
J.Emi Karmichael / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.447-451

447 | P a g e

Study And Implementation Of Self Healing Mechanism For The

Control Flow Attack For Wireless Sensor Networks

J.Emi Karmichael
Centre For Information Technology And Engineering,

M S University, Tirunelveli

ABSTRACT
Nowadays wireless sensor networks have

found their way into a wide variety of applications

and systems with vastly varying requirements and

characteristics, but all of them have a common

element: faults are a normal fact and not isolated

events as in traditional networks. Thus, in order to

guarantee the network quality of service, it is

essential for the sensor network to be able to detect

and heal failures. The presented approach aims to

employ self-healing services, allowing them to

discover, examine, diagnose and react to

malfunctions. In sensor application, a malicious

code can change the flow of sensor to achieve the

attacks. The downloaded malicious code will steal

or modify the sensor data. To protect the control

flow of sensor, this paper proposes self healing

scheme that can detect the attack or the attempt to

alter the control flow and recover the sensor

application to the normal operation In additional,

the original data which is altered by attackers is

recovered from the private memory of sensor. Here

the private memory is used for storing sensor data

as reference, which is used during self optimization

time, thus strong security is obtained. In

additional, the original data which is altered by

attackers is recovered from the private memory of

sensor. the selfhealing scheme directly processes

application code at the machine instruction level,

instead of performing control or data analysis on

source code. The implementation show that the

self-healing scheme is lightweight in protecting

sensor applications.

1.INTRODUCTION
Applications in sensor networks have been

researched and developed for years. However, most

security work focused on threats to networking and

communication protocols. Lessons learned from worm

attacks that exploit memory vulnerabilities show that

attackers can compromise an entire network without

hacking legitimate accounts or breaking protocols. is

to protect the control flow of sensor and from the

memory fault.[2] In a sensor’s simple memory

architecture, injected code can alter

control flow of a sensor application. To protect the

control flow, this paper proposes access control

scheme that can detect attacks attempting to alter the

control flow and then recover sensor data. Sensors use

very simple embedded systems due to cost, efficiency,

quality and resource limitations, sensors do not have

sophisticated operating systems (OSs) to manage code

for safety. Simple Os have been developed for

embedded systems. However, they do not distinguish

kernel mode or user mode when executing an

instruction, and application data is adjacent to system

data. Hence, one application routine can easily access

the data of the system or other application routines.

Furthermore, high-level programming languages have

become popular in developing sensor applications

because of their convenience for coding and

maintenance over assembly languages. Open source

based sensor applications have been developed as

well. Consequently, applications share more and more

common code as they use similar development

environments. Memory fault attacks based on the same

principle in regular computers become threats to

sensor networks[1]. First, sensors do not have

architecture to effectively enforce access control in

program memory. A few schemes have been proposed

to enforce access control in a sensor’s data memory by

using software-based memory management. These

approaches do not prevent exploiting packets from

accessing other code segments in the same program

memory. Second, sensors do not have an effective

recovery mechanism. Illegally accessing instructions

in program memory normally causes the crash of the

running sensor applications and results in a long

restart period[2].The access control code effectively

enforces access control in program memory such that

the control flow cannot be maliciously altered. The

access control code itself is designed to be resilient to

control flow attacks that attempt to evade the access

control. The scheme provides a self-healing recovery

routine to quickly remove a compromised task from

the application and restore the sensor to a normal state.

The routine cleans up sabotaged data in data memory

and releases the resources taken by the compromised

task. The scheme works at the machine instruction

J.Emi Karmichael / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.447-451

448 | P a g e

level and directly processes an application’s machine

code instead of the application’s source code. The

scheme diversifies the protected code images or

different sensors.

