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ABSTRACT 
This article provides the optimum simple failure step stress partially accelerated life 

tests (FSS-PALTs) and statistical inferences for the model parameters and acceleration factor in 

which items are run at both accelerated and use conditions. It is assumed that the lifetime of the 

test items follows inverse Weibull distribution under type II censoring. The maximum likelihood 

estimators (MLEs), asymptomatic variance-covariance matrix, and the confidence bounds of the 

model parameters and acceleration factor are obtained via MathCAD"14". The optimum test a 

plan specifies the optimal stress switching point is determined by minimizes the generalized 

asymptotic variance of the MLEs for the model parameters. Finally, the numerical studies are 

applied to illustrate the proposed procedures. 

 

Keywords - Failure step stress test, Generalized asymptotic variance, Inverse Weibull 

distribution. 

I. INTRODUCTION 

Traditional life data analysis involves analyzing times to-failure data (of a product, system or 

component) obtained under normal use conditions in order to determine the life characteristics of the 

product, system or component. In many situations, and for many reasons, the life data is very difficult, 

if not impossible, to obtain. For this reason, partially accelerated life test (PALT) is the reasonable 

procedure to be conducted. PALT allows the experimenter to apply more severe stress to obtain 

information on the parameters of lifetime distribution more quickly than would be possible under 

normal operating conditions in short period of time.  

As seen partially accelerated life tests are more suitable test to be performed for which units are 

subjected to both normal and accelerated conditions. According to Nelson [1], the stress can be applied 

in various ways. One way to accelerate failure is the step-stress, which increases the stress applied to 

test unit at a specified discrete sequence. Concerning the step-stress test method there are two main 

types, the first one is time step stress PALT (TSS-PALT) where this test runs for a specified time at 

each stress. The second one is failure-step stress (FSS-PALT) whereas this test runs until a specified 

number of failure units at each stress. 

This article considers the simple failure step stress PALT, this test runs only under two stresses (use 

and accelerated) stress. There were no more studies had been done about FSS-PALT, unless Ismail and 

Aly [2] studied the optimum test plans of FSS-PALT for the Weibull distribution under type-II 

censored, which determine the optimum number of failure units at used stress to switch to the 

accelerated stress. The model parameters are estimated using maximum likelihood method. Also, the 

confidence intervals and the Fisher information matrix of the estimated parameters are obtained. On 

other side, TSS-PALTs have been studied by several authors for example; DeGroot and Goel [3],  Bai 

and Chung[4], Attia, Abel-Ghaly and Abel-Ghani [5] , Abdel-Ghaly, Attia and Abdel-Ghani [6], 

Abdel-Ghaly, Attia, and Abdel-Ghani [7] , Abdel-Ghani[8], Abd-Elfattah, Hassan and Nassr [9], Ismail 

and Sarhan [10] and Ismail [11]. 

This article concerns with the simple failure-step stress PALT; it is assumed that the lifetimes of test 

items follow inverse Weibull distribution based on censoring samples. The maximum likelihood 

approach is applied as estimation procedure under type II censoring. Asymptotic variance-covariance 

matrix of the estimators and the confidence interval of the unknown parameters and acceleration factor 

are obtained for large sample sizes. In addition, optimum test plans for simple failure-step stress test 

are developed.  
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This article can be organized as follows. In Section 2 the inverse Weibull (IW) distribution and the test 

procedure in FSS-PALTs are introduced. Section 3 presents the maximum likelihood estimators 

(MLEs) of model parameters based on type II censored samples, also an approximate asymptotic 

variances and covariance matrix are investigated. The problem of choosing the optimal test plan under 

normal stress is addressed in Section 4. Section 5 presents the confidence intervals for the model 

parameters based on asymptotic variance covariance matrix. Section 6 explains the simulation studies 

for illustrating the theoretical results. Section 7 shows the simulation results. Finally, conclusions are 

included in Section 8. 

II.  MODEL DESCRIPTION AND TEST PROCEDURE  

 The inverse Weibull distribution was developed by Erto [12], it is used in reliability analysis. 

