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ABSTRACT 
This paper investigates the benefits of combining 

neural networks and fuzzy logic into neuro-fuzzy 

systems, especially for applications in character 

recognition tasks. In the field of artificial intelligence, 

neuro-fuzzy refers to combinations of artificial 

neural networks and fuzzy logic. Neuro -fuzzy  

hybridizat ion results in a hybrid intelligent system 

that synergizes these two techniques by combining 

the human-like reasoning style of fuzzy systems with 

the learning and connectionist structure of neural 

networks. Neuro-fuzzy hybridizat ion is widely  

termed as Fuzzy Neural Network (FNN) or Neuro-

Fuzzy System (NFS) in the literature. Neuro -fuzzy  

system incorporates the human-like reasoning style 

of fuzzy systems through the use of fuzzy sets and a 

linguistic model consisting of a set of IF-THEN 

fuzzy rules. The main strength of neuro-fuzzy  

systems is that they are universal approximators with 

the ability to solicit interpretable IF-THEN rules. 

 

Keywords - artificial intelligence, fuzzy logic, neural 

networks 

 

1. INTRODUCTION 
Many task which seem simple for us, such as reading 

a handwritten note or recognizing a face, are difficult  

task for even the most advanced computer. In an 

effort to increase the computer ability to perform 

such task, programmers began designing software to 

act more like the human brain, with its neurons and 

synaptic connections. Thus  the field of “Art ificial 

neural network” was born. Rather than employ the 

traditional method of one central processor to carry 

out many instructions one at a time, the Artificial 

neural network software analyzes data by passing it 

through several simulated processes which are 

interconnected with synaptic like “weight” Once we 

have collected several record of the data we wish to 

analyze, the network will run through them and 

“learn ” the input of each record may be related to the 

result. After train ing on a few cases the network 

begin to organize and refines its on own architecture  

to feed the data to much the human brain; learns from 

example. 

 

 

 

Why would anyone want a `new' sort of computer? 

What are (everyday) computer systems good at... 

.....and not so good at?  

Good at Not so good at 

Fast arithmet ic  

Interacting with noisy data 

or data from the 

environment 

Doing precisely what the 

programmer programs them to 

do 

Massive parallelis m 

 Massive parallelis m 

 Fault tolerance  

 Adapting to circumstances 

Where can neural network systems help?  

 where we can't formulate an algorithmic 

solution.  

 where we can get lots of examples of the 

behavior we require.  

 where we need to pick out the structure from 
existing data.  

What is a neural network? 

Neural networks are a form of multiprocessor 

computer system, with  

 Simple processing elements  

 A high degree of interconnection  

 Simple scalar messages  

 Adaptive interaction between elements  

Artificial neural network (ANNs) are programs 

designed to solve any problem by trying to mimic 

structure and function of our nervous system. Neural 

network are based on simulated neurons which are 

joined together in a variety of ways to form networks. 

Neural network resembles the human brain in the 
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following two ways: - 

 

 A neural network acquires knowledge 

through learning  

 A neural network‟s knowledge is stored with 

in the interconnection strengths known as 

synaptic weight. 

 

Neural network are typically organized in layers. 

Layers are made up of a number of interconnected 

„nodes‟, which contain an „activation function‟. 

Patterns are presented to the network via the „input 

layer‟, which communicates to one or more „hidden 

layers‟ where the actual processing is done via a 

system of weighted „connections‟. The hidden layers 

then link to an „output layer‟ where the answer is 

output as shown in the graphic below. 

 

 
A neural network is a system that emulates the 

cognitive abilities of the brain by establishing 

recognition of particular inputs and producing the 

appropriate output. Neural networks are not “hard-

wired” in  particular way; they are trained using 

presented inputs to establish their own internal 

weights and relationships guided by feedback. Neural 

networks are free to form their own internal working 

and adapt on their own. 

Commonly neural network are adjusted, or trained so 

that a particular input leads to a specific target output. 

There, the network is adjusted based on a comparison 

of the output and the target, until the network output 

matches the target. Typically many such input/target 

pairs are used to train network. Once a neural 

network is „trained‟ to a satisfactory level it may be 

used as an analytical tool on other data. To do this, 

the user no longer specifies any training runs and 

instead allows the network to work in forward  

propagation mode only. New inputs are presented to 

the input pattern where they filter into and are 

processed by the middle layers as though training 

were taking place, however, at this point the output is 

retained and no back propagation occurs. 

