
Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2479 | P a g e

Implementation of Optimization in Object-Oriented Queries

Ms M. C. Nikose
1
, Ms S.S.Dhande

2
Dr. G.R.Bamnote

3

*(Computer Science & Engineering, Sipna’s College of Engg & Tech / Amravati University, India)

** (Computer Science & Engineering, Sipna’s College of Engg & Tech / Amravati University, India)

*** (Computer Science & Engineering, P. R. Meghe Institute of Tech & Research / Amravati University, India)

ABSTRACT
Query optimization techniques are dependent upon

the query model and language. The query model, in

turn, is based on the data (or object) model since it

defines the access primitives which are used by the

query model. These primitives determine the power

of the query model. Object-oriented languages allow

expressing queries explicitly in the code, which are

optimized using the query optimization techniques

from the database domain. With respect to this, a

formalized object query language (OQL) has been

developed that performs optimization of queries at

compile time. We use a universal object data model

referred to as the stack based approach, which is

responsible for naming-scoping-binding principle.

In this paper we proposed one of the methods of

query optimization depending on rewriting. Query

rewriting deal with optimization method at textual

level. Optimization by rewriting concerns queries

containing so called independent subqueries. It

consists in detecting them and then factoring outside

the loops implied by query operators.

Keywords - Query model, OQL, Query optimization,

Rewriting, SBA.

I INTRODUCTION

Nowadays, the necessity to support complex

data in databases is intensified. Models trying to answer

to these needs appeared as the object-oriented and the

object relational model. Relational languages are

amplified to a big extent by the idea of declarative

query languages, notably SQL. However, the relational

model only permits the alphanumeric data management.

A similar role in object-oriented database is fulfilled by

object query languages. The usefulness of these

languages strongly depends on query optimization. The

data model of a DBMS lays down the possible structure

of the data; to provide easy access to the user, a high-

level query language is supported. The implementation

of such a high-level query language requires an

enormous effort; it is the task of the query optimizer to

ensure fast access to the data stored in the database[4].

A query language is special tool used in

contemporary database management systems (DBMSs)

to retrieve information from data storage. Although

finding information is probably the most important

application of modern query languages, they are also

used to insert, update, and remove data stored in a

database, to identify constraints, active rules, etc.

According to specialists modern query languages

should be, Declarative, of high-level, Macroscopic

Independent of the data organization, Interpreted,

Efficient.

In modern database query languages usually

have those features, these features are very useful. From

user point of view, because they make query language

user friendly. However, native evaluation of queries

defined in such languages may be very inefficient,

especially for large database. Therefore, efficient query

processing i.e. extraction of information from a

database is one of the most desirable features of

contemporary DBMSs. From user’s point of view a

system is a black box, for user the most important

criterion is the time needed to evaluate query.

Therefore, the main task of query optimization in

contemporary DBMSs is to minimize the time, of query

evaluation to the level accepted by the user.

 A query can be evaluated in many different

ways and the difference between the best access plan

and the worst one can be very large, sometimes many

orders of magnitude. Therefore, efficient query

optimization is one of the most important tasks of

DBMSs. DBMSs support high performance of query

processing by using special data structures (e.g.

indexes) or by performing some operations

simultaneously. However, the major potential of

performance improvement can be achieved by special

preprocessing of query before execution. This

preprocessing is referred as query optimization, is

performed by special module called query optimizer.

Generally approaches to query optimization

are subdivided into two main categories with regard to

when it is performed. If it is entirely performed before a

query is executed, then it is called static optimization. If

only a part of it is rendered before query execution and

the rest is made during evaluation (i.e. at run time), then

it is referred to as dynamic optimization[4].

II QUERY PROCESSING & OPTIMIZATION

Query processing and its optimization have

been two of the most popular areas of research in the

database community [6]. Query processing is the

sequence of actions that takes as input a query

formulated in the user language and delivers as result

the data asked for. Query processing involves query

transformation and query execution. Query

transformation is the mapping of queries and query

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2480 | P a g e

results back and forth through the different levels of the

DBMS. Query execution is the actual data retrieval

according to some access plan.

 An important task in query processing is query

optimization. Query optimization techniques are

dependent upon the query model and language. For

example, a functional query language lends itself to

functional optimization which is quite different from

the algebraic, cost-based optimization techniques

employed in relational as well as a number of object-

oriented systems. The query model, in turn, is based on

the data (or object) model since the latter defines the

access primitives which are used by the query model.

