
Dipti Diwase, Shraddha Shah, Tushar Diwase, Priya Rathod / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1151-1156

1151 | P a g e

Survey Report on Memory Allocation Strategies for Real Time

Operating System in Context with Embedded Devices

Dipti Diwase*, Shraddha Shah**, Tushar Diwase***, Priya Rathod****

*Department of Computer Science & Engineering, G. H.R.C.E., Nagpur, India

**Department of Electronics & Telecommunication, G. H.R.C.E., Nagpur, India

***Department of Electronics & Communication, D.B.A.C.E.R, Nagpur, India

****Department of Electronics & Telecommunication, G. H.R.C.E., Nagpur, India

ABSTRACT
An embedded system is a computer system

designed for specific control functions or for any

dedicated application, often with real-time

computing constraints. Real time operating

system (RTOS) is specially used to meet the real

time constraint and to support the sophisticated

facilities provided by embedded system. While

designing any embedded system memory

management is an important issue. Embedded

system developers commonly implement custom

memory management facilities on top of what the

underlying RTOS provides. That’s why

understanding memory management is therefore

an important aspect. In this paper we are dealing

with different memory management strategies and

algorithm that are used in real time operating

system in order to improve the performance of the

intended application. Firstly we have compared

the static and dynamic memory management

strategy and then we consider different algorithms

that can be used to implement the dynamic

memory management in real time operating

system.

Keywords - Real Time Operating System,

Memory allocation, sequential fit, Buddy

Allocator, Indexed fit, Two Level Segregated Fit

algorithm, Smart Memory Allocator.

I. INTRODUCTION
Embedded systems have become an integral part of

daily life. Be it a cell phone, a smartcard, a music

player, a router, or the electronics in an automobile -

these systems have been touching and changing

modern lives like never before. An embedded system

is a combination of computer hardware, software, and

additional mechanical or other technical components,

designed to perform a dedicated function.

Sophisticated facilities provided by an Embedded

System are shown in figure 1. Most of the embedded

systems need to meet real-time computing

requirements. Thus real time operating system

(RTOS) is one of the major building blocks of the

Embedded Systems. Along with the real time

requirement many times embedded system is having

limited memory and processing power. Therefore,

understanding Memory management an important

aspect.

Figure. 1: Facilities provided by Embedded System

Before moving towards the memory management

concept; let’s have a look at what is RTOS and what

kind of features it has. RTOS stands for “Real Time

Operating System” which is nothing but an operating

system that supports real-time applications by

providing correct result within the deadline. Real

Time Operating System can be categorize as hard

real time system and soft real time system based on

how strictly it follows the task completion deadline.

The basic difference between general operating

system and real time operating system is given in

Table I. Differentiation is made on different aspects

like determinism, preemptive kernel, priority

inversion, task scheduling, latency is priorly defined

or not etc. RTOS's are designed in such a way that

the timing of events is highly deterministic.

http://en.wikipedia.org/wiki/Computer_system
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing

Dipti Diwase, Shraddha Shah, Tushar Diwase, Priya Rathod / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1151-1156

1152 | P a g e

Table I: Difference between General Purpose OS and

RTOS

 RTOS
General Purpose

OS

Determinism Deterministic Non-deterministic

Preemptive

kernel

All kernel

operations are

preemptable.

Not Necessary

Priority

Inversion

Have mechanisms

to prevent priority

inversion

No such

mechanism is

present

Task

Scheduling

Scheduling is time

based

Scheduling is

process based

Latency

Have their worst

case latency

defined

Latency is not of

a concern

Purpose OS

Application

Typically used for

embedded

applications

General purpose

OS is used for

desktop PCs or

other generally

purpose PCs

RTOS is key to many embedded systems and

provides a platform to build applications [14]. Figure

2 shows the overview of embedded system meant for

real time applications.

