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Abstract –  

While increasing the system load in a predefined 

manner we can determine the worst case loading margin, 

also concerned about the loading pattern that leads to 

smallest stability margin. CSNBP (closest saddle-node 

bifurcation point) can be calculated using Big Bang Big 

Crunch optimization even if the transfer limit is not 

smooth. CSNBP is formulated as an optimization 

problem and is applied on a simple radial system and also 

on IEEE 14 bus system in the presented paper. 
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1. INTRODUCTION 
There are two important aspects of the power 

system, whose study is must for every power system engineer 

which are voltage stability and voltage collapse. Voltage 

stability is the ability of the power system to maintain steady 

acceptable voltages at all buses in the system under normal 

operating conditions and after being subjected to a 

disturbances [1].The inability of the power system to meet 

the demand for reactive power tending the system towards 

instability. Its consequences may have widespread impact.  

Also voltage collapse is the process by which the sequence of 

events accompanying voltage instability leads to a low 

unacceptable voltage profile in a significant part of the power 

system [1]. 

 

For the non linear systems, while increasing the load in the 

steps until the system become unstable, we can calculate 

voltage instability for which power system fails to converge 

by using the concept of bifurcation. The word “bifurcation‟‟ 

actually comes from the concept of different branches of 

equilibrium point intersecting each other. Bifurcation occurs 

at any point in parameter space, for which qualitative 

structure of the system change for the small variation of the 

parameter vector. To understand the bifurcation more easily, 

we can say that the change in anything which is given below 

constitutes the bifurcation: 

1. Number of equilibrium points; 

2. Stability of equilibrium points or limit cycles; 

3. Number of limit cycles; 

4. Period of periodic solutions; 

 

 

 

 

There are two methods to calculate local bifurcation, 

i.e., direct method and indirect (continuation) method [14]. In 

direct method non linear algebraic equation is solved using 

any iterative methods like Newton-Raphson method. but the 

obtained convergent solution is just one point on multi- 

parameter boundary. Thus lacks global information of multi-

parameter local bifurcation boundary. Another is Indirect 

method also known as continuation method. Firstly this 

method tracks the equilibrium curve of the power system 

point by point as the parameter vary, and by interpolation 

method it locates the possible local bifurcation based on 

critical eigenvalues of the related system Jacobian matrix.  

 

A SNB is a point where the two branches of equilibria 

meets. At bifurcation the equilibrium becomes a saddle node 

thus known as Saddle Node Bifurcation(or SNB). The 

necessary condition is that the state Jacobian has to be 

singular. By determining the determinant or the smallest 

eigen value of the system Jacobian, we can find out the 

closeness of the  

system to voltage collapse point or saddle node 

bifurcation point. 

 

These methods recognize and predict proximity to the 

bifurcation point in power systems. In general, bifurcation 

detection algorithms have two steps. In the first step, the 

system load is increased and the load flow calculation is 

confirmed. In the second step, eigenvalues of the state matrix 

are calculated and finally stability of the system is checked. If 

the system is stable, the load should be increased and if the 

system is unstable, the load should be decreased and the 

algorithm should be continued until the vicinity of the system 

to instability is less than a certain value.  For computing a 

closet SNB and worst case load power margin for voltage 

collapse. The Big-Bang method determines the worst loading 

direction considering SNB. This iterative method of power 

flow has been presented to estimate maximum loading 

conditions. 

 

When the bifurcation parameter approaches the bifurcation 

value, the system equilibrium approaches a singular surface 

in state space. This singular surface causes a change in 

dynamic structure change. The property of singularity 

induced bifurcation is that the eigenvalues of the differential 

equation model bifurcate virtually simultaneously with the 
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bifurcation of the load flow. An iterative method can be used 

to compute the load powers at which bifurcation occurs and 

are locally closest to the current operating load powers. The 

model used determines the voltage collapse point as saddle 

node bifurcation point (SNB). At this point the eigenvalue is 

either nearly or equal to zero. The study of static voltage 

stability gives the important concept of transfer limit surface 

[4]. The transfer limit surface is defined as the hypersurface 

in the load parameter surface. Also we can say that it is the 

upper limit imposed by the system characteristics on the 

power flowing from generator buses to load buses[6]. In 

static voltage assessment the transfer limit surface is known 

as singular surface and is denoted by S having active and 

reactive component of load as coordinate. It divides the load 

parameter into two region. 