It can be successful in modelling life for many devices and variables such as electron tubes, capacitors, 

generators etc. It has been derived as a suitable model for describing degradation phenomena of 

mechanical components such as the dynamic components of diesel engines. IW distribution provides a 

good fit to several data sets such as the times to breakdown of an insulating fluid subject to the action 

of a constant tension. (Nelson  [13]) 

The IW distribution has the distribution function: 

( , , ) ; , , 0.tF t e t
   

 
                                                                                                   (2.1) 

Therefore, IW distribution has a probability density function 

( 1)( , , ) ,tf t t e
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Here   is a shape parameter and   is scale parameter. Note that, when 1   the distribution is the 

same as the inverse exponential distribution for a constant hazard. In particular, when 2   it is 

known as the inverse Rayleigh distribution. When 1  , the hazard function is continually decreasing 

which represents early failures. When 1  , the hazard function is continually increasing which 

represents wear-out failures.  

    In this Section, FSS-PALT model for inverse Weibull lifetime data under type II censoring is 

assumed. The test is conducted as follows, a random sample of  n independent and identically units 

firstly tested under normal conditions until time  𝑦𝑛1   , where n1 = πn units are failed under normal 

condition. After time 𝑦𝑛1   the unfailed units (n-n1) are subjected at accelerated conditions and 

continued under these conditions until censoring time 𝑦𝑟  is reached, where 𝑦𝑟  is the time of failed r 

units (r= n1+na ) which is predetermined,  na is the number of failure units under accelerated condition 

and the number of censoring units are (n-r=nc). The effect of this switch is to multiply the remaining 

lifetime of units by the inverse of the accelerator factor 𝛽. In this case, the switching to the higher stress 

will shorten the life of test units.  

The following assumptions are made: 

(1) The failure times 𝑦𝑖 , 𝑖 = 1,… ,𝑛 are independent and identically distributed random variables. 

(2) The total lifetime of test units denoted by 𝑌 pass through two stage, which are the normal and 

accelerated conditions. Then, the lifetime of the unit under FSS-PALT can be written as 

𝑌 =  
    𝑇                                             𝑖𝑓       𝑇 ≤ 𝑦𝑛1  

𝑦𝑛1  + 𝛽−1 𝑇 − 𝑦𝑛1           𝑖𝑓         𝑇 > 𝑦𝑛1  

                                                                                         

(2.5) 



Amal S. Hassan, Abeer K. Al-Thobety / International Journal of Engineering Research 

and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.3242-3253 

3244 | P a g e 

 

This Tampered Random Variable (TRV) model was proposed by DeGroot and Goel [3]. 

From the assumptions, the probability density function of a total lifetime 𝑌 of a unit takes the form:

  

𝑓(𝑦)

=  
𝛼𝜆 𝑦− 𝛼+1  𝑒−𝜆𝑦

−𝛼
                                                   0 < 𝑦 ≤ 𝑦𝑛1

 

𝛼𝜆𝛽    𝑦 − 𝑦𝑛1   𝛽 + 𝑦𝑛1   
− 𝛼+1 

 𝑒−𝜆  𝑦−𝑦𝑛1  𝛽+𝑦𝑛1 
−𝛼

  𝑦 > 𝑦𝑛1

  
 

 (2.6) 

where 𝛽 > 1 , 𝛼 > 0 and  𝜆 > 0. 

III. MAXIMUM LIKELIHOOD ESTIMATORS 

According to type II censoring, the test applied to n identical units will terminate when r units 

fail at time yr  (0 < yn1  < yr < ∞). Let n1 and na denote the number of failures that occur before yn1   

and the number of failures that occur before yr  at normal and accelerated conditions, respectively. 

Hence, the observed values of the total lifetime Y are 

y1 < ⋯ < yn1−1 ≤ yn1  < yn1+1 < ⋯ < yn1+na−1 ≤ yr , 

Let U1i and U2i be indicator functions such that: 

U1i =  
1                     if        yi ≤ yn1  

0                          otherwise
                 i = 1,2,… , n 

 and,                                                                       

U2i =  
1                    if    yn1  < yi ≤ r

0                            otherwise
                 i = 1,2,… , n 

 

Then, the likelihood function under type II censoring can be written as 
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where,   𝑈 1𝑖 = 1 − 𝑈1𝑖   and 𝑈 2𝑖 = 1 − 𝑈2𝑖  . 

