
Anup Hande, Sunita Suralkar, P.M.Chawan/ International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.998-1003 

998 | P a g e  
 

Distributed Software Project Development 

Anup Hande*, Sunita Suralkar**, P.M.Chawan*** 
 Department of Computer Technology, Veermata Jijabai Technological Institute 

 

Abstract 
Now a days in Software development life cycle it 

is not possible that all the team members are present at 

the same location. This lead to the development of new 

concept of Distributed Software Project Development. 

Distributed Software Development (DSD) allows team 

members to be located in various remote sites during the 

software lifecycle.  Managing these network of distant 

sub-teams is an issue which needs to be handled by 

organizations. In this paper we have discussed about the 

drivers, challenges and tools for distributed project 

development. This also gives the quick overview of 

Distributed Project Management. 

 

 

Keywords— Distributed Projects, Distributed Software 

Project Management. 

I. INTRODUCTION 
A distributed development project is a research & 

development project that is done across many business 

worksites or locations. It is a form of R&D where the project 

members may not see each other face to face, but they are all 

working collaboratively toward the outcome of the project. 

Often this is done through email, the Internet and other forms 

of quick long-distance communication. It is different from 

outsourcing because all of the organizations are working 

together on an equal level, instead of one organization 

subcontracting the work to another. It also is similar to, but 

different from, a virtual team because there is a research 

element. 

 The trend to distributed development teams is fuelled by 

economics, desire for competitive advantage and evolving 

business models. Companies seeking to reduce costs and tap 

into global talent pools are outsourcing business processes or 

increasing their spend offshore. Companies looking for 

supply chain efficiency are integrating their business 

processes with those of their customers, partners, and 

suppliers. Manufacturers of consumer electronics, appliances 

and other products are building partner ecosystems to 

differentiate their products through software functionality. 

These trends place new demands on software development 

teams and their application life-cycle management tools. 

Teams today must collaborate effectively across different 

time zones, countries and company affiliations, and cope 

with differences in language, culture and process. Improving 

the ability of these geographically distributed teams to create 

high-quality software — and accelerate time to market — 

requires new capabilities in life-cycle tooling. 

Geographically distributed teams must rely on the support 

of automated life-cycle solutions to a far greater extent than 

collocated teams to coordinate their work, share information 

and manage their projects effectively. 

II. DRIVERS FOR DISTRIBUTED DEVELOPMENT 

Just a few years ago, the typical development team could 

meet over sandwiches in the conference room to discuss 

requirements, look at code design and review project status. 

Today, it’s the rare team that can come together in one 

physical location face-to-face. Though development teams 

have included remote team members for some time due to 

the rise of telecommuting, today’s teams routinely include 

team members who live and work in different time zones, 

different geographies, even different companies. 

The major drivers behind this long-term trend to 

geographically distributed development are: 

 

Optimizing IT (and Other) Resources: 

The need to manage costs and the need to leverage 

resources "in place," "as needed," "where needed" — 

without moving resources around are important drivers 

behind the trend to distributed development teams. Given 

flat, or only slightly increased IT budgets, IT organizations 

must maximize the resources they already have in place and 

better leverage the expertise that exists throughout the 

company. Because inaccurate or inadequate requirements 

and specifications are still a leading cause of failure for new 

applications, teams today involve more direct participation 

from domain experts and other business-side stakeholders, as 

well as project and program management, to ensure that 

projects stay on scope, on time and on budget. 

The need to improve participation by non-developer team 

members results in a more diverse and distributed team. 

They need the support of strong life-cycle tools to share 

information and project status, and to foster their sense of 

community and cohesiveness. 

