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ABSTRACT

This article provides the optimum simple failure step stress partially accelerated life
tests (FSS-PALTS) and statistical inferences for the model parameters and acceleration factor in
which items are run at both accelerated and use conditions. It is assumed that the lifetime of the
test items follows inverse Weibull distribution under type Il censoring. The maximum likelihood
estimators (MLES), asymptomatic variance-covariance matrix, and the confidence bounds of the
model parameters and acceleration factor are obtained via MathCAD'14". The optimum test a
plan specifies the optimal stress switching point is determined by minimizes the generalized
asymptotic variance of the MLEs for the model parameters. Finally, the numerical studies are
applied to illustrate the proposed procedures.

Keywords - Failure step stress test, Generalized asymptotic variance, Inverse Weibull
distribution.

I. INTRODUCTION

Traditional life data analysis involves analyzing times to-failure data (of a product, system or
component) obtained under normal use conditions in order to determine the life characteristics of the
product, system or component. In many situations, and for many reasons, the life data is very difficult,
if not impossible, to obtain. For this reason, partially accelerated life test (PALT) is the reasonable
procedure to be conducted. PALT allows the experimenter to apply more severe stress to obtain
information on the parameters of lifetime distribution more quickly than would be possible under
normal operating conditions in short period of time.

As seen partially accelerated life tests are more suitable test to be performed for which units are
subjected to both normal and accelerated conditions. According to Nelson [1], the stress can be applied
in various ways. One way to accelerate failure is the step-stress, which increases the stress applied to
test unit at a specified discrete sequence. Concerning the step-stress test method there are two main
types, the first one is time step stress PALT (TSS-PALT) where this test runs for a specified time at
each stress. The second one is failure-step stress (FSS-PALT) whereas this test runs until a specified
number of failure units at each stress.

This article considers the simple failure step stress PALT, this test runs only under two stresses (use
and accelerated) stress. There were no more studies had been done about FSS-PALT, unless Ismail and
Aly [2] studied the optimum test plans of FSS-PALT for the Weibull distribution under type-II
censored, which determine the optimum number of failure units at used stress to switch to the
accelerated stress. The model parameters are estimated using maximum likelihood method. Also, the
confidence intervals and the Fisher information matrix of the estimated parameters are obtained. On
other side, TSS-PALTSs have been studied by several authors for example; DeGroot and Goel [3], Bai
and Chung[4], Attia, Abel-Ghaly and Abel-Ghani [5] , Abdel-Ghaly, Attia and Abdel-Ghani [6],
Abdel-Ghaly, Attia, and Abdel-Ghani [7] , Abdel-Ghani[8], Abd-Elfattah, Hassan and Nassr [9], Ismail
and Sarhan [10] and Ismail [11].

This article concerns with the simple failure-step stress PALT; it is assumed that the lifetimes of test
items follow inverse Weibull distribution based on censoring samples. The maximum likelihood
approach is applied as estimation procedure under type Il censoring. Asymptotic variance-covariance
matrix of the estimators and the confidence interval of the unknown parameters and acceleration factor
are obtained for large sample sizes. In addition, optimum test plans for simple failure-step stress test
are developed.
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This article can be organized as follows. In Section 2 the inverse Weibull (IW) distribution and the test
procedure in FSS-PALTSs are introduced. Section 3 presents the maximum likelihood estimators
(MLEs) of model parameters based on type Il censored samples, also an approximate asymptotic
variances and covariance matrix are investigated. The problem of choosing the optimal test plan under
normal stress is addressed in Section 4. Section 5 presents the confidence intervals for the model
parameters based on asymptotic variance covariance matrix. Section 6 explains the simulation studies
for illustrating the theoretical results. Section 7 shows the simulation results. Finally, conclusions are
included in Section 8.

Il. MODEL DESCRIPTION AND TEST PROCEDURE

The inverse Weibull distribution was developed by Erto [12], it is used in reliability analysis.
It can be successful in modelling life for many devices and variables such as electron tubes, capacitors,
generators etc. It has been derived as a suitable model for describing degradation phenomena of
mechanical components such as the dynamic components of diesel engines. IW distribution provides a
good fit to several data sets such as the times to breakdown of an insulating fluid subject to the action
of a constant tension. (Nelson [13])
The IW distribution has the distribution function:

Ft,Aa)=e""; t,ai>0.