These primitives determine the power of the query

model. Usually, user languages are high-level,

declarative languages allowing to state what data

should be retrieved, not how to retrieve them. For each

user query, many different execution plans exist, each

having its own associated costs. The task of query

optimization ideally is to find the best execution plan,

i.e. the execution plan that costs the least, according to

some performance measure. Usually, one has to accept

just feasible execution plans, because the number of

semantically equivalent plans is too large to allow for

enumerative search.

2.1 QUERY PROCESSING ARCHITECTURE

 During static analysis we simulate run-time query

evaluation to gather information that we need to

optimized the queries. The general architecture of query

processing is shown below. A parser of queries and

programs takes a query source as input, makes syntactic

analysis and returns a query/program syntactic tree. A

query/program syntactic tree is a data structure which

keeps the abstract query syntax in a well-structured

form, allowing for easy manipulation (e.g. inserting

new nodes or subtrees, moving some subtree to another

part of the tree, removing some subtrees, etc.). Each

node of the tree contains a free space for writing

various query optimization information.

Syntactic trees are the most convenient way to represent

and to process query that can be optimized through

rewriting to be used during query evaluation. Static

analysis involves,

• Metabase (counterpart of an object store),

which is a formal data structure representing

database schema.

• Static environmental stack (counterpart of a

run-time environmental stack) that stores so-

called static binders, i.e. named signatures.

The structure during compile time simulates

all the operations that are made on the

environmental stack by query/program run-

time mechanism.

• Static result stack: the structure that

accumulates signatures being the type

description of corresponding run-time

temporary and final query results.

Query processors are usually combination of two

components namely,

 Query parser: checks whether a query is

syntactically and semantically correct, and

transform it to some internal form.

 Query optimizer: determines query evaluation

plans. A query optimizer should generate a set

of plans, among these only one of the plan is

chosen.

 Query plan evaluator: evaluates query in

accordance with the chosen evaluation plan.

III STACK-BASED APPROACH (SBA)
 SBA is a formal frame addressing object-oriented

database query and programming languages (PLs). The

approach is motivated by the belief that there is no

definite border line between querying and

programming; thus there should be a universal theory

that uniformly covers both aspects. SBA[5] offers a

unified and universal conceptual and semantic basis for

queries and programs involving queries, including

programming abstractions such as procedures,

functions, classes, types, methods, views, etc. SBA [7]

treats query language as a special kind of programming

language; it is an attempt to build a uniform semantic

foundation for integrated query and languages. SBA

allows to precisely determining the semantics of query

languages; there relation with object oriented concepts,

with imperative programming constructs and with

programming abstraction, including procedures,

functional procedures views, modules etc. its main

features are the following

 The naming-scoping-binding principle is

assumed, which means that each name

occurring in a query is bound to the

appropriate run-time entity (an object,

attribute, method, parameter, etc. according to

the scope of this name).

 One of its basic mechanisms is an

environmental stack (ES). The stack is

responsible for scope control and for binding

names. In contrast to classical stack it does not

store objects, but some structures built upon

object identifiers, names, and values.

 In contrast to relational languages and OQL,

the relativity principle is assumed, i.e. the

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2481 | P a g e

syntax, semantics, and pragmatics are identical

at an arbitrary level of data hierarchy.

 Types are a mechanism to determine whether

objects are built in a proper way (i.e. in

accordance with the database schema).

 For objects the principle of internal

identification is assumed (i.e., each run time

entity has a unique internal identifier).

IV ABSTRACT OBJECT-ORIENTED STORE

MODEL
An object store model is simply an abstract

view on data structured stored in the database and is

orthogonal to any ideologies such as the relational

model or XML. The main components of object store

model are its location, the name that can be used to

denote it, the value stored there i.e. its contents. Atomic

values, records ,conceptual object are the example of

object store, which resides somewhere in memory and

needs location for internal identiction to perform

operation like update, retrive, delete. These location

does not have meaning or structure,instede they can be

used to access object. Location are some times called as

identifires[5].

In SBA each object has the following features;

 Internal object identifier (OID): It is used to

identify internally an object from the object

store model; in particular, it will be used as a

reference or pointer to an object. For each

object stored in the object store its internal

object identifier is unique.

 External object name: They are explicitly

assigned to objects by a database designer, a

database administrator, an application

programmer, or another human agent, e.g.

Person, Department, etc.

 Contents of an object, which can be a value, a

link or a set of objects.