 

Ecosystems Collaborating with customers, Partners and 

Suppliers: 

Software is becoming increasingly pervasive in today’s 

consumer electronics and appliances. From cell phones, to 

automobiles, to home entertainment systems and even 



Anup Hande, Sunita Suralkar, P.M.Chawan/ International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.998-1003 

999 | P a g e  
 

refrigerators, as hardware becomes commoditized, software-

enabled features and functions are what differentiate 

products and create competitive advantage. This is a key 

driver behind the rise of geographically distributed 

development teams. As consumer products emerge as 

platforms for new software applications, large manufacturers 

must compete to foster effective partner ecosystems and 

leverage third-party software and ISVs to build out solutions 

on their platforms, shorten time-to market for new product 

generations, and grab market share. Ecosystem "owners" 

must be able to securely share source code, APIs, design 

documents and specifications, and other proprietary 

information with partners in order to accelerate the pace of 

innovation. Application life-cycle management solutions for 

these ecosystems must provide secure, Web-based access to 

critical information and ensure effective coordination and 

communication among multiple, autonomous (and 

potentially competitive) partners. 

 

Global Enterprise Application Development: 

Another, related driver for distributed development is the 

need for companies doing business around the world to 

rationalize and standardize their enterprise applications for a 

more global view of their business. These projects typically 

require IT organizations in multiple countries to collaborate. 

IDC research shows that companies are making significant 

investments in large projects for enterprise application 

consolidation, legacy application replacement, and 

application modernization. 

Global development projects require robust, integrated 

life-cycle tools to help teams coordinate their work and 

collaborate effectively across time, geographical barriers, 

and changes in the team to ensure the quality, performance, 

and scalability of their applications. Also, because IT 

organizations undertaking large projects often need to 

incorporate outsourcers and consultants to augment their 

existing resources, or to bring in specific domain expertise or 

best practices, life-cycle tools must flexibly support external 

users while ensuring security and control over intellectual 

property. 

 

Managing Costs and Securing Talent Rise of Offshoring: 

Companies are leveraging a variety of sourcing strategies 

to optimize their IT spend and provide greater value to the 

business given IT budget constraints. While in the past, 

companies relied primarily on local services providers to 

meet their variable staffing needs, today they are 

increasingly leveraging offshore resources to manage costs 

and access broader talent pools. This is a highly dynamic 

trend: companies will continue to refine their sourcing 

strategies as business needs dictate. For example, while 

many companies are turning to large offshore outsourcers, 

others have established "captive offshore" operations in 

India, China or Eastern Europe to leverage skilled labor in 

these geographies, sometimes as part of their entry strategy 

into these markets. Whether outsourced or captive, 

offshoring application development creates significant new 

risks for IT organizations around project visibility and status, 

control of intellectual property and security, and team 

communication and coordination. 

 

Real-Time, Connected Enterprise Follow - the Sun, 24 x 7 

Support: 

Another important driver behind today’s increasingly 

distributed development teams is the need to support 24 x 7 

high-availability mission-critical applications. The Internet 

has given rise to explosive growth in "edge of the enterprise 

applications" —transactional systems such as online 

banking, online brokerage, retail ecommerce and extended 

supply chains that connect customers, partners and suppliers 

directly to back-office systems through Web interfaces and 

(increasingly) Web services APIs. Failures in these 

customer- and partner-facing transaction systems — whether 

due to bugs, performance problems or outages — translate 

directly into lost revenue, loss of market share and lost 

profits. The need to provide 24 x 7 support for these business 

critical systems helps drive the trend to geographically 

distributed development as companies employ "follow-the-

sun" strategies for round-the-clock maintenance and support 

to accelerate cycle time and shorten the time to problem 

resolution. 

 

Mergers and Acquisitions: 

Another driver for distributed development teams is 

merger and acquisition (M&A) activity. Mergers typically 

result in multiple IT organizations that must collaborate over 

time and distance to integrate existing systems and 

consolidate operations. M&A activity is ticking up past a 

trillion dollars per year, and economists expect M&A 

activity to continue to strengthen as the economy recovers 

further. 

III. CHALLENGES 

Communication and  collaboration. Distance and time 

zone differences make direct human interaction problematic: 

distributed teams may have very little "shift overlap" when 

communication can take place in "real time." Cultural and 

language differences compound the problem. Team members 

must communicate electronically to share knowledge, 

brainstorm and make decisions and to create the sense of 

community and visibility within the team that is so important 

to morale. 