Figure 2: overview of embedded system meant for

real time applications

RTOS provides following features [14]:

 Synchronization: Synchronization is necessary

for real time tasks to share mutually exclusive

resources. For multiple threads to communicate

among themselves in a timely fashion,

predictable inter-task communication and

synchronization mechanisms are required.

 Interrupt Handling: Interrupt Service Routine

(ISR) is used for interrupt handling. Interrupt

latency is defined as the time delay between the

occurrence of an interrupt and the running of the

corresponding Interrupt Service Routine (ISR).

 Timer and clock: Clock and timer services with

adequate resolution are vital part of every real-

time operating system.

 Real-Time Priority Levels: A real-time operating

system must support real-time priority levels so

that when once the programmer assigns a priority

value to a task, the operating system does not

change it by itself.

 Fast Task Preemption: For successful operation

of a real-time application, whenever a high

priority critical task arrives, an executing low

priority task should be made to instantly yield

the CPU to it.

 Memory Management : Real-time operating

system for large and medium sized application

are expected to provide virtual memory support,

not only to meet the memory demands of the

heavyweight real-time tasks of an application,

but to let the memory demanding non-real-time

applications such as text editors, e-mail etc. An

RTOS uses small memory size by including only

the necessary functionality for an application

while discarding the rest [14].

Figure 3: Features Provided By RTOS

In section II we will discuss the memory

management in real time operating system, section III

is dedicated to the dynamic memory management and

different algorithms available for it.

II. MEMORY MANAGEMENT
Basically two types of memory managements are

provided in RTOS stack and heap. The stack

management is used during context switching for

System H/W RTOS

End User Application

Program

Dipti Diwase, Shraddha Shah, Tushar Diwase, Priya Rathod / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1151-1156

1153 | P a g e

Task Control Blocks while heap management deals

with memory other than memory used for program

code and it is used for dynamic allocation of data

space for tasks. Management of this memory is called

heap management [6][12].

Real time operating system also supports static and

dynamic memory management [7]. Table II. describe

the basic difference between static memory

management and dynamic memory management.

Table II. Difference between static and dynamic

memory management

 Static Memory

management

Dynamic Memory

Management

1

Memory is allocated

at compile or design

time.

Memory is

allocated at run-

time.

2

Here, memory

allocation is a

deterministic process

that means required

memory for particular

process is already

known and once

memory is allocated

no changes can be

during at run time

Dynamic memory

management

requires memory

manager to keep

track of which parts

of the memory in

use and which parts

are not. This help

to allocate memory

to processes when

they need it and to

deallocate it when

they are done.

3

No memory

allocation or

deallocation actions

are performed during

execution.

Memory Bindings

are established and

destroyed during

the Execution.

4
More memory Space

required.

Less memory

Space required.

The above figure 4, shows the classification of

Memory Management Techniques. Dynamic memory

management can be classified into two categories:

1. Manual memory management

 In manual memory management, the programmer

has direct control on process of memory is allocation

and recycling. Usually this is either by explicit calls

to heap management functions or by language

constructs that affect the stack.

Figure 4: Classification of Memory Management

Technique

Advantage:

 Manual memory management is easier for

programmers to understand and use.

Disadvantage:

 Memory management bugs are common when

manual memory management is used.

2. Automatic memory management

In case of Automatic memory management,

automatic memory managers (often known as

garbage collectors) usually do their job by recycling

blocks that are unreachable from program variables.

Advantage:

 Automatic memory management eliminates most

memory management bugs.

Disadvantage:

 Sometimes automatic memory managers fail to

deallocate unused memory locations causing

memory leaks.

 Automatic memory mangers usually consume a

great amount of the CPU time and usually have

nondeterministic behavior.

In this paper, we focus only on supporting manual

memory management techniques suitable for real-

time systems.