It is usually easier to maximize the natural logarithm of the likelihood function rather than the 

likelihood function itself. Therefore, the logarithm of the likelihood function 
ln ln ( , , )L L   

is given 

by 
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where, 
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MLEs ,̂ ,̂  and ̂   of  ,  and  are the solutions of the following system of equations obtained 

by take the first partial derivatives of the log likelihood function with respect to  , and  and 

equalize it to zero. The system of equations is as follows: 

 

 

 

                                                           (3.3) 
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(3.5) 

 

 

Obviously, it is difficult to obtain a closed form solution to nonlinear equations (3.3),(3.4) and (3.5). 

So, Newton-Raphson method is used to solve these equations simultaneously to obtain ̂ ,̂  and 
̂

 

via MathCAD "14". 

Note that, n1 = πn where π is the proportion of the failure units at normal condition that pre-specified.     

The asymptotic variances and covariance matrix of the MLE of the parameters can be approximated 

by numerically inverting the asymptotic Fisher-information matrix F. It is composed of the negative 

second and mixed derivatives of the natural logarithm of the likelihood function evaluated at the MLE. 

The asymptotic Fisher information matrix F  can be written as follows: 
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The second and mixed partial derivatives of the log-likelihood function with respect to the parameters 

to ,  and 
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IV. OPTIMUM TEST PLAN 

 The optimal plans for FSS-PALT consider the optimum proportion of test units that must fail 

at normal stress according to a certain optimality criterion which is a GAV of the MLE of the model 

parameters. The GAV for the MLE of the model parameters is the reciprocal of the determination of 

the Fisher information matrix (Bai, Chung and Chung [14]). That is, 

1ˆ ˆˆ( , , )GAV
F

                                                                                                                                    (4.1) 

The optimum test plan for products having inverse Weibull lifetime distribution is to find the optimum 

proportion of test units failing at normal stress π∗ such that the GAV is minimized. The minimization of 

GAV over π can be achieved by solving the following equation: 

0
GAV







                                                                                                                                            (4.2)   

This is reduced to  

0
F







 ,                                                                                                                                           (4.3) 

where, 
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(4.4) 

In general, the solution to equation (4.4) is not in a closed form. So, Newton-Raphson method is 

applied to obtain the optimal stress change point 𝜋∗ which minimizing the GAV.  

Thus, the optimal numbers of units must fail at normal use condition (𝑛1
∗) for switching to accelerated 

condition is:
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𝑛1
∗ =  𝜋∗𝑛                                                                                                                                            (4.5) 

where n  is the sample size. 

V. CONFIDENCE INTERVAL OF MODEL PARAMETERS 

    For large sample size ,n  the MLEs, ̂  under appropriate regularity conditions, are consistent and 

asymptotically normally distributed with means   and variances )ˆ(2  n
. Consequently, the 

asymptotic two-sided )%1(100    confidence intervals with an approximate confidence coefficient 

1   for MLEs of a population parameters   can be constructed such that,  

𝑃  𝜃 − 𝑍𝛾
2
 𝑣𝑎𝑟(𝜃 ) ≤ 𝜃 ≤ 𝜃 + 𝑍𝛾

2
 𝑣𝑎𝑟(𝜃 ) ≅ 𝛾 

where Zγ
2
  is the upper 2



 the percentile of standard normal distribution. Therefore, the two-sided 

approximate )%1(100   confidence limits for  ,  and 


 are given, respectively, as follows: 

𝐿𝜆 = 𝜆 − 𝑧𝜎 𝜆  ,          𝑈𝜆 = 𝜆 + 𝑧𝜎 𝜆   

𝐿𝛼 = 𝛼 − 𝑧𝜎 𝛼  ,          𝑈𝛼 = 𝛼 + 𝑧𝜎 𝛼   

𝐿𝛽 = 𝛽 − 𝑧𝜎 𝛽  ,          𝑈𝛽 = 𝛽 + 𝑧𝜎 𝛽   

(5.1) 

Therefore, the two sided approximate confidence limits for model parameters under different sample 

sizes will be constructed using equation (5.1) with confidence levels   95% and 99%. 

 

VI. SIMULATION PROCEDURE 

    Monte Carlo simulation study is carried out to illustrate the theoretical results of both estimation 

and optimal design problems. The performance of the resulting estimators of the parameters has been 

considered in terms of their absolute relative bias (ARB), mean square error (MSE) and relative error 

(RE). Furthermore, the asymptotic variance and covariance matrix and optimum test plans are 

developed. The two-sided confidence intervals of the model parameters are obtained. The Simulation 

procedures are described through the following steps  

Step 1: A random samples of sizes 100 (100) 500 were generated from inverse Weibull distribution. 

