
Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

35 | P a g e

Bridging Neural Networks and Fuzzy Logic in Order to Implement

a Real World of Automation.

Pradeep.A.V*, Sharmili.S**

*(Department of Mechanical engineering, GITAM UNIVERSITY, Visakhapatnam-26)

** (Department of Computer Sc ience, St.Joseph‟s College, Visakhapatnam-26)

ABSTRACT
This paper investigates the benefits of combining

neural networks and fuzzy logic into neuro-fuzzy

systems, especially for applications in character

recognition tasks. In the field of artificial intelligence,

neuro-fuzzy refers to combinations of artificial

neural networks and fuzzy logic. Neuro -fuzzy

hybridizat ion results in a hybrid intelligent system

that synergizes these two techniques by combining

the human-like reasoning style of fuzzy systems with

the learning and connectionist structure of neural

networks. Neuro-fuzzy hybridizat ion is widely

termed as Fuzzy Neural Network (FNN) or Neuro-

Fuzzy System (NFS) in the literature. Neuro -fuzzy

system incorporates the human-like reasoning style

of fuzzy systems through the use of fuzzy sets and a

linguistic model consisting of a set of IF-THEN

fuzzy rules. The main strength of neuro-fuzzy

systems is that they are universal approximators with

the ability to solicit interpretable IF-THEN rules.

Keywords - artificial intelligence, fuzzy logic, neural

networks

1. INTRODUCTION
Many task which seem simple for us, such as reading

a handwritten note or recognizing a face, are difficult

task for even the most advanced computer. In an

effort to increase the computer ability to perform

such task, programmers began designing software to

act more like the human brain, with its neurons and

synaptic connections. Thus the field of “Art ificial

neural network” was born. Rather than employ the

traditional method of one central processor to carry

out many instructions one at a time, the Artificial

neural network software analyzes data by passing it

through several simulated processes which are

interconnected with synaptic like “weight” Once we

have collected several record of the data we wish to

analyze, the network will run through them and

“learn ” the input of each record may be related to the

result. After train ing on a few cases the network

begin to organize and refines its on own architecture

to feed the data to much the human brain; learns from

example.

Why would anyone want a `new' sort of computer?

What are (everyday) computer systems good at...

.....and not so good at?

Good at Not so good at

Fast arithmet ic

Interacting with noisy data

or data from the

environment

Doing precisely what the

programmer programs them to

do

Massive parallelis m

 Massive parallelis m

 Fault tolerance

 Adapting to circumstances

Where can neural network systems help?

 where we can't formulate an algorithmic

solution.

 where we can get lots of examples of the

behavior we require.

 where we need to pick out the structure from
existing data.

What is a neural network?

Neural networks are a form of multiprocessor

computer system, with

 Simple processing elements

 A high degree of interconnection

 Simple scalar messages

 Adaptive interaction between elements

Artificial neural network (ANNs) are programs

designed to solve any problem by trying to mimic

structure and function of our nervous system. Neural

network are based on simulated neurons which are

joined together in a variety of ways to form networks.

Neural network resembles the human brain in the

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

36 | P a g e

following two ways: -

 A neural network acquires knowledge

through learning

 A neural network‟s knowledge is stored with

in the interconnection strengths known as

synaptic weight.

Neural network are typically organized in layers.

Layers are made up of a number of interconnected

„nodes‟, which contain an „activation function‟.

Patterns are presented to the network via the „input

layer‟, which communicates to one or more „hidden

layers‟ where the actual processing is done via a

system of weighted „connections‟. The hidden layers

then link to an „output layer‟ where the answer is

output as shown in the graphic below.

A neural network is a system that emulates the

cognitive abilities of the brain by establishing

recognition of particular inputs and producing the

appropriate output. Neural networks are not “hard-

wired” in particular way; they are trained using

presented inputs to establish their own internal

weights and relationships guided by feedback. Neural

networks are free to form their own internal working

and adapt on their own.

Commonly neural network are adjusted, or trained so

that a particular input leads to a specific target output.