Management  of  change  throughout  the  life  cycle. 

Distributed teams face significantly greater challenges 

coordinating their work — from managing tasks and 

communicating status to locating the right information and 

people. Distributed teams need to rely more on check-

in/check-out facilities to help them coordinate changes to 

software and on automated workflows to help them manage 



Anup Hande, Sunita Suralkar, P.M.Chawan/ International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.998-1003 

1000 | P a g e  
 

tasks. Companies must also be able to capture and manage 

important contextual information such as emails, 

enhancement requests, supporting documentation, etc., so 

that key information is not lost as team members change over 

time. 

Project management and visibility. Without the 

opportunity for in-person status meetings, projects can easily 

fall behind schedule. Distributed teams need the support of 

automated systems to help them monitor progress and 

identify risks so they can keep their projects on track.  

Accommodating  external  team  members. Distributed 

teams are often more dynamic and diverse than collocated 

teams, and frequently include consultants, outsourcers, 

customers, suppliers, or partners. Enabling these external 

team members to participate effectively in the software 

development process requires automated systems that 

facilitate access while securing sensitive information. 

IV.  SUCCESS CRITERA 
There are three main success factors for a distributed 

development project: 

1. Select and/or recruit good, strong, highly skilled people. 

2. Spend some money for face-to-face meetings, especially 

at the beginning of each major project. 

3. Build an organizational design that supports working in 

a distributed development, including the right incentive 

systems. 

By doing these three actions, one may obtain advantages 

beyond pure outsourcing or offshoring, namely much higher 

motivated employees in all parts of the distributed network, 

higher retention and certainly one gains from the diversity of 

the network. 

To be successful in a global market, a company should 

manage the risks of global software development, but can 

use the positive aspects as input to shape the development 

process in detail and the culture in general. 

V.  TOOLS 
The rise of the Internet as a ubiquitous connection 

between distributed locations and the quickly maturing 

market place of collaborative tools are essential ingredients 

for complex project success. Software vendors already have 

released Web-enabled versions of many familiar project 

management tools, enabling specialized tasks such as 

tracking requirements, schedules, and budgets to be 

distributed to multiple sites and scaled for multiple users. 

Software engineering tool suites are beginning to follow 

suit. Similarly, more organizations are employing Web-

based repositories, such as project Web sites, portals, and 

workspaces, for intelligently sharing and storing files both 

within and across corporate firewalls. Those structured 

collaboration tools, often enhanced with workflow 

functionality, are instrumental for enabling the project 

management hard skills previously mentioned—such as 

budgeting, scheduling, and tracking requirements—on 

complex projects. However, they fall short for enabling the 

increasingly critical soft skills such as defining the business 

value, clarifying the vision, determining requirements, 

providing direction, building teams, resolving issues, and 

mitigating risk. Research on virtual teams treats this lack of 

support as a pre-existing constraint, recommending face-to 

face meetings as often as possible and at critical points in 

the project to augment email and telephone 

communications. Organizations are now beginning to 

leverage real-time collaboration tools to bridge the soft 

skills gap for distributed teams. Tools such as instant 

messaging, Web conferencing, whiteboards, and desktop 

videoconferencing provide substantially different 

communication possibilities than the familiar telephone, 

email, and face-to-face options. Tools for unstructured 

collaboration can enhance communication by enabling more 

frequent collaboration between distant coworkers. In 

contrast to early incarnations of unstructured tools (for 

example, expensive, room-based videoconferencing 

systems), these inexpensive desktop tools are designed for 

frequent, ad hoc use. Telework Consortium pilots indicate 

that these characteristics can lead to increased 

communications and trust, thereby facilitating quick 

decisions and enhanced team cohesiveness. 

Looking across the IT industry, organizations with 

multiple locations and trading partners are rolling out 

integrated digital environments for secure sharing of files 

and databases, leveraging technologies from Electronic Data 

Interchange to Web Services. 

 

Workflow functionality is enabling great leaps forward in 

productivity by minimizing lag time between tasks. 