This can be achieved by using the transformation 

niuy ii ,...,2,1,]ln
1

[

1






 

where, nuuu ,...,, 21 are a random sample from uniform (0,1). 

The chosen parameters values are selected as 

(𝜆 = 2 ,𝛼 = 0.5 ,𝛽 = 1.5),(𝜆 = 1.5 ,𝛼 = 1 ,𝛽 = 1.3 ), (𝜆 = 3 ,𝛼 = 1.5 ,𝛽 = 1.1 ) and (𝜆 =
2.5 ,𝛼 = 1.7 ,𝛽 = 1.2 ). 

Step 2: Under type II censoring, choose a proportion of test units failing at normal condition to be 

𝜋 = 10% and the number of failure units r =0.85 n (the test will terminate after 85% of the test units 

failed), where the censoring time of a FSS-PALT will be 𝑦𝑟 .  

Step 3: For each sample the acceleration factor and the parameters of the distribution are estimated 

in failure step stress PALT under type II censored sample. 

Step 4: Repeat the previous steps from 1 to 3 N times representing N different samples, where 

N=1000. 

Step 5: Newton-Raphson method is used for solving the three nonlinear equations (3.3), (3.4) and 

(3.5) respectively, to obtain the estimators of 𝜆,𝛼 𝑎𝑛𝑑 𝛽. 
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Step 6: The MSE, ARB and RE of 𝜆 ,𝛼  𝑎𝑛𝑑 𝛽  over the 1000 samples are obtained.  

Step 7: Calculate the Fisher-information matrix then inverted to get the asymptotic variance and 

covariance matrix of the estimators for different sample sizes.  

Step 8: The two sided confidence limit with confidence level 𝛾 = 0.95 and 𝛾 = 0.99 for the 

acceleration factor and the distribution parameters are constructed.  

Step 9: The GAV is calculated from the Fisher-information by solving equation (4.1). 

Step 10: Obtained the optimum proportion of units 𝜋∗ that must fail at normal condition by 

numerically solving equation (4.4) using the results of step 5. In addition, the value of  𝑛1
∗ (the 

optimum number of failure units at use condition) is calculated.  

VII.  SIMULATION RESULTS 

  Simulation results are presented in Tables 1, 2, 3 and 4.                                                 

1. Table 1 gives the MSE, ARB and RE of the estimators. The MSEs, ARBs and REs for the 

parameters cases   𝜆 = 3 ,𝛼 = 1.5 ,𝛽 = 1.1    and  𝜆 = 2.5 ,𝛼 = 1.7 ,𝛽 = 1.2  have a good statistical 

properties than the parameters cases  𝜆 = 2 ,𝛼 = 0.5 ,𝛽 = 1.5  and   𝜆 = 1.5 ,𝛼 = 1 ,𝛽 = 1.3  and 

for all sample sizes. As the sample size increases the MSEs, ARBs and REs of the estimated 

parameters decrease. This indicates that the maximum likelihood estimates provide asymptotically 

normally distributed and consistent estimators for the parameters and acceleration factor.  

2. The asymptotic variances and covariance matrix of the estimators are displayed in Table 2. The 

asymptotic variances of the estimators are decreasing when the sample size is increasing.  

3. Table 3 presents the approximated two-sided confidence limits at 95 % and 99% for the model 

parameters and acceleration factor. The interval of the estimators decreases when the sample size is 

increasing. Also, the interval of the estimator at 𝛾 = 0.95 is shorter than the interval of estimator at 

𝛾 = 0.99.  

4. Table 4 gives the optimum switch point  𝜋∗ , the value of  𝑛1
∗  and GAV. As the sample size 

increases, the GAVs are decreasing. The optimum value of  𝜋∗  for the case parameters 𝜆 = 2 ,𝛼 =
0.5 ,𝛽=1.5, is approximately 90%, that means, the optimum number of units that should fail at used 

condition to switch to the accelerate condition is 𝑛1
∗ =  0.90 × 𝑛. This indicates that all units tend to 

fail at normal use condition, i.e., testing only at normal condition. In the parameters cases  𝜆 =
1.5 ,𝛼=1 ,𝛽=1.3, 𝜆=3 ,𝛼=1.5 ,𝛽=1.1  and 𝜆=2.5 ,𝛼=1.7 ,𝛽=1.2  the optimum value of  𝜋∗  is 

approximately 40%, that means, the optimum number of units that should fail at use condition to 

switch to accelerated condition is 𝑛1
∗ =  0.40 × 𝑛.  