(2.1)
Therefore, IW distribution has a probability density function
f . a)=ait“De ", 2.2)
The reliability function
R{t,Aa)=1-e*", (2.3)
and the hazard function
ht, 2.e)= %ﬂ
e’ -1 (2.4)

Here & is a shape parameter and A is scale parameter. Note that, when & =1 the distribution is the
same as the inverse exponential distribution for a constant hazard. In particular, when @ =2 it is
known as the inverse Rayleigh distribution. When @ <1 the hazard function is continually decreasing

which represents early failures. When @ >1 the hazard function is continually increasing which
represents wear-out failures.

In this Section, FSS-PALT model for inverse Weibull lifetime data under type Il censoring is
assumed. The test is conducted as follows, a random sample of n independent and identically units
firstly tested under normal conditions until time y,, , where nl = nn units are failed under normal
condition. After time y,, the unfailed units (n-nl) are subjected at accelerated conditions and
continued under these conditions until censoring time y, is reached, where y, is the time of failed r
units (r= nl+na) which is predetermined, na is the number of failure units under accelerated condition
and the number of censoring units are (n-r=nc). The effect of this switch is to multiply the remaining
lifetime of units by the inverse of the accelerator factor 3. In this case, the switching to the higher stress
will shorten the life of test units.

The following assumptions are made:

(1) The failure times y;,i = 1, ..., n are independent and identically distributed random variables.
(2) The total lifetime of test units denoted by Y pass through two stage, which are the normal and
accelerated conditions. Then, the lifetime of the unit under FSS-PALT can be written as

y { T if T<yn
a yn1 +ﬁ_1(T_yn1) lf T >yn1
(2.5)
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This Tampered Random Variable (TRV) model was proposed by DeGroot and Goel [3].

From the assumptions, the probability density function of a total lifetime Y of a unit takes the form;

f) )
al y=(@+D) g=Ay™¢ 0<y <y,

a2f (v = ¥u, )B + ¥y )_(aﬂ) oM (O=yn1 p4wmy)

y>yn1
(2.6)
wheref >1, a >0and 1> 0.

11, MAXIMUM LIKELIHOOD ESTIMATORS

According to type Il censoring, the test applied to n identical units will terminate when r units
fail at time y, (0 <y,, <y, < ). Letnl and na denote the number of failures that occur before y,,
and the number of failures that occur before y, at normal and accelerated conditions, respectively.
Hence, the observed values of the total lifetime Y are

V1 < <Vny-1 S V¥n; <Vny+1 < <Yn 4n,—1 < Vo

Let Uy; and U,; be indicator functions such that:

p B
Uy = {1 it yi=yn, i=12..,n
0 otherwise
and,
. B
U2i={1 if Yo, <yi=r i=12,..,n
0 otherwise

Then, the likelihood function under type Il censoring can be written as

L(l,a,ﬂ)OCH{fl(yi)}Ul { Z(yl)} 2i {R( r)}UlIUZI
i=1
{Cl/l yi—(aﬂ)e,;_y;a }Ull

L(a,/l,ﬂ)ocﬁ {a/w( )(““’ 2L iy, ww]“}
i=1
Ui

T
{1—e7'1[ O =Y ) B+y T }

Ui

(31
Where, L_’Ii =1- Uli and ﬁzl' =1- U2i "
It is usually easier to maximize the natural logarithm of the likelihood function rather than the

likelihood function itself. Therefore, the logarithm of the likelihood function InL =InL (.4, 5)

by

is given
InL =(n+ny)Ina+(n; +n,)In A
snnf-(@DfFUsiny s 30 Iy -y )8+ )|

_,l{éu Y ;a+éU a((yi—y ﬂl)ﬁ"'y nl)—a}
+ncIn [1—e “2Y =Y ) Bty nﬁ’“}

(3.2)
where,
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n, :;:Uli’na :;UZU ng :IZ:;U_l-U_z.