2. THE STRUCTURE OF NERVOUS SYSTEM  
Nervous system of a human brain consists of 

neurons, which are interconnected to each other in a 

rather complex way. Each neuron can be thought of 

as a node and interconnection between them are edge, 

which has a weight associates with it, which 

represents how mach the tow neuron which are 

connected by it can it interact.  

 
                 The structure of Nervous system 

 

2.1. Functioning of A Nervous System  

The natures of interconnection between 2 neurons 

can be such that – one neuron can either stimulate or 

inhibit the other. An interaction can take p lace only if 

there is an edge between 2 neurons. If neuron A is 

connected to neuron B as below with a weight w, 

then if A is stimulated sufficiently, it sends a signal to 

B. The signal depends on the weight w, and the 

nature of the signal, whether it is stimulating or 

inhibit ing. 

           w    

      

    A                    B 

This depends on whether w is positive or negative if 

its stimulation is more than its threshold. Also if it 

sends a signal, it will send it to all nodes to which it  

is connected. The threshold for different neurons may 

be different. If many neurons send signal to A, the 

combined stimulus may be more than the threshold. 

Next if B is stimulated sufficiently, it may trigger a 

signal to all neurons to which it is connected.                                      

Depending on the complexity of the structure, the 

overall functioning may be very complex but the 

functioning of individual neurons is as simple as  this. 

Because of this we may dare to try to simulate this 

using software or even special purpose hardware. 

3. Major components Of Artificial Neuron 
This section describes the seven major components, 

which make up an art ificial neuron. These 

components are valid whether the neuron is used for 

input, output, or is in one of the hidden layers.  

 

3.1. Weighing factors 

 A neuron usually receives many simultaneous 

inputs. Each input has its own relative weight, which 

gives the input the impact that it needs on the 

processing elements summat ion function. These 

weights perform the same type of function, as do the 

varying synaptic strengths of biological neurons. In 
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both cases, some input are made more important than 

others so that they have a greater effect on the 

processing element as they combine to produce a 

neuron response. Weights are adaptive coefficients 

within the network that determine the intensity of the 

input signal as registered by the artificial neuron. 

They are a measure of an input‟s connection streng th. 

These strengths can be modified in response to 

various training sets and according to a network‟s 

specific topology or through its learning ru les. 

 

3.2. Summation Function 

The first step in a processing element‟s operation is 

to compute the weighted sum of all of the inputs. 

Mathematically, the inputs and the corresponding 

weights are vectors which can be represented as (i1, 

i2,………….in) and (w1, w2,……………….wn). 

The total input signal is the dot, or inner, product of 

these two vectors. This simplistic summat ion 

function is found by multiply ing each component of 

the i
th

 vector by the corresponding component of the 

w vector and then adding up all the products. Input1 

= i1*w1, input2=i2*w2, etc., are added as 

input1+input2+………..+input n. The result is a 

single number, not a multi-element vector. 

Geometrically, the inner product of two vectors can 

be considered a measure of their similarity. If the 

vector point in the same direction, the inner product 

is maximum; if the vectors points in opposite 

direction (180 degrees out of phase), their inner 

product is minimum. The summation function can be 

more complex than just the simple input and weight 

sum of products. The input and weighting 

coefficients can be combined in many different ways 

before passing on to the transfer function. In addition 

to a simple product summing, the summat ion 

function can select the min imum, maximum, 

majority, product, or several normalizing algorithms. 

The specific algorithm for combin ing neural inputs is 

determined by the chosen network architecture and 

paradigm. 

 

3.3. Transfer Function 

         The result of the summat ion function, almost 

always the weighted sum, is transformed to a 

working out put through an algorithm process known 

as the transfer function. In transfer function the 

summation total can be compared with some 

threshold to determine the neural output. If the sum is 

greater than the threshold value, the processing 

element generates a signal. If the sum of the input 

and weight product is less than the threshold, no 

signal (no some inhibitory signal) is generated. Both 

types of response are significant. 

   

 
 

                       McCulloch-Pitts Neuron Model  

Types of threshold functions  

Sigmoid function      :  f (x)=1/(1+exp(-x)) 

Step function            :  f (x) =0 if x<T 

                                            =k if x>=T 

Ramp function          :  f (x)=ax+b  

 

The transfer function could be something as simple 

as depending upon whether the result of the 

summation function is positive or negative. The 

network could output zero and one, and minus one, or 

other numeric combinations. The transfer function 

would then be a “hard limiter” or step function. 