 

Hypresurface represents the locus of all coordinates of P and 

Q which results in a zero eigenvalue of jacobian [2]. The 

points which are existing below the transfer limit surface 

represent the voltage stable  condition  and  the   points   

which   are 

above the transfer limit surface „„S‟‟ represents voltage 

unstable condition. On gradual increasing of load, if the 

operating point reaches to transfer limit then it results into 

voltage collapse. When the constraints are not considered the 

hypersurface/ transfer limit surface is not smooth but we have 

to take care of the smoothness of the transfer limit surface. 

Normal vector approach will find a local minimum in the 

condition when the reactive power limits are considered in 

such case the transfer limit surface may not smooth [9-10]. A 

boundary between the regions corresponds to maximum load 

the network can supply. The maximum transfer of active 

power, i.e., the usual static stability limit, is a special case of 

maximum transfer of active/reactive power. It is the tip of the 

“nose” of the Q-V curve [14]. 

 

To operate the system with an adequate security margin, we 

have to estimate the loading margin (LM). LM is defined as 

the distance between the current operating point and voltage 

collapse point [2]. There are a lot of approaches by which we 

can find out the maximum loading point of the system. The 

problem can be formed as an optimization problem and can 

be solved using any optimization technique [7-10]. The PV 

curve is a power voltage relationship. Figure 1 is an 

illustration of a typical PV diagram. „‟V‟‟ in the vertical axis 

represents the voltage at a particular bus while „‟P‟‟ in the 

horizontal axis denotes the real power at the corresponding 

bus or an area of our interest. The solid horizontal nose-

shaped curve is the network PV curve while the dotted 

parabolic curve is the load PV curve. 

 

In this paper the closest saddle-node bifurcation point 

(CSNBP) is formulated as an optimization problem and 

solved using Big Bang Big Crunch Algorithm. In most of the 

existing method the attention has been focused on obtaining 

SNBP with specific direction of load increase. There are lots 

of optimization methods to calculate this, like PSO [6], 

Genetic Algorithm etc. we can also use iterative method to 

compute the shortest distance to instability. 

 

2.  STATIC VOLTAGE STABILITY AND      

SURVEYING POSSIBLE CONTINGENCIES 

 Power flow solutions near the critical point are 

prone to divergence and no solution being obtained. For this 

reason, CPF method is used to overcome this stability 

problem. The loadability of a bus in the power system 

depends on the reactive power support that the bus can 

receive from the system. As the system load approaches the 

maximum loading point, both real and reactive power losses 

increases rapidly. A common assessment of system stability 

is expressed by the load margin to the point at which the 

voltage collapses. The power flow equation for the power 

system has the following form: 

 

 f(x, λ) = 0           (1) 

where  

 

     x =    [  
V
θ

  ]   and λ = [  
P
Q

  ] 

 

where x is a state vector of power flow problem and typically 

represents V and θ, i.e., the bus voltages and angles and can 

also be used to compute other system variables like generator 

reactive power injections Q. The variable λ represents a 

scalar parameter or loading factor used to simulate the load 

changes that drive the system to the collapse point. Assume 

current operating load power λ0 at which the corresponding 

equilibrium x0 is stable. As the load parameter λ vary from 

the current load powers λ0, the equilibrium x will vary in the 

state space. If the parameter vector λ and the corresponding 

system state vector x are such that the power flow jacobian 

matrix jx is singular then the system reaches to its voltage 

stability critical point. 

 

The system may be operating at a stable equilibrium point 

but a contingency at maximum loading point may land 

unstable region or where there is no solution to the system 

equations. The main reason for low voltage profile for some 

contingency and therefore smaller MWM is the insufficient 

reactive power in the vicinity of the low voltage buses [11]-

[13].Let S is transfer limit surface in N dimensional 

parameter space such that  jx (x* ,λ*) is singular and λ* is a 

point on S. At critical load powers x1 the system can lose 

stability by x disappearing in a saddle node bifurcation and 

we denote the set of such x1 in the load power parameter 

space by S. 