MLEs# €. and Z of 4 ,% and B are the solutions of the following system of equations obtained

by take the first partial derivatives of the log likelihood function with respect to A & and B and
equalize it to zero. The system of equations is as follows:

oL ni+n, ~ i N N -a
TR =71}: a—ZUu Yi a_ZUZi ((yi —ynl)ﬂ+ynl)
i-1 i-1

A - _} i 5 -
Ne ((Yr “Y By nl) g A0 Y )ty ] 1
+ — =0,
1 e%((y, Y ) B+ ) (3.3)

n n
olnL  ng+n B
r e LIEL TR NN
i=1 i=l
-G

o ZUMF“'”V' ZUZI( ﬂ+y ) In((yi—yn1)1§+yn1)

nci((y, Y, ,8+y ) In(yr Y, /}+y ) oe- "1)’G+y“1)7d 0 (3.4)
) vy nl)ﬂml) 4

1-e

Lo Uailyi- o~ Uailyi-
61nL =nf"—(d+1)22(y—}lm)+d/l ali 7Yy —
PP Ry i) ey iy,

)'d-le—i((yr—y Dby 3.5)

ncdi(yr—ynl)((y,—ynl)/ﬁynl :

Ay yadbryy)

1-e

Obviously, it is difficult to obtain a closed form solution to nonlinear equations (3.3),(3.4) and (3.5).

So, Newton-Raphson method is used to solve these equations simultaneously to obtaln & and ﬂ
via MathCAD "14",

Note that, n; = zn where = is the proportion of the failure units at normal condition that pre-specified.

The asymptotic variances and covariance matrix of the MLE of the parameters can be approximated
by numerically inverting the asymptotic Fisher-information matrix F. It is composed of the negative
second and mixed derivatives of the natural logarithm of the likelihood function evaluated at the MLE.
The asymptotic Fisher information matrix F can be written as follows:

[—8%InL -&*InL -d%InL |
oA? O0Ada 0A0p
-&%InL -d*InL -&%InL
oadd 0a® 0adp
-0%InL -d%*InL -&%InL
| 0poi  opoa of

The second and mixed partial derivatives of the log-likelihood function with respect to the parameters

to 4 , & and B are obtained as the following
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20 _} =Y . —a
:(n1+na)+nc<(yr—ynl),B+yn1)) e ((Yr=Yn)B+Yny)

—ﬂ((y r =Y o) Bty nl))ia ]2

[1-e

w{ZUlﬁyia(lny ZUm ~Yn, '8+y”1) [In((yi _ynl)ﬁernl)]Z]
+nc/1((yr _Ynl)ﬁ+yn1))_a [|n((yr _ynl)ﬁ+ynl)]Ze—ﬂ((yr-ynl)ﬂﬂnl)*a
l-e 0~ “1)'/}”"1)7&]2

X{A((yf ~Yn )+ Ynl))_a —1+e_i((y’_y”1)ﬂ+y"1)—a },

o Ui (Yi—Ya ; : -
—(a+1){z«_2(y‘yl)—aizU2i Vi Yo 201 =Ye )B4V

Yi=Yn)B+¥a) &

A =Ym)B+Yy
nca/l(Yr—Ynl) ((yr - ynl)ﬂ+yn1)a2 (=Y +y1)

((yr nl)ﬁ+ynl) ]2

[1-e”
x{(ml){l-e‘i((yfy“i)ﬁ*“l)a}aa((yr ~Yn)B+ ynl)“}-

fp= ZUn “Iny; ZUZ' ~Yn, ﬂ+yn1) I”((yi‘Ynl)ﬂWnl)
1ol o)Ay " nfye —ynl)ﬂ+ynl)e%((y'fy”w”)_a
l-e At~ “1)ﬁ+y”1)_a]2

i (VIS n*a
x{i((y,—ynl)/hrynl)aJre ((re=y)B4y) _1}.

Uai (Yi —¥n,)
fl3 e a+l
i=1 ((yi —ynl)ﬂ+yn1)

—a-1 4 T n e
neayy ~ Yo ) (e —yn)B+yn ) e A In)nl

[1_e”1((yf*y”1)/’+yn1)’”]z
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f23 Z Uyi Y| Yn1

Ynl)ﬂ‘H’nl)

2 -l i (Y - Ynl)ln((Y| )’n1ﬂ+yn1 +i Uai (Yi —Yn,) -
i=1 ((Y| Ynl)ﬁ"'ynl) 'Il( ynl)ﬁ+yn1)

-1 —; r—Jn n
’mc(yr_Ynl)((yr_)’nl)ﬂ“')’nl) € eyl
+ X
[1_e’/1((yr7yn1)ﬂ+yn1)ia ]2

1_671[()/" -y nl)ﬂ+yn1]7a

‘A[(yr ’ynl)ﬂer nl]_a

_i((yr _Ynl)ﬂ"'Ynl)_a In((yr _Ynl)ﬂ"'ynl)e
aln((yy =Yn)B+Yn,)