 

                          Sample transfer functions 

3.4. Scaling and Limiting  

After the processing element‟s transfer function, the 

result can pass through additional processes which 

scale and limit. This scaling simply mult iplies a scale 

factor times the transfer value, and then adds an 

offset. Limit ing is the mechanism, which ensures that 

the scaled result does not exceed, and upper or lower 

bound. This limit ing is in addition to the hard limits 

that the original transfer function may have 

performed. 

 

3.5. Output function (competition) 

At Each processing element is allowed one output 

signal, which it may output to hundreds of other 

neurons. This is the just like the biological neuron, 

where there are many inputs and only one output 

action. Normally, the output is directly equivalent to 

the transfer function‟s result. Some network 
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topologies, however, modify the transfer result to 

incorporate competition among neighboring 

processing elements. Neurons are allowed to compete 

with each other, inhibiting processing elements 

unless they have great strength. Competition can 

occur one or both of two levels. First, competit ion 

determines which artificial neuron will be active, are 

provides an output. Second, competitive inputs help 

determine which processing elements will participate 

in the learn ing or adaptation process. 

 

3.6. Error function and back-propagated value 

           In most learn ing networks the difference 

between the current output and the desired output is 

calculated. This raw error is then transformed by the 

error function to match particular network 

architecture. The most basic architectures use this 

error d irectly, but some square the error while 

retaining its sign, some cube the error, and other 

paradigms modify the raw error to fit their specific 

purposes. The artificial neuron‟s error is then 

typically propagated into the learning function of 

another processing element. This error term is 

sometimes called the current error.  The current error 

is typically p ropagated backwards to a previous layer. 

Yet, this back-propagated value can be either the 

current error, the current error scaled in some manner 

(obtained by the derivative of the transfer function), 

or some desired output depending on the network 

type. Normally, this back-propagated value, after 

being scaled by the learning function, is multip lied 

against each of the incoming connection weights to 

modify them before the next learn ing cycle.  

 

3.7. Learning function 

         The purpose of the learning function is to 

modify the variable connection weights on the inputs 

of each processing elements according to some neural 

base algorithm. This process of changing the weights 

of the inputs connections to achieve some desired 

results could also be called the adoption function, as 

well as the learn ing mode. 

3.7.1. Paradigms of learning  

        There are three broad paradigms of learning:  

 Supervised 

 Unsupervised (or self-organized) 

 Reinforcement learn ing (a special case of 

supervised learning ) 

 

3.7.1.1 Supervised learning  

The vast majority of the artificial neural network 

solutions have been trained with supervision. In this 

mode, the actual output of a neural network is 

compared to the desired output. The network then 

adjusts weights, which are usually randomly set to 

begin with, so that the next iterat ion, or cycle, will 

produce a closer match between the desired and the 

actual output. This learning method tries to minimize 

the current errors of all processing elements. This 

global error reduction is created over time by 

continuously modifying the input weights until 

acceptable network accuracy is reached. 

 

                    Block dig. Of supervised learning 

 

 3.7.1.2. Unsupervised learning 

     In supervised learning the system directly  

compares the network output with a known 

correct or desired answer, whereas in  

unsupervised learning the output is not known. 

Unsupervised training allows the neurons to 

compete with each other until winner emerges. 

The resulting values of the winner neurons 

determine the class to which a particular data set 

belongs. Unsupervised learning is the great 

promise of the future. It shouts that computers 

could some day learn on their own in a true 

robotic sense.  

 

             Block dig. Of unsupervised learning 

 

3.7.1.3 Reinforcement learning 

 Reinforcement learn ing is a form of supervised 

learning where adopted neuron receives feedback 

from the environment that directly influences 

learning.  

3.7.2. Learning law  

  The fo llowing general learning rules is adopted in 

the neural network studies: 

The weight vector wi =[W i1, 

Wi2……………………………….W in]
 t

 increases 

proportion to the product of input x and learn ing 
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signal r. The learn ing signal r is a function of wi x, 

and sometimes of the teacher‟s signal d i. 

    Hence we have, r =r (W i, X, di) and increment in 

weight vector produced by the learning step at time t  

is W i (t) =cr [W i (t), X (t), di (t)] X (t) 

Where c is learn ing constant. 

Thus Wi (t+1) =W i (t)+ cr [W i (t), X (t), di (t)] X (t) 

Various learning rules are their assist the learning 

process.  