Communication and collaboration tools are maturing 

rapidly, and despite the lack of interoperability, single-

vendor applications are functional and stable enough to 

support distributed work in standardized environments. The 

emerging move toward contextual collaboration promises to 

bring these communication tools to our fingertips by linking 

them within the familiar applications we “live in.” Security 

concerns and limited network capacity still limit the use of 

advanced tools such as desktop videoconferencing in some 

work environments, but progress is accelerating on these 

fronts as well. 

The Application life-cycle management solution should 

provide the following capabilities to be effective: 

 

Full Life-Cycle Support: 

Distributed teams require scalable, reliable software 

configuration management tools to ensure that all software 

development artifacts — including source code, 

requirements and specifications, design documents, screen 

shots, architectural diagrams, test plans, etc. — are reliably 

captured, versioned and shared. Distributed teams also need 

to rely on robust check-in/check-out facilities to help them 

coordinate their changes to software assets. Finally, 



Anup Hande, Sunita Suralkar, P.M.Chawan/ International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.998-1003 

1001 | P a g e  
 

distributed teams need integrated task management to help 

orchestrate their work and keep them on track. 

 

Built-in Collaborative Tools: 

Research shows that most teams rely today on ad hoc 

meetings, email and, to some extent, groupware to 

collaborate — that is, team communication today takes 

place, for the most part, outside of the SCM environment. 

With information dispersed across two or more separate 

systems, information is difficult to locate. It may be 

impossible to reconstruct the history around a particular 

design decision. There is no easy way to search for 

information. Worse, because it is scattered across multiple 

systems, information can easily be lost. 

This is a major problem for geographically distributed 

teams, because so little of the context around the source 

code is captured in a usable form. Distributed teams need 

integrated collaborative tools so that the human interactions 

and knowledge exchange that inform the development 

process and shape the final product are captured 

automatically in the project repository in a structured way. 

Collaborative development environments that incorporate 

threaded discussions, announcements, alerts and messages 

in the context of the software development process are the 

solution for distributed teams. Collaborative development 

environments automate the dissemination of information, 

foster a sense of community, and create a resource-rich 

virtual space in which team members can interact and share 

ideas. 

 

Project Management Facilities: 

Automated life-cycle solutions for distributed teams must 

provide strong project management capabilities to help them 

keep their projects on track. Project dashboards that provide 

visibility into project and task status, identify risks and 

reveal trends help ensure that problems are addressed before 

they can cause project delays. Solutions should support the 

team’s choice of software development methodology — 

whether waterfall, RUP, Agile or other method — 

according to the project’s unique requirements. 

 

Security: 

Because distributed teams often include external team 

members, security and the protection of intellectual property 

is a particularly important concern. Geographically 

distributed teams need to be able to limit access to project 

information on a "need to know" basis, by role — to 

particular projects or to portions of a project — without 

inhibiting collaboration with external team members. 

 

Wide Area Network Support: 

In order to facilitate teamwork across geographic and 

corporate boundaries, tools for distributed teams must be 

designed for operation over a wide area network typically 

the Internet. LAN-based products incur substantial 

performance penalties when they are run over a wide area 

network, due to the much greater network latency of the 

WAN. Code check-outs that take a few minutes over a LAN 

can take hours over a WAN, rendering response times 

unacceptable and adversely impacting development team 

productivity. 

Replication may be used with LAN-based products to 

create local copies of the repository for each of the remote 

sites; the local copies are accessed on the remote LAN using 

existing "thick clients." In this scenario, WAN traffic is 

limited to the replication process itself, and LAN access to 

the local copy is very fast. 

There are several drawbacks, however, to the replication 

approach. First, it creates administrative overhead and 

expense. A local copy of the SCM repository must be 

created for each geographical location, and care must be 

taken to ensure that the replication processes are set up 

correctly and performed reliably. Additional investments in 

hardware, software, and network infrastructure are required 

to support the local copies and replication processes. 

Redundant administrative resources may also be required. 