Following three sets are used to define object,

 set of internal identifiers

 N- set of external names

 V- set of atomic values

Formally let, i, i1, i2 Є I, n Є N and v Є V. Objects are

formulated as three triples as,

 Atomic object: <i, n, v> where i is the ID of

the object, n is an external name assigned to

the object, and v is the value of the atomic

object (e.g. an integer, a string, etc.)

 Link object: <i1, n, i2 > where i 1 is the ID of

the reference object, n is an external name

assigned to the object, and i2 is the ID of the

object referred to.

 Complex object <i, n, S> where i is the ID

of the object, n is an external name

assigned to the object, and S is a set of objects.

V ENVIRONMENTAL STACK

Environmental stack (ENVS) is a basic concept of

semantics and implementation of majority of well-

known programming languages. The stack employs

following roles

 Control over scopes of variable names

occurring in a program and binding these

names to run-time entities;

 Storing values of local variables of procedures;

 Storing values of actual parameters of

procedures;

 Storing a return track, i.e. an address of the

program code where the control should be

returned after the given procedure is

terminated (usually the next address after the

procedure call).

 ENVS is subdivided into sections, which are

ordered, with newest section known as top and oldest

one as bottom. A section is associated with a particular

procedure call or an executed program block. When the

control is transfer to a procedure call, a new section of

volatile objects (activation record) is pushed on the top

of the stack. The section is popped from the sack when

the procedure or program block is terminated. For the

procedure that is currently running all values of

parameters, local variables, objects and any other local

entities are stored within the top stack section.

Activation record possess the abstraction principle,

which allows the programmer to consider the currently

being written piece of code to be independent of the

context of its possible uses. The stack allows to

associate parameters and local variables to particular

procedures invocation. The stack also used to

accomplish strong typing, encapsulation, inheritance

and overriding. In SBA the stack has a new function:

processing queries acting on the object store. It makes it

possible to control scopes of all names occurring in a

query in a simple and uniform way. It also makes it

easier to understand the precise semantics of queries[1],

[5].

5.1 Concept of Binding

The mechanism, which make it possible to

determine the meaning of each name is called binding.

The sections of ENVS consist of entities called binders

whose role is to relate a name with a run time entity

(object, procedure, view). Binding of the name n means

that the query interpreter looks through the consecutive

sections of the ENVS to find the closest binder with the

name n. Binding is performed on ENVS according to

“search from the top” rule. A binder is a pair (n, x),

where n is an external name, and x is some value

(reference to object). The pair is written as n(x). A

binding action for some name Y is performed according

to the following steps:

 The machine checks the top of the stack for an

entity named Y; if there is such an entity, the

binding returns it as the result and the action is

terminated.

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2482 | P a g e

 If the top does not contain an entity named Y, a

section below the top is checked.

 Such a process is continued in lower and lower

stack sections, till the entity named Y is found.

Visiting particular stack sections is governed

by scoping rules that require omitting some

sections;

 If Y is not found on the stack, then the global

environment is searched. The global

environment contains static variables, database

objects, computer environment variables,

procedure libraries, etc. Alternatively, we can

assume that the global environment is the

lowest stack section in such a case Y must be

found on the stack, otherwise an error should

be reported.

5.2 Opening a new section of ENVS

In SBA at the beginning of a user session

ENVS contains of single section containing binders for

all root database objects. During query evaluation the

stack is growing and shrinking according to query

nesting. The final ENVS state is exactly the same as the

initial state. Opening a new scope on the environment

stack is caused by entering a new procedure (function,

method) or entering a new block. Respectively,

removing the scope is performed when the control

leaves the body of the procedure or the body of the

block. To these classical situations of opening a new

scope on the environment stack we add a new one. It is

the essence and motive of SBA.

The idea is that some query operators which

combines queries behave on the stack similarly to

program blocks. These operators are divided into

algebraic and non-algebraic. The main difference

between them is whether they modify ES during

evaluation or not. An operator is algebraic if it does not

modify the state of ENVS. The algebraic operators

include numerical and string operators and

comparisons, Boolean and, or, not, aggregate function,

and sequence operators and comparisons, structure

constructor, dereferencing etc. Operators which name a

query result are unary algebraic operators too. If query

q1 Ɵ q2 involves a non-algebraic Ɵ, then q2 is

evaluated in the context of q1. The context is

determined by the new section opened by the Ɵ

operator on ENVS for an element of q1. A new stack

section pushed onto ENVS is constructed by a special

function. Subqueries q1 and q2 cannot be processed

independently, the order of evaluation is important.