They are : 

 

3.7.2.1 Hebbian learning rule  

 

This rule represents purely feed forward, 

unsupervised learning  

 

 
According to this rule, we have  

r=f(W
t
i, X)  

and increment of weight becomes  

Wi=c f(W
t
i, X) X 

 

3.7.2.2 Perceptron learning rule  

 

This learning is supervised and learning signal is 

equal to  

 r =di-Oi 

Where Oi=sgn(W
t
i, X) and di is the desired response. 

Weight adjustment in this method is  

Wi=c[di- sgn(W
t
i,  X)] X 

in this method of learn ing, in itial weight can have 

any value and neuron much be binary bipolar are 

binary unipolar.  

 

3.7.2.3. Delta learning rule  

This rule is valid for continuous activation functions 

and in the supervised training mode. The learning 

signal is called as delta and is given as: 

r=[di – f(W
t
i  X)] f  (W

t
i X) 

The adjustment for the single weight in this rule is 

given as: 

Wi = c (di-Oi) f  (net i) X 

In this method of learning, the initial weight can have 

any value and the neuron must be continuous. 

3.7.2.4. Windrow-Hoff learning rule  

 

This is applicable for the supervised training of 

neural networks and is independent of activation 

function.  

Learn ing signal is given as  

r = di – W
t
i X 

The weight vector increment under this learn ing rule 

is : 

Wi=c (di - W
t
i X) X 

3.7.2.5. Correlation learning rule  

 

Substituting r = di in general learn ing rule, we obtain 

correlation learn ing rule. The adjustment for the 

weight vector is given by: 

Wi = c di X 

3.7.2.6. Winner-take all learning rule 

 

This rule is applicable for an ensemble of neurons, 

let‟s say being arranged in a layer of p units. This 

learning is base on the premise that one of the 

neurons in the layer, say the m
th

, has the maximum 

response due to input x. This neuron is declared the 

winner. It‟s increment is computed as follows  

Wm =  (X - Wm) 

 

3.7.2.7. outstar learning rule 

 

This is an another learning rule that is best explained 

when the neurons are arranged in layers. Th is rule is 

designed to produce a desired response d of the layer 

of p neurons. This rule is concerned with the 

supervised learning and the weight adjustment is 

computed as: 

Wj =  (X - W j) 

 

4. Training a neural network 
Since the output of the neural network may not be 

what is expected, the network needs to be trained. 

Train ing involves altering the interconnection 

weights between the neurons. A criterion is 

needed to specify when to change the weights and 

how to change them. Train ing is an external 

process whiling learning is the process that takes 

place internal to the network. The following 

guideline will be of help as a step methodology 

for training a network. 

 

4.1. Choosing the number of neurons  

 

 The number of h idden neurons affect how well 

the network is able to separate the data. A large 

number of hidden neurons will ensure correct 

learning and the network is able to correct ly 

predict the data it has been trained on, but its 

performance on new data, its ability to generalize, 
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is compromised. With too few hidden neurons, 

the network may be unable to learn the 

relationship amongst the data and the error will 

fail to fall below an acceptable level. Thus, 

selection of the number of hidden neurons is a 

crucial decision. Often a trial and error approach 

is taken starting with a modest number o f hidden 

neurons and gradually increasing the number if 

the network fails to reduce its error. A much used 

approximation for the number of hidden neurons 

for a three layered network is N=1/2(j + k)+v P, 

where J and K are the number of input neurons 

and P is the number of patterns in the training set. 

 

4.2. Choosing the initial weights  

 

The learning algorithm uses steepest descent 

technique, which rolls straight downhill in weight 

space until the first valley is reached. This valley 

may not correspond to a zero error for the 

resulting network. This makes the choice of init ial 

starting point in the mult idimensional weight 

space critical. However, there are no 

recommended rules for this selection except 

trying several different weight values to see if the 

network results are improved. 

 

4.3. Choosing the learning rate  

 

Learn ing rate effect ively controls the size of the step 

that is taken in multid imensional weight space when 

each weight is modified. If the selected learning rate 

is too large then the local min imum may be over 

stopped constantly, resulting in oscillations and slow 

convergence to lower error state. If the learning rate 

is too low, the number of iterations requires may be 

too large, resulting in slow performance. Usually the 

default value of most commercial neural network 

packages are in the range 0.1-0.3 provid ing a 

satisfactory balance between the two reducing the 

learning rate may help improve convergence to a 

local min imum of the error surface. 