. - r—Jn n E
- 1_/1((yr_yn1)ﬂ+)/n1) -€ 4 yl)ﬂer 1]
X

P 1 n E
‘M'((Yr_ynl)ﬂ"'ynl) o A=Y u)B+yn]

IV. OPTIMUM TEST PLAN

The optimal plans for FSS-PALT consider the optimum proportion of test units that must fail
at normal stress according to a certain optimality criterion which is a GAV of the MLE of the model
parameters. The GAV for the MLE of the model parameters is the reciprocal of the determination of
the Fisher information matrix (Bai, Chung and Chung [14]). That is,

GAV (4,é,8) = (4.1)

IF| X

The optimum test plan for products having inverse Weibull lifetime distribution is to find the optimum
proportion of test units failing at normal stress * such that the GAV is minimized. The minimization of
GAV over ©t can be achieved by solving the following equation:

0GAV _0 (4.2)
or

This is reduced to

o|F|
Tloo 43
P (4.3)

where,

o|F CL o
%:fll(fzzfss+f22f33_2f23f23)+fll(f22f33_fzg)

_flz(flzfals +f1I2f33 _f23f1I3 _fzvsfla) _f1I2 (f12f33 _f23f13)
+f13(f12f 2I3 +f1I2f 23 _fzzflla _fZIZf13)+f1I3(f12f 23 _f22f13)'

(4.4)

In general, the solution to equation (4.4) is not in a closed form. So, Newton-Raphson method is
applied to obtain the optimal stress change point * which minimizing the GAV.

Thus, the optimal numbers of units must fail at normal use condition (n;*) for switching to accelerated
condition is:
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n = m'n (4.5)

where n is the sample size.
V. CONFIDENCE INTERVAL OF MODEL PARAMETERS

For large sample size n, the MLEs, é under appropriate regularity conditions, are consistent and
asymptotically normally distributed with means & and variances ol (é) . Consequently, the
asymptotic two-sided 100(1 — )% confidence intervals with an approximate confidence coefficient
1—y for MLEs of a population parameters @ can be constructed such that,

P(@ —Zy lvar(@) <0 <8 +Zy /var(@)) =y

r
where Zy is the upper 2

100(1— )%

the percentile of standard normal distribution. Therefore, the two-sided

approximate confidence limits for A , & and B are given, respectively, as follows:

Ly =A-2z0(2), Uy = A+ zo(2)
L, =a—za(Q), U, =a+zo(a@) (5.1
Ly =p — za([)’), Ug=p+ za(ﬁ)
Therefore, the two sided approximate confidence limits for model parameters under different sample
sizes will be constructed using equation (5.1) with confidence levels 95% and 99%.

VI. SIMULATION PROCEDURE

Monte Carlo simulation study is carried out to illustrate the theoretical results of both estimation
and optimal design problems. The performance of the resulting estimators of the parameters has been
considered in terms of their absolute relative bias (ARB), mean square error (MSE) and relative error
(RE). Furthermore, the asymptotic variance and covariance matrix and optimum test plans are
developed. The two-sided confidence intervals of the model parameters are obtained. The Simulation
procedures are described through the following steps

Step 1: A random samples of sizes 100 (100) 500 were generated from inverse Weibull distribution.
This can be achieved by using the transformation

1

1 — .
. =[-=Inu.] ¢, 1=12,...,n
Y; [z i1

where, U;,U,,..., U, are a random sample from uniform (0,1).

The chosen parameters values are selected as
1=2,a=05,=15,1A=15,a=1,=13), (A1=3,a=15,=11) and A=
25,a=17,8=12).

Step 2: Under type Il censoring, choose a proportion of test units failing at normal condition to be
7 = 10% and the number of failure units r =0.85 n (the test will terminate after 85% of the test units
failed), where the censoring time of a FSS-PALT will be y,.

Step 3: For each sample the acceleration factor and the parameters of the distribution are estimated
in failure step stress PALT under type Il censored sample.

Step 4: Repeat the previous steps from 1 to 3 N times representing N different samples, where
N=1000.