The saddle node bifurcation instability when the load 

powers encounter C can cause catastrophic collapse of the 

system voltages and blackout. S typically consists of 

hypersurfaces and their intersections. The instability can be 

avoided by monitoring the position of the current load 

powers λ0 relative to S and taking corrective action if λ0 



Yogesh Manekar, Dr. H. K. Verma / International Journal of Engineering Research and Applications 

 (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 4, July-August 2012, pp.421-426 

423 | P a g e  
 

moves too close to S. In particular it is useful to calculate a 

critical load power λ, in S for which| λ* , λ0| is a local 

minimum of the distance from λ0 to S. Then the line segment 

λ0 – λ*, represents a worst case load power parameter 

variation and also measures the proximity to saddle node 

bifurcation. That is, the worst case load power margin |λ0 – λ* 

| is a voltage collapse index. We call the bifurcation at A, 'a 

closest saddle node bifurcation' with the understanding that 

the distance to bifurcation is measured in parameter space 

relative to the fixed value λ0. The worst case load power 

margin is a voltage collapse index called CSNBP. From   a 

practical point of view, the closest bifurcation point in a 

direction of reasonable load increase is most important. 

2. PROBLEM FORMULATION 
The CSNBP is formulated as an optimization problem. 

For a given initial point (x0,λ0) , λ can be increased along 

different directions. Loading Margin (LM) depends upon on 

the direction along with λ is increased. Our aim is to find the 

direction of the parameter vector which gives minimum LM. 

Thus the objective can be written as 

 

min       LM = ( ∆Pin
i=1 )2 + ( ∆Qin

i=1 )2           (2) 

 

where 

 

ΔPi =Change in active power load at bus i from initial 

operating point to voltage collapse point. 

 

ΔQi =Change in reactive power load at bus i from initial 

operating point to voltage collapse point. 

 

n = total number of load buses. 

 

      

                  

  Load   S   

           

 Active        

             λ*           

  Power      

       min  λ* – λ0 

        

      λ0 = (P0,Q0)     

      

      

   Load Reactive Power 

 

Fig. 1 PV Curve contains hypersurface ‘S’ 

 

The Big Bang Big Crunch algorithm is applied to determine 

the shortest distance to worst case loading margin. To 

understand the Big Bang Big Crunch algorithm, a brief 

description is given below. 

 

3.   BRIEF DESCRIPTION OF BIG BANG BIG 

CRUNCH (BBBC) METHOD AND IT’S 

IMPLEMENTATION 

A new optimization method relied on one of the 

theories of the evolution of the universe namely, the  Big 

Bang and Big Crunch  theory  is  introduced by Erol and 

Eksin [3] which has a low computational time and high 

convergence speed. It consists of two phases: a Big Bang 

phase, and a Big Crunch phase. In the Big Bang phase, 

candidate solutions are randomly distributed over the search 

space. Similar to other evolutionary algorithms, initial 

solutions are spread all over the search space in a uniform 

manner in the first Big Bang. 

According to this theory, in the Big Bang phase energy 

dissipation produces disorder and randomness is the main 

feature of this phase; whereas, in the Big Crunch phase, 

randomly distributed particles are drawn into an order. 

Randomness can be seen as equivalent to the energy 

dissipation in nature while convergence to a local or global 

optimum point can be viewed as gravitational attraction. The 

Big Bang–Big Crunch (BB–BC) Optimization method 

similarly generates random points in the Big Bang phase and 

shrinks these points to a single representative point via a 

center of mass in the Big Crunch phase. After a number of 

sequential Big Bangs and Big Crunches, 

where the distribution of randomness within the search space 

during the Big Bang becomes smaller and smaller about the 

average point computed during the Big Crunch, the algorithm 

converges to a solution.. The use of Big Bang Big Crunch 

algorithm involves the following steps: 

 

     i] Creation of initial population 

The proposed method is similar to the GA in respect to 

creating an initial population randomly. The creation of the 

initial population randomly is called the Big Bang phase. In 

this phase, the candidate solutions are spread all over the 

search space in an uniform manner. 

 

After the Big Crunch phase, the algorithm must create new 

members to be used as the Big Bang of the next iteration 

step. This can be done in various ways, the simplest one 

being jumping to the first step and creating an initial 

population. 

 

     ii] Fitness function 

The fitness function is defined here as 

 

   F =  
𝐿𝑀  λ є 𝑆
𝐵    λ є 𝑆

                                   (3) 

                                               

Where 

     LM = Loading Margin given by (2) 

       B = a large positive constant 

 

The condition λ є 𝑆  is checked by computing the 

eigenvalue of the full jacobian matrix of the system. We can 
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say that the parameter vector λ belongs to the hypersurface S, 

if the eigenvalue is closed to zero. Hence the given fitness 

function given above is minimized by applying Big Bang Big 

Crunch Method. 