 

4.4. Choosing the activation function 

 

The learning signal is a function of the error 

multip lied by the gradient of the activation function 

df/d (net). The larger the value of the gradient, the 

more weight the learn ing will receive. For training, 

the activation function must be monotonically 

increasing from left to right, differentiable and 

smooth. 

 

 

 

 

5. Models Of artificial Neural Networks 
  There are different kinds of neural network 

models that can be used. Some of the common ones 

are: 

5.1. Perception model  

This is a very simple model and consis ts of a single 

„trainable‟ neuron. Trainable means that its threshold 

and input each input has a desired output (determined 

by us). If the neuron doesn‟t gives the desired output, 

then it has made a mistake. To rectify  this, its 

threshold and/or input weights must be changed. 

How this change is to be calculated is determined by 

the learning algorithm. 

The output of the perceptron is constrained to 

Boolean values – (true, false), (1, 0), (1, -1) or 

whatever. This is not a limitation because if the 

output of the perceptron were to be the input for 

something else, then the output edge could be made 

to have a weight. Then the output would be 

dependant on this weight.The perceptron looks like  

 
X1, X2, …………., Xn are inputs. These could be real 

numbers or Boolean values depending on the 

problem. 

y is the output and is Boolean. 

w 1, w2, …………, wn are weights of the edges and are 

real valued. 

T is the threshold and is a real valued.  

The output y is 1 if the net input which is : 

w1 x1 + w2 x2 + …….+ wn xn 

 is greater than the threshold T. Otherwise the output is 

zero. 

 

5.2. Feed – Forward Model  

 

  Elementary feed forward architecture of m neurons 

and receiving n inputs is shown in the figure. Its output 

and input vectors are respectfully. 

          O = [O]     O2 ………Om] 

   X = [x]      x2………..xn ] 

Weight Wij connects the i
th

 neuron with the j
th

 input. 

Hence activation value net i for the i
th

 neuron is  

   Net i = j=1
n
  Wij Xj 

 for i=1, 2, 3,……, n  

Hence, the output is given as  

   Oi = f(W
t
i X)  for i = 1, 2, 3, 

……….., m 
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Where Wi is the weight vector containing the weights 

leading towards 

the i
th

 output node and defined as 

   Wi = [Wi1  Wi2 …………. Win] 

If  is the nonlinear matrix operarte, the mapping of input 

space X to output space O implemented by the 

network can be exp ressed  

     O =  W X  

Where W is the weight matrix, also called the connection 

matrix. 

 The generic feedforward network is characterized by 

the lack of feedback. This type network can be 

connected in cascade to create a multip layer network.  

 
                   feed forward neural network 

 

5.3. Feed-Back model 

 

A feedback network can be obtained from the 

feedforawrd network by connecting the neuron‟s outputs 

to their inputs, as shown in the fig. The essence of 

closing the feedback loop is to hold control of output Oi 

through outputs Oj; for j =1, 2, ……, m. o r controlling 

the output at instant  t+Δ  by the output at instant t. This 

delay  Δ is introduced by the delay element in the 

feedback loop. The mapping of O(t) into O(t+ Δ) can 

now be written as  

  O(t+ Δ) = ┌[W o(t)] 

 
 

5.4. Notations Used 

 

M1 is a 2-D matrix where M1[i] [j] represents the 

weight on the connection from the i
th

  input neuron to 

the j
th

 neuron in the hidden layer.  

M2 is a 2 –D matrix where M2[i][j] denotes the 

weight on the connection from the i
th

  hidden layer 

neuron to the j
th

 output layer neuron. 

 x, y and z are used to denote the outputs of neurons 

from the input layer, hidden layer and output layer 

respectively. 

If there are m input data, then (x1, x2, ……., xm). P 

denotes the desired output pattern with components 

(p1, p2, ………, pr) for r outputs. 

Let the number of h idden layer neurons be n. 

βo = learn ing parameter fo r the output layer. 

βh = learn ing parameter fo r the hidden layer.  

α = momentum term  

θ j = threshold value (bias) for the j
th

 hidden layer 

neuron. 

τj = threshold value for the j
th

 output layer neuron. 

ej = error at the j
th

 output layer neuron. 

tj = error at the j
th

 hidden layer neuron. 

Threshold function = sigmoid function : F(x) = 1/(1 + 

exp(x)). 