Table 1: The MSE, ARB and RE of the estimators of the parameters (λ, α, β) for different sized 

samples  

n 
Parameter 

(λ, α, β) 

Case 1 

(λ = 2 , α = 0.5 , β = 1.5) 

Case 2 

(λ = 1.5 , α = 1 , β = 1.3 ) 

MSE ARB RE MSE ARB RE 

100 

λ 

α 

β 

0.016 0.063 0.063 0.013 0.095 0.095 

0.004 0.123 0.124 0.007 0.076 0.078 

0.338 0.445 0.447 0.064 0.280 0.281 

200 

λ 

α 

β 

0.011 0.053 0.053 0.013 0.077 0.077 

0.001 0.066 0.067 0.000 0.010 0.010 

0.319 0.435 0.435 0.057 0.266 0.266 

300 

λ 

α 

β 

0.011 0.052 0.052 0.007 0.060 0.060 

0.000 0.040 0.040 0.000 0.010 0.010 

0.285 0.410 0410 0.048 0.261 0.261 

400 

λ 

α 

β 

0.007 0.042 0.042 0.001 0.022 0.022 

0.000 0.040 0.000 0.000 0.006 0.006 

0.279 0.410 0.410 0.044 0.244 0.244 

500 

λ 

α 

β 

0.001 0.021 0.021 0.001 0.018 0.018 

0.000 0.040 0.000 0.000 0.006 0.006 

0.205 0.410 0.410 0.027 0.205 0.206 

n Parameter Case 3 Case 4 
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(λ, α, β) (λ = 3 , α = 1.5 , β = 1.1 ) (λ = 2.5 , α = 1.7 , β = 1.2 ) 

MSE ARB RE MSE ARB RE 

100 

λ 

α 

β 

0.008 0.027 0.029 0.042 0.082 0.082 

0.005 0.041 0.045 0.034 0.104 0.109 

0.033 0.162 0.166 0.114 0.278 0.281 

200 

λ 

α 

β 

0.007 0.027 0.028 0.017 0.052 0.052 

0.003 0.041 0.042 0.019 0.079 0.081 

0.024 0.139 0.140 0.114 0.270 0.280 

300 

λ 

α 

β 

0.003 0.019 0.019 0.002 0.021 0.021 

0.003 0.030 0.030 0.009 0.051 0.052 

0.011 0.104 0.105 0.086 0.245 0.244 

400 

λ 

α 

β 

0.002 0.015 0.015 0.000 0.006 0.006 

0.003 0.030 0.030 0.001 0.015 0.016 

0.001 0.039 0.040 0.015 0.150 0.151 

500 

λ 

α 

β 

0.000 0.004 0.004 0.000 0.004 0.005 

0.002 0.030 0.030 0.000 0.002 0.005 

0.001 0.030 0.031 0.004 0.082 0.083 

 

Table 2: Asymptotic variance and covariance of estimators  

n 

Case 1 

(λ = 2 , α = 0.5 , β = 1.5) 

Case 2 

(λ = 1.5 , α = 1 , β = 1.3 ) 

λ  α  β  λ  α  β  

100 

7.112 0.654 5.777 2.588 -0.147 1.034 

------- 0.278 0.804 ------- 0.970 -0.108 

------- ------- 9.662 ------- ------- 1.784 

200 

6. 335 0.474 3.590 2.405 -0.155 1.031 

------- 0.238 0.479 ------- 0.953 -0.057 

------- ------- 6.987 ------- ------- 1.683 

300 

6.330 0.535 4.239 2.401 -0.193 1.077 

------- 0.236 0.596 ------- 0.941 -0.119 

------- ------- 6.699 ------- ------ 1.610 

400 

6.010 0.504 4.090 2.374 -0.215 0.872 

------- 0.236 0.538 ------- 0.878 -0.101 

------- ------- 5.667 ------- ------- 1.486 

500 

5.572 0.449 2.982 2.230 -0.142 0.977 

------- 0.232 0.425 ------- 0.843 -0.051 

------- ------ 4.288 ------- ------ 1.287 

n 

Case 3 

(λ = 3 , α = 1.5 , β = 1.1 ) 