Because replication must done at the repository level, local 

administrators must have full privileges (i.e., unrestricted 

access to the entire repository). This can create a security 

hole for teams that include outsourcers or other 

development partners, as the partner’s administrator will 

have access to the full repository. Finally, replication 

creates data consistency/currency issues. Between 

replications, the various copies of the repository are out of 

sync. This disables the concept of atomic commits, and 

makes integration with issue/problem-tracking systems 

problematic. It also puts the onus on administrators to craft 

a replication strategy that strikes the optimum balance 

between the need for current information and the costs of 

more frequent replication. 

The solution for distributed teams is a "thin client" 

WAN-based system that provides browser-based access to a 

single, centralized repository. This avoids the network 

latency problem (assuming the WAN is available, with 

adequate response time), eliminates the need for replication, 

eliminates the need to install servers and "thick clients" or 

coordinate updates, and provides secure, managed access to 

all repository assets. 

 

Hosted Solutions for Geographically Distributed Teams: 

Considering the myriad challenges that geographically 

distributed teams face given their dynamic, diverse 

constituencies — a hosted collaborative development 

environment may be an ideal solution, particularly when 

teams span corporate entities. Outsourcing selected business 

processes to hosted services providers makes sense for 

companies seeking to devote more of their resources to their 

core competencies and leverage their overall resources more 

effectively. 



Anup Hande, Sunita Suralkar, P.M.Chawan/ International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.998-1003 

1002 | P a g e  
 

An interesting aspect of the growing adoption of hosted 

services is the changing attitude towards security. Up until 

fairly recently, companies were somewhat reluctant to 

externally host sensitive data or proprietary information. 

Today, however, most companies recognize that externally 

managed solutions can in fact offer greater protection than 

self-hosted solutions, for the simple fact that security is by 

necessity a core competency for the managed services 

provider. IT organizations chartered with ensuring the 

protection of software development assets and artifacts may 

find that a managed service approach affords them greater 

protection than an internally hosted solution. 

 

VI. DISTRIBUTED PROJECT MANAGEMENT 
Geographically distributed projects let managers compress 

schedules by employing larger workforces than could fit in a 

single location (collaboration on any shore), using time zone 

differences to increase the number of productive work hours 

in a day (around the-clock operations), and securing scarce 

resources such as knowledge experts and other specialized 

resources no matter where they reside (zero geography 

staffing). 

However, these benefits come with increased risks 

because of the lack of face-to-face communication, in 

particular, the potential loss of trust, collaboration, and 

communication richness. Teams of software engineers need 

at least a minimum amount of face-to-face meetings to be 

effective. The agile and Extreme Programming movements 

suggest ways to increase communication such as pair 

programming, in which programmers share desks so they can 

see each other to efficiently understand the subtleties of 

design and debugging. Research on managers engaging in 

complex information processing that requires rich 

information and frequent feedback indicates that the more 

complex the organizational phenomena, the richer the 

communication must be for the manager to process it 

effectively. The established trend toward customers placing 

more risk with the developer means failures at this level will 

inevitably impact the developers’ bottom line and eventually 

the company’s long-term survivability. 

To successfully manage complex projects, project 

management practices must evolve to work in a distributed 

world, focusing simultaneously on people, processes, and 

technology. 

Managing global software development is not easy and 

risks lowering overall productivity. Still, the positive impacts 

should not be forgotten. A major positive effect is 

innovation. Engineers with all types of cultural backgrounds 

actively participate to continuously improve the product, 

innovate new products, and make processes more effective. 

Achievements are substantial if engineers of entirely 

different educations and cultures try to solve problems. Best 

practices can be shared, and sometimes small changes within 

the global development community can have big positive 

effects. Here are some of those best practices, which we 

identified over the past few years as clearly supporting 

global software development:  

 

 Agree and communicate at project start the 

respective project targets, such as quality, 

milestones, content, or resource allocation. 

 Ensure that commitments exist in written and 

controlled form. 

 Have one project leader who is fully responsible for 

achieving project targets, and assign her a project 

management team that represents the major cultures 

within the project. 