Non-algebraic operators include projection /navigation

(q1.q2), selection (q1 where q2), dependent join (q1

join q2), quantifiers (Ǝq1q2), transitive closure and

ordering.

The following figure present all the stages of

the evaluation of simple query P.getSal()>2500, here

the part getSal>2500 behaves like a program block

executed in the environment consisting of the interior of

an professor object.

Fig. 2: Evaluation of query P.getSal ()>2500

VI STATIC ANALYSIS OF QUERIES

Static analysis is a compile-time framework of

static optimization. It performs the following tasks,

 Type checking: each name and each operator

is checked according to the class hierarchy.

 Each name occurring in query is assigned to

ENVS section, which is relevant for binding

name.

 Generating syntax trees of queries which are

then modified by query rewriting methods.

6.1 Static Analysis Algorithm

In our project we are assume that queries can

be invoked for an arbitrary state of the object store and

ENVS, thus at compile time we cannot predict

precisely. So the algorithm of run-time evaluation is

modify little to analyze queries statically. Generally, the

algorithm of static analysis works in the same way as

algorithm of run-time evaluation with some changes as,

 Operations are performed on signatures rather

than of run-time entities

 The signature of the query l, where l is literal,

is inferred type of l, e.g. integer, Boolean,

string etc.

 The result signature of the query is n, where n

is name, is inferred from static ENVS as the

system binds name n (by looking static binder

n(x)) on static ENVS. Resulting signature is x.

 If the query is of the form q as n, and q has the

signature <q_sig>, then the query has the

signature n(q_sig).

 If a query has the form q1 Δ q2, where Δ is

algebraic operator, then signature of query is a

composition of signatures of its components,

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2483 | P a g e

according to the type inference rule for Δ

operator. E.g. if q1 has the signature integer,

q2 has real and the operator is + then resulting

signature is real.

 The signature of query q1 Ɵ q2, where Ɵ is

non-algebraic operator, is composed of the

signature of q1 and q2 in the way determined

by the Ɵ operator.

 The signature of a new section pushed onto the

static ENVS stack is built based on the

elements of the signature of the static value

processed by a non-algebraic operator in away

similar to that at run time. For instance, if the

signature of the value is ref(student), then the

signature of the new ENVS section

is{name(ref(name)), subject(ref(subject)),

grade (ref(grade))}. Similarly for signature

storing class properties.

VII METHOD OF INDEPENDENT

SUBQUERIES

In this paper we are proposing one of the

methods of query optimization. The idea of this method

is based upon the observation that, if none of the name

in subquery is bound in the ENVS section opened by

the non-algebraic operator currently being evaluated,

then this subquery is independent of this operator.

Subqueries are called independent if they can be

evaluated outside loops implied by the non-algebraic

query operators. Such subqueries are worth analyzing

because they usually imply optimization possibilities

[1],[2].We use a special technique called the method of

independent subqueries to optimize queries. This

method is based on query rewriting that deals with

optimization method at textual level. Rewriting means

transforming a query q1 into a semantically equivalent

query q2 promising much better performance.

Technically, it consists in analyzing in which

sections particular names occurring in a query are

bound. It turns out that if none of the names in given

subquery is bound in the scope opened by the non-

algebraic operator currently being evaluated, then that

subquery can be evaluated earlier than it results from its

textual place in the query it is a part of. The method

modifies the textual form of a query so that all its

subqueries will be evaluated as soon as possible. To

determine in which scopes names occurring in a query

are bound at run time [9], we statically analyze that

query and during analyzing we additionally do the

following:

 Each non-algebraic operator is assigned the

number of the scope it opens,

 Each name in the query is assigned two

numbers:

o The stack size: the number of scopes

thst is on static ENVS when the

binding of this name is being

performed.

o The binding level: the number of the

scope on the stack in which this name

is bound.

All those numbers are determined relatively to the

bottom scopes of a query.

VIII EXPEREMENTAL SETUP AND

RESULT

Query optimization is the process of finding

the best or rather a reasonably efficient execution plan,

thus by minimizing the time of query evaluation & the

cost of evaluation to the level accepted by user. The

proposed method optimizes the object oriented queries

in order to reduce the time required to execute a query.

Here we consider an object-oriented database db4o. It

provides all the benefits of an OO environment

including data abstraction, inheritance, and

encapsulation. The object model simplifies maintenance

and refactoring and seamlessly integrates with the

modern programming languages (Java, .NET)[10].