Step 5: Newton-Raphson method is used for solving the three nonlinear equations (3.3), (3.4) and
(3.5) respectively, to obtain the estimators of 4, @ and 8.
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Step 6: The MSE, ARB and RE of 4, @ and f over the 1000 samples are obtained.

Step 7: Calculate the Fisher-information matrix then inverted to get the asymptotic variance and
covariance matrix of the estimators for different sample sizes.

Step 8: The two sided confidence limit with confidence level y = 0.95 and y = 0.99 for the
acceleration factor and the distribution parameters are constructed.

Step 9: The GAV is calculated from the Fisher-information by solving equation (4.1).

Step 10: Obtained the optimum proportion of units ™ that must fail at normal condition by
numerically solving equation (4.4) using the results of step 5. In addition, the value of n;* (the
optimum number of failure units at use condition) is calculated.

VII. SIMULATION RESULTS
Simulation results are presented in Tables 1, 2, 3 and 4.

1. Table 1 gives the MSE, ARB and RE of the estimators. The MSEs, ARBs and REs for the
parameters cases (A =3,a=15,8=1.1) and (A = 2.5,a = 1.7, 8 = 1.2) have a good statistical
properties than the parameters cases (1 =2,a =0.5,4=15)and A=15,a=1,8=1.3) and
for all sample sizes. As the sample size increases the MSEs, ARBs and REs of the estimated
parameters decrease. This indicates that the maximum likelihood estimates provide asymptotically
normally distributed and consistent estimators for the parameters and acceleration factor.

2. The asymptotic variances and covariance matrix of the estimators are displayed in Table 2. The
asymptotic variances of the estimators are decreasing when the sample size is increasing.

3. Table 3 presents the approximated two-sided confidence limits at 95 % and 99% for the model
parameters and acceleration factor. The interval of the estimators decreases when the sample size is
increasing. Also, the interval of the estimator at y = 0.95 is shorter than the interval of estimator at
y = 0.99.

4. Table 4 gives the optimum switch point 7* , the value of n;* and GAV. As the sample size
increases, the GAVs are decreasing. The optimum value of w* for the case parameters(A = 2,a =
0.5 ,/=1.5, is approximately 90%, that means, the optimum number of units that should fail at used
condition to switch to the accelerate condition is n;* = 0.90 x n. This indicates that all units tend to
fail at normal use condition, i.e., testing only at normal condition. In the parameters cases (1 =
1.5 ,a=1,f=13 A=3 ,a=15 =11 and 1=25 ,2=17 F=1.2 the optimum value of 7= is
approximately 40%, that means, the optimum number of units that should fail at use condition to
switch to accelerated condition isn;* = 0.40 X n.

Table 1: The MSE, ARB and RE of the estimators of the parameters (A, o, B) for different sized