There, the network is adjusted based on a comparison

of the output and the target, until the network output

matches the target. Typically many such input/target

pairs are used to train network. Once a neural

network is „trained‟ to a satisfactory level it may be

used as an analytical tool on other data. To do this,

the user no longer specifies any training runs and

instead allows the network to work in forward

propagation mode only. New inputs are presented to

the input pattern where they filter into and are

processed by the middle layers as though training

were taking place, however, at this point the output is

retained and no back propagation occurs.

2. THE STRUCTURE OF NERVOUS SYSTEM
Nervous system of a human brain consists of

neurons, which are interconnected to each other in a

rather complex way. Each neuron can be thought of

as a node and interconnection between them are edge,

which has a weight associates with it, which

represents how mach the tow neuron which are

connected by it can it interact.

 The structure of Nervous system

2.1. Functioning of A Nervous System

The natures of interconnection between 2 neurons

can be such that – one neuron can either stimulate or

inhibit the other. An interaction can take p lace only if

there is an edge between 2 neurons. If neuron A is

connected to neuron B as below with a weight w,

then if A is stimulated sufficiently, it sends a signal to

B. The signal depends on the weight w, and the

nature of the signal, whether it is stimulating or

inhibit ing.

 w

 A B

This depends on whether w is positive or negative if

its stimulation is more than its threshold. Also if it

sends a signal, it will send it to all nodes to which it

is connected. The threshold for different neurons may

be different. If many neurons send signal to A, the

combined stimulus may be more than the threshold.

Next if B is stimulated sufficiently, it may trigger a

signal to all neurons to which it is connected.

Depending on the complexity of the structure, the

overall functioning may be very complex but the

functioning of individual neurons is as simple as this.

Because of this we may dare to try to simulate this

using software or even special purpose hardware.

3. Major components Of Artificial Neuron
This section describes the seven major components,

which make up an art ificial neuron. These

components are valid whether the neuron is used for

input, output, or is in one of the hidden layers.

3.1. Weighing factors

 A neuron usually receives many simultaneous

inputs. Each input has its own relative weight, which

gives the input the impact that it needs on the

processing elements summat ion function. These

weights perform the same type of function, as do the

varying synaptic strengths of biological neurons. In

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

37 | P a g e

both cases, some input are made more important than

others so that they have a greater effect on the

processing element as they combine to produce a

neuron response. Weights are adaptive coefficients

within the network that determine the intensity of the

input signal as registered by the artificial neuron.

They are a measure of an input‟s connection streng th.

These strengths can be modified in response to

various training sets and according to a network‟s

specific topology or through its learning ru les.

3.2. Summation Function

The first step in a processing element‟s operation is

to compute the weighted sum of all of the inputs.

Mathematically, the inputs and the corresponding

weights are vectors which can be represented as (i1,

i2,………….in) and (w1, w2,……………….wn).

The total input signal is the dot, or inner, product of

these two vectors. This simplistic summat ion

function is found by multiply ing each component of

the i
th

 vector by the corresponding component of the

w vector and then adding up all the products. Input1

= i1*w1, input2=i2*w2, etc., are added as

input1+input2+………..+input n. The result is a

single number, not a multi-element vector.

Geometrically, the inner product of two vectors can

be considered a measure of their similarity. If the

vector point in the same direction, the inner product

is maximum; if the vectors points in opposite

direction (180 degrees out of phase), their inner

product is minimum. The summation function can be

more complex than just the simple input and weight

sum of products. The input and weighting

coefficients can be combined in many different ways

before passing on to the transfer function. In addition

to a simple product summing, the summat ion

function can select the min imum, maximum,

majority, product, or several normalizing algorithms.

The specific algorithm for combin ing neural inputs is

determined by the chosen network architecture and

paradigm.

3.3. Transfer Function

 The result of the summat ion function, almost

always the weighted sum, is transformed to a

working out put through an algorithm process known

as the transfer function. In transfer function the

summation total can be compared with some

threshold to determine the neural output. If the sum is

greater than the threshold value, the processing

element generates a signal. If the sum of the input

and weight product is less than the threshold, no

signal (no some inhibitory signal) is generated. Both

types of response are significant.

 McCulloch-Pitts Neuron Model

Types of threshold functions

Sigmoid function : f (x)=1/(1+exp(-x))

Step function : f (x) =0 if x<T

 =k if x>=T

Ramp function : f (x)=ax+b

The transfer function could be something as simple

as depending upon whether the result of the

summation function is positive or negative. The

network could output zero and one, and minus one, or

other numeric combinations. The transfer function

would then be a “hard limiter” or step function.