Case 4 

(λ = 2.5 , α = 1.7 , β = 1.2 ) 

λ  α  β  λ  α  β  

100 

16.978 2.540 3.400 8.170 1.031 1.985 

------- 1.672 0.264 ------- 2.605 -0.079 

------- ------- 2.567 ------- ------- 2.221 

200 

16.833 2.510 3.278 8.163 1.194 1.859 

------- 1.665 0.213 ------- 2.579 -0.070 

------- ------- 2.561 ------- ------- 1.892 

300 

15.254 2.303 2.824 7.723 1.476 1.442 

------- 1.661 0.178 ------- 2.453 -0.001 

------- ------- 2.188 ------- ------- 1.241 

400 

14.906 2.379 2.777 7.588 1.275 1.328 

------- 1.642 0.197 ------- 2.244 -0.059 

------- ------- 2.055 ------- ------- 1.155 

500 

14.296 2.225 2.692 7.574 1.221 1.437 

------- 1.612 0.174 ------- 2.220 -0.091 

------- ------- 2.018 ------- ------- 1.070 
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Table 3: Confidence Bounds of the parameters at confidence level 0.95 and 0.99 

n 
Parameter 

 

Case 1 

(λ = 2 , α = 0.5 , β = 1.5 ) 

Case 2 

(λ = 1.5 , α = 1 , β = 1.3 ) 

Standard 

deviation  

Lower 

Bound 

Upper 

Bound 

Standard 

deviation 

Lower 

Bound 

Upper 

Bound 

100 

λ 

 

α 

 

β 

0.014 1.847 

1.839 

1.902 

1.911 

0.011 1.363 

1.356 

1.407 

1.414 

0.009 0.543 

0.537 

0.580 

0.585 

0.019 1.148 

1.136 

1.221 

1.232 

0.059 0.606 

0.569 

0.838 

0.875 

0.021 0.606 

0.593 

0.689 

0.702 

200 

λ 

 

α 
 

β 

0.004 1.887 

1.884 

1.902 

1.904 

0.005 1.304 

1.301 

1.323 

1.326 

0.002 0.529 

0.528 

0.537 

0.539 

0.008 1.089 

1.084 

1.122 

1.127 

0.015 0.706 

0.697 

0.764 

0.773 

0.010 0.640 

0.634 

0.681 

0.687 

300 

λ 
 

α 

 

β 

0.003 1.889 

1.887 

1.902 

1.904 

0.005 1.307 

1.304 

1.326 

1.329 

0.002 0.510 

0.509 

0.519 

0.521 

0.007 1.120 

1.116 

1.146 

1.150 

0.017 0.733 

0.723 

0.800 

0.811 

0.013 0.655 

0.647 

0.706 

0.714 

400 

λ 

 

α 
 

β 

0.003 1.911 

1.909 

1.923 

1.924 

0.004 1.263 

1.260 

1.279 

1.282 

0.002 0.520 

0.519 

0.526 

0.527 

0.005 1.158 

1.155 

1.178 

1.181 

0.014 0.745 

0.736 

0.798 

0.807 

0.007 0.578 

0.574 

0.605 

0.609 

500 

λ 
 

α 

 

β 

0.001 1.835 

1.834 

1.840 

1.841 

0.003 1.317 

1.315 

1.329 

1.331 

0.001 0.522 

0.522 

0.526 

0.527 

0.004 1.153 

1.150 

1.170 

1.173 

0.006 0.636 

0.632 

0.659 

0.662 

0.006 0.623 

0.619 

0.648 

0.652 

 

 

Continued Table 3 

 

n Parameter 

Case 3 

(λ = 3 , α = 1.5 , β = 1.1 ) 

Case 4 

(λ = 2.5 , α = 1.7 , β = 1.2 ) 

Standard 

deviation  

Lower 

Bound 

Upper 

Bound 

Standard 

deviation 

Lower 

Bound 

Upper 

Bound 

100 

λ 

 

α 

 

β 

0.028 3.026 

3.009 

3.136 

3.154 

0.021 2.256 

2.243 

2.336 

2.349 

0.028 1.507 

1.490 

1.616 

1.633 

0.055 1.769 

1.735 

1.984 

2.017 

0.037 0.850 

0.827 

0.994 

1.016 

0.055 0.759 

0.724 

0.975 

1.01 

200 

λ 
 

α 

 