samples
Parameter Case 1 Case 2
n 0o, B) AZ=2,0=0.5,8=1.5) AZ=15,0=1,p=13)
T MSE ARB RE MSE ARB RE
A 0.016 0.063 0.063 0.013 0.095 0.095
100 a 0.004 0.123 0.124 0.007 0.076 0.078
B 0.338 0.445 0.447 0.064 0.280 0.281
A 0.011 0.053 0.053 0.013 0.077 0.077
200 a 0.001 0.066 0.067 0.000 0.010 0.010
B 0.319 0.435 0.435 0.057 0.266 0.266
A 0.011 0.052 0.052 0.007 0.060 0.060
300 a 0.000 0.040 0.040 0.000 0.010 0.010
B 0.285 0.410 0410 0.048 0.261 0.261
A 0.007 0.042 0.042 0.001 0.022 0.022
400 a 0.000 0.040 0.000 0.000 0.006 0.006
B 0.279 0.410 0.410 0.044 0.244 0.244
A 0.001 0.021 0.021 0.001 0.018 0.018
500 a 0.000 0.040 0.000 0.000 0.006 0.006
B 0.205 0.410 0.410 0.027 0.205 0.206
n Parameter Case 3 Case 4
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M\ a,B) A=3,0=15,p=1.1) A=25,0=17,=1.2)
MSE ARB RE MSE ARB RE
A 0.008 0.027 0.029 0.042 0.082 0.082
100 a 0.005 0.041 0.045 0.034 0.104 0.109
B 0.033 0.162 0.166 0.114 0.278 0.281
A 0.007 0.027 0.028 0.017 0.052 0.052
200 a 0.003 0.041 0.042 0.019 0.079 0.081
B 0.024 0.139 0.140 0.114 0.270 0.280
A 0.003 0.019 0.019 0.002 0.021 0.021
300 a 0.003 0.030 0.030 0.009 0.051 0.052
B 0.011 0.104 0.105 0.086 0.245 0.244
A 0.002 0.015 0.015 0.000 0.006 0.006
400 a 0.003 0.030 0.030 0.001 0.015 0.016
B 0.001 0.039 0.040 0.015 0.150 0.151
A 0.000 0.004 0.004 0.000 0.004 0.005
500 a 0.002 0.030 0.030 0.000 0.002 0.005
B 0.001 0.030 0.031 0.004 0.082 0.083
Table 2: Asymptotic variance and covariance of estimators
Case 1 Case 2
n A2=2,0=0.5,=1.5) A=15,0=1,=13)
) 0 B A a B
7.112 0.654 5.777 2.588 -0.147 1.034
100 | - 0.278 0804 | - 0.970 -0.108
-------------- 9.662 1.784
6. 335 0.474 3.590 2.405 -0.155 1.031
200 | - 0.238 0479 | - 0.953 -0.057
-------------- 6.987 1.683
6.330 0.535 4.239 2.401 -0.193 1.077
300 | - 0.236 059 | - 0.941 -0.119
-------------- 6.699 1.610
6.010 0.504 4.090 2.374 -0.215 0.872
400 | - 0.236 0538 | - 0.878 -0.101
-------------- 5.667 1.486
5.572 0.449 2.982 2.230 -0.142 0.977
500 | @ ------- 0.232 0425 | - 0.843 -0.051
------------- 4.288 1.287
Case 3 Case 4
n A=3,0=15,p=1.1) AZ=25,0=1.7,=1.2)
W a B 3 a B
16.978 2.540 3.400 8.170 1.031 1.985
100 | - 1.672 0264 | @ ------- 2.605 -0.079
-------------- 2.567 2.221
16.833 2.510 3.278 8.163 1.194 1.859
200 | @ - 1.665 0213 | - 2.579 -0.070
-------------- 2.561 1.892
15.254 2.303 2.824 7.723 1.476 1.442
300 | - 1.661 0.178 | - 2.453 -0.001
-------------- 2.188 1.241
14.906 2.379 2.777 7.588 1.275 1.328
400 | - 1.642 0197 | - 2.244 -0.059
—————————————— 2.055 e e 1.155
14.296 2.225 2.692 7.574 1.221 1.437
500 | @ ------- 1.612 0174 | - 2.220 -0.091
-------------- 2.018 1.070
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Table 3: Confidence Bounds of the parameters at confidence level 0.95 and 0.99

Case 1 Case 2
) Parameter A=2,a=05,=15) A=15,0=1,=1.3)

Standard Lower Upper Standard Lower Upper
deviation Bound Bound deviation Bound Bound

A 0.014 1.847 1.902 0.011 1.363 1.407

1.839 1.911 1.356 1.414

100 a 0.009 0.543 0.580 0.019 1.148 1.221
0.537 0.585 1.136 1.232

B 0.059 0.606 0.838 0.021 0.606 0.689

0.569 0.875 0.593 0.702

A 0.004 1.887 1.902 0.005 1.304 1.323

1.884 1.904 1.301 1.326

200 a 0.002 0.529 0.537 0.008 1.089 1.122
0.528 0.539 1.084 1.127

§ 0.015 0.706 0.764 0.010 0.640 0.681

0.697 0.773 0.634 0.687

A 0.003 1.889 1.902 0.005 1.307 1.326

1.887 1.904 1.304 1.329

300 a 0.002 0.510 0.519 0.007 1.120 1.146
0.509 0.521 1.116 1.150

§ 0.017 0.733 0.800 0.013 0.655 0.706

0.723 0.811 0.647 0.714

A 0.003 1.911 1.923 0.004 1.263 1.279

1.909 1.924 1.260 1.282

400 a 0.002 0.520 0.526 0.005 1.158 1.178
0.519 0.527 1.155 1.181

B 0.014 0.745 0.798 0.007 0.578 0.605

0.736 0.807 0.574 0.609

A 0.001 1.835 1.840 0.003 1.317 1.329

1.834 1.841 1.315 1.331

500 a 0.001 0.522 0.526 0.004 1.153 1.170
0.522 0.527 1.150 1.173

B 0.006 0.636 0.659 0.006 0.623 0.648

0.632 0.662 0.619 0.652

Continued Table 3
Case 3 Case 4
A=3,0=15,p=1.1) (A=25,0=17,3=12)

n Farinieey Standard Lower Upper Standard Lower Upper
deviation Bound Bound deviation Bound Bound