III. DYNAMIC MEMORY ALLOCATION

ALGORITHMS
The main motive of DMA algorithms is to allow the

application to access blocks of memory from a pool

of free memory blocks [2][5][8]. Number of

Dynamic Memory Allocation algorithms has been

developed till now and most of them are based on the

strategy in which link all free blocks are linked

Dipti Diwase, Shraddha Shah, Tushar Diwase, Priya Rathod / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1151-1156

1154 | P a g e

together to form one or more list containing free

memory blocks so that free memory can be made

available for the another process in execution. Use of

one free list to keep track of free memory blocks is

the simplest method; however, algorithms utilizing

multiple free lists often results in better performance

specially for the system that requires good and

reliable timing response at the cost of high memory

footprint [2][5][8]. But still DM Allocators usage

unreliable for embedded systems due to its

unbounded long response time or its inefficient

memory usage. The DM allocators for embedded

systems should be implemented in their constrained

operating systems by considering the limited

available resources. Hence, the allocators should

provide both the features such as optimum memory

footprint [1].

The following are some DMA Algorithms that are

used so far.

1. Sequential Fit

 Sequential fit is the most basic algorithm

which uses a single linear list of all free memory

blocks called a free list. Free blocks are allocated

from this list in one of four ways [13]:

 First fit: the list is searched from the beginning,

returning the first block large enough to satisfy

the request;

 Next fit: the list is searched from the place where

the last search left off, returning the next block

large enough to satisfy the request;

 Best fit: the list is searched exhaustively,

returning the smallest block large enough to

satisfy the request.

 Worst fit : the list is searched; returning largest

available free block .[13]

Advantage:

 Simple to understand and easy to apply.

Disadvantage:

 As memory available for allocation becomes

large, the search time becomes large and in the

worst case can be proportional to the memory

size.

 As the free list becomes large, the memory used

to store the free list becomes large; hence the

memory overhead becomes large

 Sequential Fit is not a good strategy for RTSs

because it is based on a sequential search, whose

cost depends on the number of existing free

blocks.

 This search can be bounded but the bound is not

normally acceptable.

2. Buddy allocator System

A buddy allocator uses an array of free list s, one for

each allowable block size (e.g., allowable block size

is a power of 2 in the case of binary buddy system)

[10]. The buddy allocator rounds up the requested

size to an allowable size and allocates from the

corresponding free list. If the free list is empty, a

larger block from another free list is selected and

split. A block may only be split into a pair of buddies

(of the same size in case of binary buddy system). A

block may be coalesced only with its buddy, and this

is possible only if the buddy has not been split into

smaller blocks [10].

Advantage:

 The advantage of a buddy system is that the

buddy of a block being freed can be quickly

found by a simple address computation.

Disadvantage:

 The disadvantage of a buddy system is that the

restricted set of block sizes leads to high internal

fragmentation, as does the limited ability to

coalesce.

3. Indexed Fit

Indexed fits are a class of allocation mechanisms that

use an indexing data structure, such as a tree or hash

table, to identify suitable free blocks, according to the

allocation policy [10][13].

Advantage

 This strategy is based on the use of advanced

structures to index the free memory blocks thus

provide better performance.

4. Bitmapped Fit

 Bitmapped Fits are a class of allocation

mechanisms that use a bitmap to represent the usage

of the heap. Each bit in the map corresponds to a part

of the heap, typically a word, and is set if that part is

in use [10][11].

Advantage:

 In Bitmapped Fit mechanism, the search time is
proportional to the bitmap size which result in a

small memory overhead.

5. Two Level Segregated Fit Algorithms

Two level segregated fit solves the problem of the

worst case bound maintaining the efficiency of the

allocation and deallocation operations allows the

reasonable use of dynamic memory management in

real-time applications. The two level segregated fit

Dipti Diwase, Shraddha Shah, Tushar Diwase, Priya Rathod / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1151-1156

1155 | P a g e

algorithm provides explicit allocation and

deallocation of memory. There exists an increasing

number of emerging applications using high amounts

of memory, such as multimedia systems, video

streaming, video surveillance, virtual reality,

scientific data gathering, or data acquisition in

control systems.

