancing
Load balancing algorithms can be defined

by their realization of the following policies [19].

Information policy- specifies what workload

information to be collected, when it is to be collected

and from where. Triggering policy- determines the

appropriate period to start a load balancing operation.

Resource type policy- classifies a resource as server

or receiver of tasks according to its availability status.

Location policy- uses the results of the resource type

policy to find a suitable partner for a server or

receiver. Selection policy- defines the tasks that

should be migrated from overloaded resources

(source) to most idle resources. Load balancing

overcome problem of deciding which jobs should be

allocated to which processor. Here we compare static

vs dynamic load balancing.

Static Load Balancing -In static load balancing

distribution finding optimal solution is the main goal.

Static load balancing involved heuristics

development, one common heuristics is priority to

larger task. In static load balancing the challenge is

that partitioning task to processor in a way that will

use maximum processors utilization and minimum

communication time. Fig 6 Shows model of

processing node [1].

Fig 6 -Model of Processing Node

Dynamic Load Balancing-in dynamic load

balancing if runtime overhead is greater than the

extra work that is accomplished by moving task from

heavily loaded processors to lightly loaded

processors, then efficiency is bottleneck problem.

Dynamic load balancing are very good at maximum

utilization of processors. Dynamic load balancing

algorithm can be centralized or distributed. In

centralized all tasks is assign to one point for decision

making. In distributed task is not shared globally on

other hand all processors take part in deciding when

load balancing occurs and which task will be

migrated. Table 3 shows the difference between

dynamic and static load balancing for parallel models

adiscuss above based on some parameters. Fig 7

shows “Job Migration in Dynamic Load Balancing

Strategy” [1].

Mr. Amitkumar S Manekar, Mr. Mukesh D Poundekar, Prof. Hitesh Gupta,

Prof. Malti Nagle

/International Journal of Engineering Research and Applications

(IJERA)ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1914-1918

1918 | P a g e

Fig 7- Job Migration in Dynamic Load Balancing

Strategy.

Table 3 shows comparison of static and dynamic on

some aspect of load balancing issues [1]

Factors Static Load

balancing

Dynamic Load

Balancing

Nature Work load is

assigned at

compile time

Work load is

assigned at

run time

Overhead

involved

Little

overhead due

to

IPC

Greater

overhead due to

process

redistribution

Resource

utilization

Lesser

utilization

Greater

utilization

Processor

thrashing

No thrashing Considerable

thrashing

State woggling No woggling Considerable

woggling

Predictability Easy to

predict

Difficult to

predict

Adaptability Difficult to

predict

More adaptive

Reliability and

Response time

Less More

Stability More Less

Complexity Less More

Cost Less More

Table 3- comparison of static and dynamic load

balancing techniques

IV. Conclusion
In this paper we have taken review on

OpenMp for shared memory computer model, MPI a

message passing library for distributed memory

computer model on cluster to solve multiple task

simultaneously and bigger problem is based on

design pattern’s ,load balancing strategies their merits

and demerits, comparison on the basis on certain

parameters. Based on this review we concluded that

while distributing load in Static load

balancingruntime system does not need to known in

advanced, whereas in Dynamicload balancing

runtime overload in gathering information and

distribution of task to different processes. Also we

concluded that if load change mechanism is faster

than Static gives best performance and other side foe

longer objective dynamic gives best performance.

References
[1] Md. Firoj Ali, Rafiqul Zaman Khan,” The

study on load balancing strategies in

distributed computing system”IJCSES, Vol

3 No 2,pp 19,April 2012.

[2] C W Kessler”Teaching Parallel

Programming Early” Proceedings of

Workshop on Developing Computer Science

Education – How Can It Be Done?, March

10, 2006, Link¨oping university, Link¨oping,

Sweden.

[4] Rolf Rabenseifner, Georg Hager, Gabriele

Jost,” Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-Core

SMP Nodes” IEEE, Parallel, Distributed and

Network-based Processing, 2009 17th

Euromicro International Conference on,

pp427 - 436 , 2009

[5] Lorna Smith and Mark Bull “Development

of mixed mode MPI / OpenMP

Applications, Scientific Programming 9

(2001) 83–98, IOS Press, Scotland, UK.

[6] Steven Hofmeyr, Costin Iancu, et. al “Load

Balancing on

Speed”upc.lbl.gov/publications/ppopp141-

hofmeyr2010.

[7] Antonis K., Garofalakis J., Mourtos I. and

spirakis P. “A Hierarchical Adaptive

Distributed Algorithm for Load Balancing”.

Journal of Parallel and Distributed

Computing, Elsevier Inc.2003.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J.

J. Gebis, P. Husbands,K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W.

Williams,and K. A. Yelick. The Landscape

of Parallel Computing Research: AView

from Berkeley. Technical Report

UCB/EECS-2006-183, EECS Department,

University of California, Berkeley, Dec

2006.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899

Mr. Amitkumar S Manekar, Mr. Mukesh D Poundekar, Prof. Hitesh Gupta,

Prof. Malti Nagle

/International Journal of Engineering Research and Applications

(IJERA)ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue4, July-August 2012, pp.1914-1918

1919 | P a g e

[9] Thomas Rauber, Gudula Rünger,” Parallel

Programming: for Multicore and Cluster

Systems”Springer-Varlag Berling

Heidelberg 2010.

[10] Leiserson. Adaptive Task Scheduling with

Parallelism Feedback. In Proceedings of the

Annual ACM SIGPLAN Symposium on

Principles and Practice of Parallel

Programming (PPoPP), 2006.

[11] C. Huang, O. Lawlor, and L. V. Kal.

Adaptive MPI. In In Proceedings of the 16th

International Workshop on Languages and

Compilers for Parallel Computing (LCPC

03), pages 306–322, 2003.

[12] Ahmad I., Ghafoor A. and Mehrotra K.

“Performance Prediction of Distributed

Load Balancing on Multicomputer

Systems”. ACM, 830-839, 1991.

[13] Bernard G., Steve D. and Simatic M. “A

Survey of Load Sharing in Networks of

Workstations”. The British Computerm

Society, The Institute of Electrical Engineers

and IOP Publishing Ltd, 75-86,1993.

[14] Dandamudi S.P. “Sensitive Evaluation of

Dynamic Load Sharing in Distributed

System”. IEEE, 1998.

[15] Biagio Cosenza “Efficient Distributed Load

Balancing for Parallel Algorithms”pp20-27

,Nov 2010 Universita degli studi

disalerno,Italy

[16] Lin H. C. and Raghavendra C.S. “A

Dynamic Load Balancing Policy with a

Central Job Dispatcher (LBC)”. IEEE,1992.

[17] Xu C. and Lau F.C.M. “Load Balancing in

Parallel Computers: Theory and Practice”.

Kluwer Academic Press, 1997.

[18] OpenMP, The OpenMP ARB,

http://www.openmp.org.

[19] D. Klepacki, Mixed-mode programming,

T.J. Watson Research Center presentations,

IBM, 1999,

http://www.research.ibm.com/actc/Talks/Da

vidKlepacki/MixedMode/index.htm.

http://www.amazon.com/Thomas-Rauber/e/B003VMVSFK/ref=ntt_athr_dp_pel_1/175-0862556-1185009
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/175-0862556-1185009/175-0862556-1185009?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=Gudula%20R%C3%BCnger