  

     iii] The Big Crunch phase and Center of mass 

The Big Bang should be followed by a Big Crunch. 

Hence we start analyzing the population generated in Big 

Bang for Big Crunch phase. As mentioned before, the Big 

Crunch phase has a single point where all mass is a 

concentrated. So for a given Big Bang configuration to obtain 

a Big Crunch, we need to calculate a point where all the mass 

can be placed safely. This point is called as center of mass 

which is defined as a point where the entire mass of system is 

said to be concentrate [5]. 

The point representing the center of mass that is denoted 

by 𝑥 c
 is calculated according to: 

 

 𝑥 c
 = 

 𝑥𝑖     
𝑓𝑖

𝑁
𝑖=1

 
1

𝑓𝑖
𝑁
𝑖=1

                                   (4) 

       

Where xi is a point within an n-dimensional search space 

generated, fi is a fitness function value of this point, N is 

the population size in Big Bang phase. The convergence 

operator in the Big Crunch phase is different from 

„exaggerated‟ selection since the output term may 

contain additional information (new candidate or 

member having different parameters than others) than 

the participating ones, hence differing from the 

population members. This one step convergence is 

superior compared to selecting two members and finding 

their center of gravity. 

 

 

After the Big Crunch phase, the algorithm creates the new 

solutions to be used as the Big Bang of the next iteration step, 

by using the previous knowledge (center of mass). This can 

be accomplished by spreading new off-springs around the 

center of mass using a normal distribution operation in every 

direction, where the standard deviation of this normal 

distribution function decreases as the number of iterations of 

the algorithm increases. 

 

   Xnew=Xc+l.r/k                        (5) 

 

where Xc stands for center of mass, l is the upper limit of 

the parameter, r is a normal random number and k is the 

iteration step. Then new point Xnew is upper and lower 

bounded. 

   

   iv] Termination criteria 
Like GA, BBBC is terminated after specified maximum 

number of iteration. There is also another termination 

strategy which involves population convergence criteria. 

But in this work BBBC is terminated after specified 

maximum number of iterations.   

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flow chart of Big Bang Big Crunch      

Algorithm 

 

v] BBBC implementation for determining CSNBP 

The BB–BC approach takes the following steps: 

 

Step 1:  Form an initial generation of N candidates in a 

random manner. Respect the limits of the search space. 

 

Step 2:  Calculate the fitness function values of all the 

candidate solutions. 

 

Step 3:  Find the center of mass according to (Eq. no. 4).  

 

Step 4:  Calculate new candidates around the center of mass 

by adding or subtracting a normal random number whose 

value decreases as the iterations elapse of using(5). 

 

Step 5:  Return to Step 2 until stopping criteria has been met.  

For any system for finding the minimum distance from an 

initial load level P0, Q0 to S is as follows: 

Start 

Initialization Gen=1 
Random Initial Population 

Initialize particle population 

Run power flow 

Fitness Function evaluation 

Find the center of mass 

Calculate new candidates 
around the xc  using (5) 

End 

Gen=Gen+1 

Gen ≤ maxGen 
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1. Increase load from P0, Q0 in some direction until 

eigen value of the jacobian is practically zero. The load level 

P1, Q1 correspond to this point is the stability limit. This point 

P1, Q1 lies on, or is extremely near, S. 

2. For the condition at P1, Q1, perform modal analysis 

and determine the left eigenvector of the full jacobian matrix. 

The left eigenvector cantains elements which provide the 

increment of MW and MVAr load for each bus. The 

eigenvector points in the shortest direction to singularity, 

which is there fore normal to S. 

3. Go back to the base case load level P0, Q0 and load 

the system again, but this time in the direction given by the 

left eigenvector found in 2. 

4. Again we return to the base case P0, Q0 and load the 

system in the direction of the new eigenvector given in 3. 

This process is repeated until the computed eigenvector does 

not change with each new iteration. The process will then 

have converged. 

 

5.   SIMULATION AND RESULT 
        The ability of the proposed method has been tested on 

simple radial system and IEEE 14 Bus system. And the 

results obtained for simple radial system are given in table 

no. 1 and the results obtained for IEEE 14 bus system is 

given in table no. 2 are the application result for proposed 

method. 