2.RELATED WORK
Various journals are referred to know the sensor and

its attacking methodologies from the given references

papers at below . Attacks on the data collected without

appropriate authentication of the nodes an attacker can

impersonate a node to send fake data. An attacker not

part of the network can tamper with the data. While

there exists many Data authentication is a difficult

problem in WSN, therefore data tempering by a

malicious node is a difficult problem. Secure data

aggregation protocols have been proposed to solve

those issues. In a physical intrusion detection alarm

system, the authority using the system would be

willing that the alarms reported are secret, i.e. the

messages passing would not to acknowledge the

detection of the intruder. This for example would

allow the authority to catch the intruder in the act. . At

mean while, it runs protection code to enforce access

control in program memory. This will match the

public memory and private memory and recover the

data if fault occurs. Like wise it will self optimist the

sensor node and recover its original data. Many

computer attacks exploit memory vulnerabilities in

current computer systems. Various vulnerabilities have

been identified in software, such as stack overflow,

format string error, double-free error, heap overflow,

return-to-libc, etc. These vulnerabilities are exploited

to overwrite critical data in memory to launch control

flow attacks [3] and data flow attacks [4]. Control flow

attacks manipulate control data to change the flow of

code execution. Return addresses and function

pointers are two major types of control data that

attackers are interested in altering and exploiting. In a

typical “stack smashing” attack, return address in stack

is overwritten to the address where injected codes are

executed when the function (corresponding to the

current stack frame) returns. When target program’s

control data are modified, attackers can execute

injected malicious code or out-of context library code

at the memory address pointed by the altered control

data. Data flow attacks do not alter the control flow,

but rather manipulate non control data to cause

security breach in software. Many real-world software

applications are susceptible to data flow attacks [4]. In

such attacks, attackers examine the software to find

out “which data within a target application are critical

to security other than control data, whether the

vulnerabilities exist at appropriate stages of execution

that can lead to eventual security compromises, and

whether the severity of security compromises is

equivalent to that of traditional control data attacks.

This paper focuses on control flow attacks that alter

control flow to execute an unexpected

sequence of instructions.

3.OVERVIEW OF POSSIBLE ATTACKS
 Wireless sensor network security is many-

fold, there are various ways to attack them. It is

commonly assumed that wireless sensor networks are

based on non tamper resistant devices, i.e. an attacker

can easily collect a few nodes to analyze or modify

them. However, as the network is large, possibly made

of hundreds or thousands of devices, an attacker

cannot tamper with all the devices. This is a basic

assumption in security protocols designed for wireless

sensor networks. An attacker can chose to attack the

network, the data or directly the nodes that are

described in paper [5].

3.1 MEMORY FAULT ATTACK

 Many computer attacks exploit

vulnerabilities due to memory fault in current

computer systems. Such attacks can be categorized as

control flow attacks. Attackers can overwrite control

data to alter control flow via exploiting vulnerabilities

of format string error, double-free error, heap

overflow, return-to-lib, etc is given in paper [1]

Attackers can alter control flow to execute injected

malicious code or to bypass conditional branches or

invoke indirect jumps.

3.2 CONTROL FLOW ATTACK

Attackers can alter the control flow via many

well known buffer overflow techniques. In sensor

nodes, attackers could find more approaches as the

sensor’s architecture is very simple. Attackers can

directly overwrite kernel data or registers that are

memory-mapped. The program memory of the

processor is write-protected such that the application

code can reliably work in the field. One of the attacks

targeting this architecture is to alter the control flow of

a sensor application that as been refered in paper [1].

4.ATTACK MODEL
In this paper, we do not consider attacks that

simply capture nearby sensors. Instead, we examine

attacks that send malicious packets to exploit

vulnerability in remote sensors. Such attacks help

attackers obtain more control over remote sensors that

are not in their nearby areas. Such attacks can

effectively threaten a network of tens or hundreds of

sensors. We assume attackers can obtain source code

or binary image of sensor applications, find

exploitable coding errors, and develop exploiting

packets offline, ahead of launching attacks.

Researchers have found techniques that use non

J.Emi Karmichael / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.447-451

449 | P a g e

executable data carried in exploiting packets to

redirect the control flow to achieve certain attacks.

First, a malicious packet is injected into a vulnerable

sensor. Since the sensor is not aware if the packet is

malicious or not, it will put the packet in a buffer in

data memory. Then, when the packet is being

processed in the sensor, the packet exploits

vulnerability in code. The exploitable vulnerability

varies, but leads to altering the control flow so that the

data carried in the packet can misuse the application

code. The misuse of the application code is carried in a

chain of operations. Each unit in the chain consists of

two steps and uses a part of data in the injected packet

to accomplish a part of the attack. As the injected

packet does not carry any code, each unit in the chain

must use a part of the application code, and also

ensure that, when it finishes, the control flow is altered

to the next address of application code that can be used

by the next unit in the chain. The first step in a unit of

the misuse chain loads some data in the injected

packet into registers. Because registers are used for

passing parameters to functions in sensors, the loaded

data will be used as the parameters in the second step.