A 0.028 3.026 3.136 0.021 2.256 2.336

3.009 3.154 2.243 2.349

100 a 0.028 1.507 1.616 0.055 1.769 1.984
1.490 1.633 1.735 2.017

B 0.037 0.850 0.994 0.055 0.759 0.975

0.827 1.016 0.724 1.01

A 0.016 3.052 3.113 0.008 2.356 2.387

3.042 3.123 2.351 2.392

a 0.014 1.512 1.568 0.027 1.782 1.887

200 1.503 1577 1.765 1.903
B 0.019 0.911 0.984 0.021 0.821 0.903

0.899 0.995 0.808 0.916

300 Py 0.007 2.929 2.958 0.004 2.341 2.355
2.925 2.962 2.3 2.322
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0.008 1.547 1.578 0.012 1.905 1.95
a 1.542 1.583 1.898 1.957
0.010 0.875 0.916 0.007 0.693 0.72
B 0.869 0.922 0.688 0.725
A 0.005 2.945 2.964 0.004 2.278 2.294
2.942 2.967 2.275 2.296
400 o 0.006 1.545 1.566 0.011 1.923 1.967
1.541 1.570 1.916 1.974
B 0.007 0.853 0.876 0.007 0.665 0.695
0.849 0.880 0.66 0.699
A 0.004 2.880 2.897 0.004 2.303 2.319
2.877 2.900 2.339 2.357
500 a 0.004 1.543 1.560 0.008 1.881 1.912
1.540 1.562 1.876 1.917
B 0.005 0.864 0.881 0.005 0.724 0.744
0.861 0.884 0.721 0.747
Table 4: The results of optimal design of failure step-stress PALT
Case 1 Case 2
n AZ=2,0a=05,=15) A=15,0=1,=1.3)
T n;* GAV * ng* GAV
100 0.886 89 0.072 0.393 40 0.030
200 0.908 182 0.020 0.340 68 0.012
300 0.904 271 0.015 0.352 106 0.009
400 0.906 363 0.012 0.357 143 0.005
500 0.909 455 0.007 0.358 179 0.005
Case 3 Case 4
n (A=30=15,=1.1) A=25,0=17,=1.2)
T n;* GAV * ng* GAV
100 0.367 37 0.393 0.479 48 0.263
200 0.334 67 0.195 0.403 81 0.118
300 0.325 98 0.105 0.359 108 0.055
400 0.314 126 0.072 0.369 148 0.036
500 0.314 157 0.056 0.353 177 0.032

VIII. CONCLUSION

This article considered the problem of optimally designing simple failure step stress PALT

plans under type Il censoring. The test unit was assumed to follow inverse Weibull distribution.
Optimal test plans are important to improve the accuracy of parameter estimation thereby improving
the quality of inference. For this, the optimum of these plans is more useful and efficient to estimate the
life distribution at design stress. The performance of FSS-PALT plans is usually evaluated by the MLE
model assumptions of the model parameters. The asymptotic variance and covariance of estimators are
obtained. Based on asymptotic normality, the two sided confidence limits of the model parameters are
constructed. The optimal test plans were obtained by minimizing the GAV of the MLEs of the model
parameters. It is noted via the optimal value of m* , which is the proportion of units that must fail at
use stress for switching to accelerated stress.
As shown, from the numerical results, as the sample size increases, the ARBs, MSEs and REs of the
model parameters decrease. The interval of estimators decreases when the sample size increases. Also,
the optimum GAV decreases when the sample size increases. Finally, it seems that, for most parameter
cases, the optimal proportion of the test units that must fail at use stress for switching to accelerated
stress is approximately 40%.

FSS-PALT requires constant monitoring of the units under test and may not be convenient. But it is
more appropriate than TSS-PALT, where it enables the experimenter to collect sufficient information
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and to make a good statistical inference about the population parameters. This makes the prediction
reliability with highly level of accuracy.
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