The db4o object database engine consists of

one single jar file. To install db4o we have to add one

of the db4o-*.jar files to your CLASSPATH. Here we

are using an integrated development environment like

Eclipse SDK, we need to copy the db4o-*.jar to the lib

folder of our project and then add db4o to our project as

a library. The experiment is performed on the Intel core

i3 processor 4GHz system running windows7 Home

Basic with 4 GB RAM.

The entire process of query optimization is

proposed as follows:

1. First take a query as an input

2. Comparison OODBMS (db4o) & RDBMS

(MySQL) in terms of time.

3. Rewriting step

Example Database

The fig3 shows the class hierarchy of an

example database it defines three classes as Student,

Professor, and Lecture. The name of the class is

followed by cardinality. All objects and class properties

are public. Student, Professor, and Lecture are the root

objects. Fig4 shows tiny database built upon the schema

presented in fig. To store class properties we use special

objects. Links are denoted by arrows, and inherited

links are denoted by thick arrows.

Fig.3: Class Hierarchy

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2484 | P a g e

Fig. 4: Tiny Database

Step I: Taking query as input

Consider a query, which retrieves and count number of

student whose course name is same as that of the

lecture taught by the professor.

Return

lect..attendedBy().getCourseName().equals(“Physics”)

 (1,1)2 (2,2) 3 (3,1) (1)

&& lect . givenBy() . getName. equals(“Rathi”)

 (1,1) 4 (4,2) 5 (5,5)

 && lect . getSubject1(). equals(“physics”)

 (1,1) 6 (6,1)

Notice that when an evaluation of its subquery (getting

name of professor giving a lecture)

lect . givenBy(). getName(). name (2)

At starting there are two non-bottom section on ENVS:

one is open by internal dot operator and other is by

external dot operator. Subquery (2) is independent of

non-algebraic operator (dot), since all names in this

subquery are bound either in section 4 or section 2,

while that operator opens section 3. However it is

dependent on internal dot operator, which opens section

2, since givenBy is bound at section 2. Subquery (2)

can be evaluated separately as it is independent of

external dot operator.

Step II: Comparison of Query generation parameter in

terms of Query Languages (OQL with SQL)

The query taken in first step is executed in

both db4o and MySQL database. The following

snapshot shows the time required to execute a query in

both the database. From this snapshot it is clear that

db4o takes less time as compare MySQL.

Screenshot 1: comparison of query languages

Fig.6 shows performance of proposed query

evaluation of db4o with MySQL in terms of time.

Fig 5 . Run time of queries

Fig.6 comparison of queries

Step III: Rewrite step

Rewriting means transforming a query q1 into

a semantically equivalent query q2 promising much

better performance. It consists in detecting parts of a

query matching pattern. When it is recognized, a query

is rewritten according to the predefine rewriting rule.

Such optimization is compile-time action entirely

performed before query is executed, hence query

0

1

2

3

4

5

DB4o SQL

Run Time
Run
Time

T
im

e
in

 S
ec

o
n

d
s

0

1

2

3

4

5

6

1 2

DB4o
SQL

T
im

e
in

 S
ec

o
n

d
s

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2485 | P a g e

optimization process itself does not burden the

performance. Rewriting requires performing a special

phase called static analysis. During the static analysis

we simulate run time query evaluation to gather all the

information that we need to optimize queries

DB4o supports three query languages[10] as

1. Query by Example: This is special query

method. These are appropriate as a quick start

for users who are still acclimating to storing

and retrieving objects with db4o, but they are

quite restrictive in functionality such as

Advanced query expressions,(AND, OR,

NOT, etc.) cannot performed, Cannot

constrain on values like 0 (integers), "" (empty

strings), or nulls (reference types). Basically

you pass in a example object to db4o. Then

db4o searches the database for all objects

which look alike.

2. Native Queries: Native queries are the main

db4o query interface and they are the

recommended way to query databases from

your application. Because native queries

simply use the semantics of your programming

language, they are perfectly standardized and a

safe choice for the future. It provide the ability

to run one or more lines of code against all

instances of a class. Native query expressions

should return true to mark specific instances as

part of the result set. db4o will attempt to

optimize native query expressions and run

them against indexes and without instantiating

actual objects, where this is possible. In

principle you can run arbitrary code as native

queries

db4o tries to analyze native queries to convert them

to SODA. This is not possible for all queries. For some

queries it is very difficult to analyze the flowgraph. In

this case db4o will have to instantiate some of the

persistent objects to actually run the native query code.

db4o will try to analyze parts of native query

expressions to keep object instantiation to the

minimum.