β 

0.016 3.052 

3.042 

3.113 

3.123 

0.008 2.356 

2.351 

2.387 

2.392 

0.014 1.512 

1.503 

1.568 

1.577 

0.027 1.782 

1.765 

1.887 

1.903 

0.019 0.911 

0.899 

0.984 

0.995 

0.021 0.821 

0.808 

0.903 

0.916 

300 
λ 0.007 2.929 

2.925 

2.958 

2.962 

0.004 2.341 

2.3 

2.355 

2.322 
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α 

 

β 

0.008 1.547 

1.542 

1.578 

1.583 

0.012 1.905 

1.898 

1.95 

1.957 

0.010 0.875 

0.869 

0.916 

0.922 

0.007 0.693 

0.688 

0.72 

0.725 

400 

λ 
 

α 

 

β 

0.005 2.945 

2.942 

2.964 

2.967 

0.004 2.278 

2.275 

2.294 

2.296 

0.006 1.545 

1.541 

1.566 

1.570 

0.011 1.923 

1.916 

1.967 

1.974 

0.007 0.853 

0.849 

0.876 

0.880 

0.007 0.665 

0.66 

0.695 

0.699 

500 

λ 

 

α 
 

β 

0.004 2.880 

2.877 

2.897 

2.900 

0.004 2.303 

2.339 

2.319 

2.357 

0.004 1.543 

1.540 

1.560 

1.562 

0.008 1.881 

1.876 

1.912 

1.917 

0.005 0.864 

0.861 

0.881 

0.884 

0.005 0.724 

0.721 

0.744 

0.747 

 

 

Table 4: The results of optimal design of failure step-stress PALT  

n 

Case 1 

(λ = 2 , α = 0.5 , β = 1.5 ) 

Case 2 

(λ = 1.5 , α = 1 , β = 1.3 ) 

π∗ n1
∗  GAV π∗ n1

∗  GAV 

100 0.886 89 0.072 0.393 40 0.030 

200 0.908 182 0.020 0.340 68 0.012 

300 0.904 271 0.015 0.352 106 0.009 

400 0.906 363 0.012 0.357 143 0.005 

500 0.909 455 0.007 0.358 179 0.005 

n 

Case 3 

(λ =  3, α = 1.5 , β = 1.1 ) 

Case 4 

(λ = 2.5 , α = 1.7 , β = 1.2 ) 

π∗ n1
∗  GAV π∗ n1

∗  GAV 

100 0.367 37 0.393 0.479 48 0.263 

200 0.334 67 0.195 0.403 81 0.118 

300 0.325 98 0.105 0.359 108 0.055 

400 0.314 126 0.072 0.369 148 0.036 

500 0.314 157 0.056 0.353 177 0.032 

 

 

VIII. CONCLUSION 

     This article considered the problem of optimally designing simple failure step stress PALT 

plans under type II censoring. The test unit was assumed to follow inverse Weibull distribution. 

Optimal test plans are important to improve the accuracy of parameter estimation thereby improving 

the quality of inference. For this, the optimum of these plans is more useful and efficient to estimate the 

life distribution at design stress. The performance of FSS-PALT plans is usually evaluated by the MLE 

model assumptions of the model parameters. The asymptotic variance and covariance of estimators are 

obtained. Based on asymptotic normality, the two sided confidence limits of the model parameters are 

constructed. The optimal test plans were obtained by minimizing the GAV of the MLEs of the model 

parameters. It is noted via the optimal value of  𝜋∗ , which is the proportion of units that must fail at 

use stress for switching to accelerated stress.  

As shown, from the numerical results, as the sample size increases, the ARBs, MSEs and REs of the 

model parameters decrease. The interval of estimators decreases when the sample size increases. Also, 

the optimum GAV decreases when the sample size increases. Finally, it seems that, for most parameter 

cases, the optimal proportion of the test units that must fail at use stress for switching to accelerated 

stress is approximately 40%.  

 

    FSS-PALT requires constant monitoring of the units under test and may not be convenient. But it is 

more appropriate than TSS-PALT, where it enables the experimenter to collect sufficient information 
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and to make a good statistical inference about the population parameters. This makes the prediction 

reliability with highly level of accuracy. 
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