 

5.5 Mathematical expressions 

 

 Output of j
th

 hidden layer neuron : y j = f((Σi 

xi M1[i][j]) + θ j) 

Output of j
th

 output layer neuron : zj = f((Σi yi 

M2[i][j]) + τj). 

i
th

 component of vector of output differences: 

 desired value – computed value = Pj – zj 

i
th

 component of output error at the output layer: 

  ej = pj – zj. 

i
th

 component of  output error at the hidden layer: 

 ti = yi (1 – yi ) (Σj M2[i][j] ej ) 

Adjustment of weights between the i
th 

neuron in the 

hidden layer and j
th

 output neuron: 

ΔM2[i][j] (t) = β0 yi ej + α ΔM2 [i][j] (t - 1) 

Adjustment of weights between the i
th 

 input neuron 

and j
th

 neuron in the hidden layer : 

 ΔM1[i][j]  = βh xi tj + α ΔM1 [i][j] (t  

- 1) 

Adjustment of the threshold value for the j
th

 output 

neuron: 

  Δ τj = β0 ej 

Adjustment of the threshold value for the j
th

 hidden 

layer neuron: 

  Δ θ j  = βh ej 

 

6. Neural network applications 
Aerospace  

 High performance aircraft autopilot, 

flight path simulation, aircraft control 

systems, autopilot enhancements, 

aircraft component simulation, aircraft  

component fault detection. 

Automobile control 
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 Automobile automatic guidance system, 

warranty activity analysis. 

Banking  

 Check and other document reading 

credit applicat ion evaluation. 

Cred it card activ ity checking 

 Neural networks are used to spot 

unusual credit card activity that might 

possibly be associated with loss of a 

credit card  

Defense  

 Weapon steering, target tracking, object 

discrimination, facial recognition, new 

kinds of sensors, sonar, radar and image 

signal processing including data 

compression, feature extract ion and 

noise suppression, signal/ image 

identification. 

Electronics  

 Code sequence prediction, integrated 

circuit chip laying, process control, chip 

failure analysis, machine vision voice 

synthesis, nonlinear modeling. 

Entertainment  

 Animat ion, special effects, market  

forecasting. 

Financial  

 Real estate appraisals, loan advisor, 

mortgage screening, corporate bond 

rating, credit-line use analysis, and 

portfolio trading program, corporate 

financial analysis, and currency price 

prediction. 

Industrial  

 Neural networks are being trained to 

predict the output gasses of furnaces 

and other industrial process. They then 

replace complex and costly equipment 

used for this purpose in the past. 

Insurance  

 Neural networks are used in policy 

application evaluation, product 

optimization. 

Manufacturing  

 Neural networks are used in 

manufacturing process control, product 

design and analysis, process and 

machine diagnosis, real-time part icle 

identification, visual quality analysis, 

paper quality prediction, computer – 

chip quality analysis, analysis of 

grinding operations, chemical product 

design analysis, machine maintenance 

analysis, project bidding, planning and 

management, dynamic modeling of 

chemical p rocess system. 

Medical  

 Neural networks are used in breast 

cancer cell analysis, EEG and ECG 

analysis, prosthesis design, optimizat ion 

of transplant times, hospital expense 

reduction, hospital quality 

improvement, and emergency room test 

advisement. 

Oil and Gas 

 Neural networks are used in explorat ion 

of oil and gas. 

Robotics  

 Neural networks are used in trajectory 

control, forklift robot, manipulator 

controllers, vision systems 

Other applicat ion 

 Artificial intelligence 

 Character recognition  

 Image understanding 

 Logistics 

 Optimization 

 Quality Control 

 Visualizat ion 

 

7. Advantages Of ANN 
1. It involve human like thinking.  

2. They handle noisy or missing data. 

3. They create their own relationship amongst 

informat ion – no equations! 

4. They can work with large number of 

variables or parameters. 

5. They provide general solutions with good 

predictive accuracy. 

6. System has got property of continuous 

learning. 

7. They deal with the non-linearity in the world  

in which we live. 

 

8. Conclusion 
In this present world of automation to automate 

systems neural network and fuzzy logic systems are 

required. Fuzzy logic deals with vagueness or 

uncertainty and neural network related to human like 

thinking. If we use only fuzzy systems or only NN 

complete automation is never possible. The 

combination is suitable because fuzzy logic has 

tolerance for impression of data, while neural 

networks have tolerance for noisy data. As there are 

different advantages and disadvantages usage of NN 

thus we use combination of neural networks and 

Fuzzy logic in order to implement a real world  

system without manual interference. Very promising 

results have been obtained in the sense that both an 
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improvement in the recognition rate and a reduction in 

the complexity of the models are achieved. 
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