Then, the second step invokes a function in the

application code with the loaded parameters to

accomplish a specific part of attack. Finally, after the

chain of misused operations completes, the attack

exits. The attacking packet could simply alter the

control flow to the RESET interrupt to restart the

sensor, or release the control flow to let the sensor

regain the control.

5..IMPLEMENTATION
Self-healing scheme is to handle control flow

attacks. It has two modules (a) access control module

that enforces the control flow of a running task, and

(b) recovery module with additional memory that

recovers the control flow of the sensor application

from a compromised task. The execution of a sensor

application is managed by the task scheduler of the

sensor’s OS. When a sensor receives a packet, a task

will be dispatched by the task scheduler to process the

packet. Once the task finishes, the execution of the

application will return to the task scheduler so that the

next pending task can be dispatched. The self-healing

scheme embeds small blocks of access control code in

all code segments in the program memory.

In a normal situation, all code segments being

accessed by a task are in fact determined by the sensor

application. Hence, each task has a pre-determined

control flow. A non-compromised task should not

have any abnormal access to a code segment that is not

in its control flow. Thus, the access control code will

allow the execution of any regular task. If packet

exploits vulnerability in the code of the running task,

we consider the task to be compromised. The

vulnerability of the running task in fact allows the

exploiting. Then, the access control code hands over

the compromised task to the recovery routine that

cleans the compromised task and returns the execution

to the task scheduler for the next pending task. Both

the task scheduler and the recovery routine are

protected with access control code to prevent attackers

from exploiting them. The intuitive arrangement of

interactive graphical elements (windows, toolbars,

menus, etc.) makes it easy to view and access the

many powerful capabilities of ModelSim. VHDL

includes facilities for describing logical structure and

function of digital systems at a number of levels of

abstraction, from system level down to the gate level.

It is intended, among other things, as a modeling

language for specification and simulation. We can also

use it for hardware synthesis if we restrict ourselves to

a subset that can be automatically translated into

hardware. Easy-to-use wizards step you through

creation of more complex HDL blocks. The wizards

show how to create parameterizable logic blocks, test

bench stimuli, and design objects. The source window

templates and wizards benefit both novice and

advanced HDL developers with time-saving shortcuts.

Control flow analysis component. It identifies

CNs that includes the code of interrupt routines, and

application routines. It also identifies and restructures

the data memory layout with task related memory and

non-task-related memory. Recovery code insertion

component. It appends the recovery routine to the

original application code. It also fills NOPs to all

empty addresses in the code memory. Access control

code insertion component. It assigns a random mark to

each CN and inserts the access control code to enforce

access control in code memory. The safety of the

access control code is based on the fact that both

marks and code are stored in the write protected code

memory and cannot be modified.

6.OVERVIEW OF SELF-HEALING

ARCHITECTURE
The recovery first releases resources allocated to the

compromised task, then releases the compromised task

from the kernel, and finally guides the kernel to

execute the next pending task. As kernel routines are

very crucial in a system, restarting the whole system is

the ideal, safe and straightforward response to

eliminate kernel attacks in sensors. Hence, in this

paper, we focus on recovering the system when

application tasks are being exploited. Because it is

possible that an exploited function may affect other

functions of the same task, the recovery is task-based.

In this section, we first discuss the idea of the recovery

approach normally used in preemptive OSs and then

the recovery approach for the non-Preemptive OS in

J.Emi Karmichael / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.447-451

450 | P a g e

sensors. Attackers can overwrite control data to alter

control flow via exploiting vulnerabilities of format

string error, double-free error, heap over flow, return-

to-libc, etc. Attackers can alter control flow to execute

injected malicious code or to bypass conditional

branches or invoke indirect jumps. Control flow

analysis component. It identifies CNs that include the

code of interrupt routines, TinyOS routines, and

application routines. It also identifies and restructures

the data memory layout with task related memory and

non-taskrelated memory. The recovery code insertion

component generates the recovery routine and attaches

it to the original code. It appends the recovery routine

to the original application code. Italso fills NOPs to all

empty addresses in the code memory. Finally, the

access control code insertion competent safeguards the

unprotected code and also diversifies the protection

code to ensure releases the compromised task from the

kernel, and finally guides the kernel to execute the

next pending task. Each individual sensor obtains a

unique protected

FIG 1 Self Optimization Of Sensor Node that each

individual sensor obtains a unique protected code

image.