 Within each project, follow up continuously on the 

top 10 risks, which in a global project are typically 

less technical than organizational. 

 Define at a project’s beginning which teams are 

involved and what they will do in each location. 

 Set up a project homepage that summarizes project 

content, progress metrics, planning information, and 

team-specific information. 

 Provide an interactive process model based on 

accepted best practices that allows tailoring 

processes for the specific needs of a project or even 

team. 

 Rigorously enforce within a product line using the 

agreed standard process that relates to a CMM 

Level 3 organization pattern. 

 Provide sufficient communication means, such as 

videoconferencing or shared workspaces and global 

software libraries. 

 Rigorously enforce CM and build management 

rules (such as branching, merging, and 

synchronization frequency) and provide the 

necessary tool support. 

 Rotate management across locations and cultures to 

create the necessary awareness for cultural diversity 

and how to cope with it. 

 Set up mixed teams from different countries to 

integrate individual cultural background toward a 

corporate and projectoriented spirit. 

 Make teams fully accountable and responsible for 

their results. 

 

Global software development is not the target per se, but 

rather the result of a conscious business-oriented trade-off. 

The guiding principles are to optimize the cost of 

engineering, while still achieving the best feasible integration 

of all R&D centers worldwide. 

These needs must be carefully balanced with additional 

costs that might occur only at a later point. This includes 

staff turnover rates, which in other countries might be higher 

than in Europe; cost overheads related to traveling, 

relocation, communication, or redundant development and 



Anup Hande, Sunita Suralkar, P.M.Chawan/ International Journal of Engineering Research and Applications 

(IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 3, May-Jun 2012, pp.998-1003 

1003 | P a g e  
 

test equipment; unavailability of dedicated tools that allow 

for globally distributed tools and work environments; 

impacts on the learning curve, which slows down with more 

locations involved; cultural differences that can impact work 

climate; insufficient language skills; different legal 

constraints related to work time, organization, or 

participation of unions; and building up redundant skills and 

resource buffers to be prepared for collocated teams and 

unforeseen maintenance activities. 

VII. CONCLUSION 
Distributed development teams need to rely on automated 

life-cycle management tools to a greater extent than 

collocated teams, which can communicate and collaborate 

informally through ad hoc meetings and direct interaction. 

Life-cycle tools for distributed teams must therefore 

automate and support all of the tasks involved in the software 

development process, including source code check-in/check-

out and version management; the capture and organization of 

other software development artifacts, such as requirements, 

test plans, etc.; effective project management and reporting; 

and especially collaboration. 

Distributed teams need their automated tools to help them 

bridge the cultural, time and geographical barriers they face. 

They need intuitive, easy-to-use tools that accelerate their 

work, help foster a sense of community and teamwork, and 

facilitate the sharing of knowledge so they can be as 

effective as if they were all in one place. With the right tools, 

these teams should be able to reap benefits in increased 

innovation, higher product quality and faster time to market. 

Effective systems will incorporate not only technological 

advances, but also the complementary efforts required to 

evolve processes and culture for success in a distributed 

environment. By taking this action, project managers 

managers will enhance enterprise performance by reducing 

risks and increasing the velocity by which effective decisions 

can be made. As the processes, tools, and technologies to 

support distributed work mature, more organizations are 

applying them to support their increasingly complex systems 

and software development projects. 

 

REFERENCES 
[1]  Webster M., "The Requirements   for Managing the 

Geographically Distributed Development 

Organization and the CollabNet Solution", White 

Paper, IDC, 2005. 

[2]  Jimenez M., Piattini M., Vizcaino A., "Challenges 

and Improvements in Distributed Software 

Development: A Systematic Review", Advances in 

Software Engineering, Volume 2009, Article ID 

710971. 

[3]  Nidiffer K., Dolan D., "Evolving Distributed 

Project Management", IEEE Software, 

September/October 2005 

[4]  Ebert C., Neve P., "Suviving global Software 

Development", IEEE Software, March/April 2001. 

 