In order to meet these constraints and requirements,

two level segregated fit has been designed with

guidelines like immediate merging, splitting

threshold for optimizes the memory usage and Good-

fit strategy which tends to produce the lowest

fragmentation on real workloads, compared to other

approaches such as first fit approach. To implement a

good-fit strategy two level segregated fit algorithm

uses a segregated fit mechanism. The basic

segregated fit mechanism uses an array of free lists,

with each array holding free blocks within a size

class. In order to speed up the access to the free

blocks and also to manage a large set of segregated

lists (to reduce fragmentation) the array of lists has

been organized as a two-level array. The first-level

array divides free blocks in classes that are a power

of two apart and the second-level sub-divides each

first-level class linearly, where the number of

divisions can be determined by the user. Each array

of lists has an associated bitmap used to mark which

lists are empty and which ones contain free blocks.

This bitmap helps in identifying free blocks for

satisfying memory requests. Inside the block itself,

Information regarding each block is stored [3][4].

Advantage:

 In Two Level Segregated Fit, there is extremely

low overhead per allocation.

6. Smart Memory Allocator Algorithm

Smart Dynamic Memory Allocator is a new

allocation style which allows designing a custom

dynamic memory allocation mechanism with reduced

memory fragmentation and superb response time.

Here, the long-lived memory blocks are handled

independently form short-lived memory blocks by

the allocator. The direction of growing of heap is

different for both types of memory blocks. The short-

lived blocks are allocated from heap in the direction

of bottom to top and the long-lived blocks are

allocated from top to bottom. The used space of the

heap grows from both sides. Initially whole heap

memory is free and there is only one free block each

for short-lived and long-lived memory pool. The

heap space is initially divided into two blocks (with

no physical Boundary) in a predefined proportions,

one for short-lived and the other for long-lived

objects. As the heap grows from both sides, the

boundary (virtual boundary) between short-lived

memory pool and long-lived memory pool can be

easily modified according to the run time memory

requirements. For instance, let the heap size is 400

bytes, each short and long-lived memory pool has

only one free block of size 200-bytes. In response to

a memory block request of size 16-bytes (for

instance, short-lived memory), the bottom 16-bytes

of the free block corresponding to short-lived blocks

is allocated for the request. In distinction, upon a

memory request of block size 64-bytes (assume,

long-lived object), the top 64-bytes of the free block

corresponding to long-lived memory blocks is

allocated for the request.

A new smart dynamic memory allocator particularly

for embedded systems have limited memory and

processing power. The smart allocator predict the

short-lived objects and allocates those objects on one

side of the heap memory and remaining objects on

other side of the heap memory for effective use of

memory footprint. The allocator reduces the memory

fragmentation by using directional adaptive

allocation based on the predicted object lifetimes the

lifetime can be predicted using a mixture of block

size and the number of allocation events [1].

The allocator is implemented with improved

multilevel segregated mechanism by means of lookup

tables and hierarchical bitmaps that guarantee very

good response time and dependable timing

performance.

Figure 5: Organization of Free-block Lists [1]

A large number of free-lists are used by the smart

memory allocator. Where, each Free-list keeps the

Dipti Diwase, Shraddha Shah, Tushar Diwase, Priya Rathod / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 3, May-Jun 2012, pp.1151-1156

1156 | P a g e

free blocks of size inside a predefined range and also

the blocks belongs to some specific block-type. As

shown in above figure 3, the free-lists are organized

into 3 level arrays. Managing the short-lived memory

blocks independently from long-lived memory blocks

effectively without causing extra search overhead, the

free-lists are controlled into three-level arrays. The

first-level divides the free-lists into free-list-classes

(for example, the block sizes between (215-1) and

214 comes beneath 14th free-list-class), each class of

free-lists are further subdivided into diverse free-list-

sets with each set keeping the free blocks of size

within a predefined range (the dynamic rage of class

is linearly subdivided among all the free-list-sets).

Finally, each set of free-list-sets is divided into two

free-list-ways, one equivalent to short-lived and other

equivalent to Long-lived [1].