Code image. The two memory areas that are public

and private are used. If public get attack then private

can be used to recover the sensor data which is altered

by malicious code. Here for sample develop the

malicious code and then alter the control flow. After

that recovery module will recover the sensor module

and sensor data. If a packet exploits vulnerability in

the code of the Running task, we consider the task to

be compromise. The redirection will be captured by

the access control code at the end of the destination

code segment, because the execution of the code

segments deviates the normal control flow of the task.

The recovery first releases resources allocated to the

compromised task, then releases the compromised task

from the kernel, and finally guides the kernel to

execute the next pending task. The two memory areas

that are public and private are used. If public get attack

then private can be used to recover the sensor data

which is altered by malicious code. Here for sample

develop the malicious code and then alter the control

flow. After that recovery module will recover the

sensor module and sensor data. If a packet exploits

vulnerability in the code of the Running task, we

consider the task to be compromise. The redirection

will be captured by the access control code at the end

of the destination code segment, because the execution

of the code segments deviates the normal. In the block

diagram, the sensor node will sense the input data and

the sensed data will store in the public and private

memory. Here the access code will control the access

and it will check whether fault is occurred or not. If

any memory fault occurs then the private memory will

recover the data.

7.RECOVERY OF A SENSOR NODE DATA

 The recovery, it first releases resources

allocated to the compromised sensor data, then

releases the data from the kernel, and finally guides

the kernel to execute the next sensor data to original

position. In this section, we first discuss the idea of the

recovery approach normally used in recovery OSs and

then the recovery approach for the Tiny OS in sensors

has been developed. Attackers can overwrite control

data to alter sensor data via exploiting vulnerabilities

of format string error, double-free error, heap over

Attackers can alter control flow to execute injected

malicious code or to bypass conditional branches or

invoke indirect jumps. The recovery code insertion

component generates the recovery routine and attaches

it to the original code. Finally, the access control code

insertion component safeguards the unprotected that

done in [1] and additionally the protection code to

ensure the original data that each individual sensor .

8.CONCLUSION AND FUTURE SCOPES
The overhead of the self-healing scheme in

program memory and how much it affect the execution

of normal routines will be examined. That enforces

access control in the control flow of sensor

applications and recovers the sensor data using the

additive memory, when a control flow attack and

memory fault attacks are captured. The security

analysis shows that the scheme self- optimizes the

sensor node and its data from various attack. Finally

restore the sensor to a normal state. In the future, the

study of preventing the attackers to intrude inside the

sensor application is derived on new trends. The

current self-healing scheme simply releases memory

and recover the data from private memory taken by a

compromised task. On next step the memory

protection scheme can be implemented for more

confidential areas.

J.Emi Karmichael / International Journal of Engineering Research and Applications

 (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 4, July-August 2012, pp.447-451

451 | P a g e

REFERENCES
[1] Christopher Ferguson, Qijun Gu, Hongchi Shi

“Self-healing Control Flow Protection in Sensor

Applications”, March 16 2009, Zurich,

Switzerland.

 [2] Harald Vogt, Matthias Ringwald, Mario Straser

, “Intrusion Detection and Failure Recovery in

Sensor Nodes” , at ETH Zurich, Switzerland.

[3] A. Smirnov and T. Chiueh, “DIRA: Automatic

Detection, Identification and Repair of Control-

Data Attacks,” Proc. Ann. Network and

Distributed System Security Symp., 2005.

[4] C. Kruegel, E. Kirda, D. Mutz, W. Robertson,

and G. Vigna, “Automating Mimicry Attacks

Using Static Binary Analysis,” Proc. USENIX

Security Symp., 2005.

[5] “Self-Healing Methodology in Ubiquitous

Sensor Network”, Giljong Yoo, and Eunseok

Lee, p.p 3, February, at School of

Information and Communication Engineering

Sungkyunkwan University.

[6] A. One, “Smashing the Stack for Fun and

Profit,” Phrack Magazine,

http://www.phrack.com/issues.html?issue=49&i

d= 14#article, 1996.