3. SODA Queries: The bytecode is analyzed to

create an AST-like expression tree. Then the

flow graph of the expression tree is analyzed

and converted to a SODA query graph. First

the signature of the given class is analyzed to

find out the types. This is used to constrain the

type in the SODA-query. When the operations

a simple and easy to convert, it will be

transformed to complete SODA query SODA

acts like a filter on all stored objects. But

usually you're only interested for instances of a

certain type. Therefore you need to constrain

the type of the result. You can add constrains

on fields. This is done by descending into a

field and constrains the value of that field. By

default the constrain is an equality

comparison.

 A query in first step can be rewrite into three languages

provided by db4o, in order to improve the performance

of query optimization. Since the three languages

provided by db4o uses different semantics, the query

execution result is same but varies in performance. Fig

shows the rewriting of query

Screenshot 2: Executing Rewritten query

Table 1: run time of qurey

Query Language Time in Seconds

SODA Query 0.36

Native Query 1.76

Arbitory code NQ 0.51

Fig.8 Run time of queries

Fig. 9 comparison of queries

0

0.5

1

1.5

2

SODA ARCN NQ

Run Time

Run Time

T
im

e
in

 S
ec

o
n

d
s

0

0.5

1

1.5

2

1 2

SODA

ACQ

NQ

T
im

e
in

 S
ec

o
n

d
s

Ms M. C. Nikose, Ms S. S. Dhande,

Dr. G. R. Bamnote / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.2479-2486

2486 | P a g e

IX CONCLUSION
One of the biggest problems in Object

Oriented Database is the optimization of queries. Due

to these problems optimization of object-oriented

queries is extremely hard to solve and is still in the

research stage. Finding the optimal strategy is usually

too time-consuming except for the simplest of queries

and may require information on how the files are

implemented and even on the contents of the files,

information that may not be fully available in the

DBMS catalog. Hence, planning of an execution

strategy may be a more accurate description than query

optimization. This proposed work is expected to be a

significant contribution to the Database Management

area which will not only reduce time or efforts but will

also improve the quality.

REFERENCE

[1]. [JPlod00] J. Płodzień, A. Kraken, “Object

Query Optimization through Detecting

Independent Subqueries”, Information

Systems, Elsevier Science, 25(8), 2000,

pp. 467-490.

[2]. [Mich09] Michel Bleja, Krzysztof Stencel,

Kazimierz Subeita, Optimization of Object-

Oriented Queries Addressing Large and Small

Collections, Proc. Of the IMCSIT, 2009, ISBN

978-83-60810-22-4, Vol. 4, pp. 643-680.

[3]. [Venk10] Venkata Krishna Suhas Nerella,

Swetha Surapaneni, Sanjay Kumar Mardria,

Thomos Weigert, Department of Computer

Science, Missouri Univarsity of Science &

Tech, Rolla, MO, 34 th Annual IEEE

Computer Software & Applications

Conference,2010.

[4]. [Plod00] J. Plodzien, “Optimization Methods

in Object query Languages”, Ph. D. Thesis,

Institute of Computer Science, Polish

Academy of Sciences, 2000.

[5]. [Subi95] K.Subieta, C.Beeri, F.Matthes,

J.W.Schmidt. A Stack-Based Approach to

Query Languages. Proc.2nd East-West

Database Workshop, 1994, Springer

Workshops in Computing, 1995, 159-180.

[6]. [Adam08] R.Adamus, M.Daczkowski,

P.Habela, K.Kaczmarski, T.Kowalski,

M.Lentner, T.Pieciukiewicz, K.Stencel,

K.Subieta, M.Trzaska, T.Wardziak, J.Wiślicki:

Overview of the Project ODRA. Proceedings

of the First International Conference on Object

Databases, ICOODB 2008, Berlin 13-14

March 2008, ISBN 078-7399-412-9, pp.179-

197.

[7]. [Subi10] K.Subieta. Stack-Based Architecture

(SBA) and Stack-Based Query

Language(SBQL). http://www.sbql.pl/, 2010.

[8]. [CIDe92]Cluet, C. Delobel. A General

Framework for the Optimization of Queries.

Proc. Of SIGMOD Conference, 383-392,1992.

[9]. [MAG05] Minyar Sassi, and Amel Grissa-

Touzi Contribution to the Query Optimization

in the Object-Oriented Databases” Volume 6

ISSN, June 2005 1307-6884

[10]. [db4oOSODB] db4objects 11.2008,

db4o Open Source Object Database.