7. Comparison between Different Memory

Allocation Algorithms

In the above table III, we have done comparison

between various memory management algorithms on

the basis of resulting fragmentation, response time

and memory footprint usage

Table III: Comparison between Different Memory

Allocation Algorithms

Parameters

Fragment-
ation

Memory
Footprint
Usage

Response
Time

M
e
mo
r
y
Ma
n
ag
em
e
nt
 A
l
go
ri
t
hm
s
 Sequential

fit
Large Maximum Slow

Buddy
System

Large Maximum Fast

Indexed
fit

Large Minimum Fast

Bitmapped
fit

Large Maximum Fast

TLSF Small Minimum Faster

Smart
Memory
Allocator

Reduced Minimum
Excellen

t

IV. CONCLUSION
Memory Allocation is one of the most crucial

components RTOS based Embedded System. There

are different memory allocation algorithms are

available. The major challenges of memory allocator

are minimizing fragmentation, providing a good

response time, and maintaining a good locality

among the memory blocks. This paper has presented

various memory allocators available which aimed at

addressing the major challenges of memory

allocation, along with their merits and demerits.

REFERENCES

[1] Ramakrishna M, Jisung Kim, Woohyong Lee and

Youngki Chung, “Smart Dynamic Memory Allocator

for embedded systems”, in proceedings of 23rd

International Symposium on Computer and

Information Sciences, ISCIS '08, 27-29 Oct. 2008

[2] I. Puaut, "Real-Time Performance of Dynamic

Memory Allocation Algorithms," in Proceedings of

the 14th Euromicro Conference on Real-Time Systems

(ECRTS'02), June 2002

[3] M. Masmano, I. Ripoll and A. Crespo, “TLSF: A new

dynamic memory allocator for real-time systems,” in

proceedings of 16th Euromicro Conference on Real-

Time Systems, Catania, Italy, July 2004, pages 79-88.

[4] XiaoHui Sun, JinLin Wang, xiao chan, “An

Improvement of TLSF Algorithm”.

[5] P. R. Wilson, M. S. Johnstone, M. Neely, and D.

Boles, “Dynamic Memory Allocation: A Survey and

Critical Review,” In Proceedings of the Memory

Management International Workshop IWMM95, Sep

1995

[6] MS Johnstone ,”Fragmentation Problem: Solved ?”In

Proc. of the Int. Symposium on Memory Management

(ISMM’98), Vancouver, Canada. ACM Press

[7] Robart L. Budzinski, Edward S. Davidson, “A

Comparison of Dynamic and Static Virtual Memory

Allocation Algorithms” IEEE Transactions on

software Engineering, Vol. SE-7, NO. 1, January

1981.

[8] Takeshi Ogasawara,”An Algorithm with Constant

Execution Time for Dynamic Memory Allocation”, in

proceedings of Second International Workshop on

Real-Time Computing Systems and Applications, 25-

27 Oct 1995,Pg No. 21 – 25.

[9] David R. Hanson, “Fast allocation and deallocation of

memory based on object life times,” Software-Practice

and Experience, Vol. 20(1), Jan 1990 pp. 5-12.

[10] Mohamed A. Shalan, “Dynamic Memory

Management for Embedded Real-Time Multiprocessor

System On a Chip”, A Thesis in Partial Fulfillment of

the Requirements for the Degree of Doctor of

Philosophy from School of Electrical and Computer

Engineering ,Georgia Institute of Technology,

November 2003.

[11] Kenny Bridgeson, “Information System

Management”, (published by Lotus Press, Page no.

36-38)

[12] S. Baskiyar, Ph.D. and N. Meghanathan, “A Survey of

Contemporary Real-time Operating Systems”

Informatica 29 (2005),Pg No.233–240

[13] The Memory Management Glossary,”

http://www.memorymanagement.org/glossary/b.html”

[14] Jane W. S. Liu, “Real-time System”, (published by

Person Education, Page no. 20-40).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4048
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4048