 

Example 1. Simple radial 2 bus system 

A simple radial system is given in fig. 3. In this we assume 

that P and Q vary independently. So we can say that in the 

given problem the number of variable is 2. We have applied 

the Big Bang Big Crunch algorithm on this current operating 

step to determine the shortest distance to voltage collapse. 

The initial system operating condition is given in the table 

below. For the sake of the results the results of the iterative 

method and GA is shown in the table below. 

 

                         Z = j0.25 

          1<0°                            V<-δ° 

 

 

                  P + jQ 

   

                               Fig.3. A simple radial system 

 

Table 1: For simple radial system Value of real and reactive 

power load at voltage collapse point 

Example 2. IEEE 14 bus system 

The IEEE 14 bus system consisting of three synchronous 

condensers and three synchronous machines, in which at bus 

3, 6, and 8 synchronous condensers are connected only to 

supply reactive power in the system. There are 2 generators 

located at bus no.1 and bus no.2. There are 14 buses and 20 

branches and supplying 11 loads total of 259 MW and 77.4 

MVAR at base case. Initial operating point is assumed as 

base case loading point. 

 

               To obtain the minimum loading margin, it is 

assumed that active and reactive power of load bus can vary 

independently. There are 22 variables in the system because 

there are 11 load buses. The obtained results are given in the 

table no. 2. 

 

We keep the power factor constant while obtaining the curve 

of all load, we gradually increase the base case. The method 

is being used here to calculate the CSNBP. Voltage collapse 

occurs at loading margin of 0.6263. i.e., 62.63% increase in 

load at all buses keeping power factor constant. 

 

 

 

 

 

 

 

 

 

Method 

Initial 

operatin

g point 

λ0 (p.u.) 

 

Voltage 

collapse 

point λ
*
 

(p.u.) 

Dista

nce to 

instab

ility 

(MV

A) 

Left 

Eigen-

vector 

ηi 

Min 

Eige

n 

Valu

e 

P0 Q0 P* Q* 

Iterative 

Method 

 

0.8 

 

0.4 

 

0.957

6 

 

0.771

7 

 

40.37 

 

[0.437

8 

0.8991

]
T 

 

0.082

9 

GA 

Method 

 

0.8 

 

0.4 

 

0.972

9 

 

0.763

3 

 

40.23 

 

[0.455

9 

0.8296

]
T
 

 

4.971

5× 

10
-3 

Propose

d Big 

Bang 

Big 

Crunch 

 

0.8 

 

0.4 

 

1.042

9 

 

0.710

7 

 

39.44 

 

[0.462

7 

0.8273

]
T 

 

3.919

×10
-3 
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Table 2: For IEEE 14 Bus System  

For IEEE 14 bus system initial operating point and load at 

various buses is given which cause voltage collapse 

 

All the reactive power sources in IEEE 14 bus system are 

located from bus number 1 to 8. But from bus number 9 to 

bus number 14 there is no reactive power support available. 

Therefore the voltage becomes unstable due to increase in 

load in the weak area.  

 

5.   CONCLUSION 
The BBBC method is applied to solve the CSNBP 

problem. This worst case loading margin to voltage collapse 

point problem is formulated as an optimization problem and 

solved using BBBC. In this paper, a new advancement, using 

Big Bang Big Crunch (BBBC) algorithm is successfully 

depicted for CSNBP problem with dynamic constraints. The 

suggested approach is found to be more stable than the 

conventional methods and computationally superior. And it 

proves us a promising tool for minimum loading margin 

evaluation. 
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Bus  

No.  

 

Initial operating 

point λ0 (p.u.) 

 

Voltage collapse 

point λ
*
 (p.u.) 

P0 Q0 P* Q* 

2 0.217 0.127 0.2180 0.1270 

3 0.942 0.190 0.9443 0.1900 

4 0.478 0.000 0.4785 0.0001 

5 0.076 0.016 0.076 0.0159 

6 0.0112 0.075 0.128 0.0749 

9 0.295 0.166 0.2954 0.1660 

10 0.090 0.058 0.0908 0.0580 

11 0.035 0.018 0.0358 0.0179 

12 0.061 0.016 0.0650 0.0160 

13 0.0135 0.058 0.01354 0.0580 

14 0.149 0.050 0.1495 0.6692 

Total 

Load 

2.59 0.774 2.49484 1.393 