 Sample transfer functions

3.4. Scaling and Limiting

After the processing element‟s transfer function, the

result can pass through additional processes which

scale and limit. This scaling simply mult iplies a scale

factor times the transfer value, and then adds an

offset. Limit ing is the mechanism, which ensures that

the scaled result does not exceed, and upper or lower

bound. This limit ing is in addition to the hard limits

that the original transfer function may have

performed.

3.5. Output function (competition)

At Each processing element is allowed one output

signal, which it may output to hundreds of other

neurons. This is the just like the biological neuron,

where there are many inputs and only one output

action. Normally, the output is directly equivalent to

the transfer function‟s result. Some network

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

38 | P a g e

topologies, however, modify the transfer result to

incorporate competition among neighboring

processing elements. Neurons are allowed to compete

with each other, inhibiting processing elements

unless they have great strength. Competition can

occur one or both of two levels. First, competit ion

determines which artificial neuron will be active, are

provides an output. Second, competitive inputs help

determine which processing elements will participate

in the learn ing or adaptation process.

3.6. Error function and back-propagated value

 In most learn ing networks the difference

between the current output and the desired output is

calculated. This raw error is then transformed by the

error function to match particular network

architecture. The most basic architectures use this

error d irectly, but some square the error while

retaining its sign, some cube the error, and other

paradigms modify the raw error to fit their specific

purposes. The artificial neuron‟s error is then

typically propagated into the learning function of

another processing element. This error term is

sometimes called the current error. The current error

is typically p ropagated backwards to a previous layer.

Yet, this back-propagated value can be either the

current error, the current error scaled in some manner

(obtained by the derivative of the transfer function),

or some desired output depending on the network

type. Normally, this back-propagated value, after

being scaled by the learning function, is multip lied

against each of the incoming connection weights to

modify them before the next learn ing cycle.

3.7. Learning function

 The purpose of the learning function is to

modify the variable connection weights on the inputs

of each processing elements according to some neural

base algorithm. This process of changing the weights

of the inputs connections to achieve some desired

results could also be called the adoption function, as

well as the learn ing mode.

3.7.1. Paradigms of learning

 There are three broad paradigms of learning:

 Supervised

 Unsupervised (or self-organized)

 Reinforcement learn ing (a special case of

supervised learning)

3.7.1.1 Supervised learning

The vast majority of the artificial neural network

solutions have been trained with supervision. In this

mode, the actual output of a neural network is

compared to the desired output. The network then

adjusts weights, which are usually randomly set to

begin with, so that the next iterat ion, or cycle, will

produce a closer match between the desired and the

actual output. This learning method tries to minimize

the current errors of all processing elements. This

global error reduction is created over time by

continuously modifying the input weights until

acceptable network accuracy is reached.

 Block dig. Of supervised learning

 3.7.1.2. Unsupervised learning

 In supervised learning the system directly

compares the network output with a known

correct or desired answer, whereas in

unsupervised learning the output is not known.

Unsupervised training allows the neurons to

compete with each other until winner emerges.

The resulting values of the winner neurons

determine the class to which a particular data set

belongs. Unsupervised learning is the great

promise of the future. It shouts that computers

could some day learn on their own in a true

robotic sense.

 Block dig. Of unsupervised learning

3.7.1.3 Reinforcement learning

 Reinforcement learn ing is a form of supervised

learning where adopted neuron receives feedback

from the environment that directly influences

learning.

3.7.2. Learning law

 The fo llowing general learning rules is adopted in

the neural network studies:

The weight vector wi =[W i1,

Wi2……………………………….W in]
 t

 increases

proportion to the product of input x and learn ing

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

39 | P a g e

signal r. The learn ing signal r is a function of wi x,

and sometimes of the teacher‟s signal d i.

 Hence we have, r =r (W i, X, di) and increment in

weight vector produced by the learning step at time t

is W i (t) =cr [W i (t), X (t), di (t)] X (t)

Where c is learn ing constant.

Thus Wi (t+1) =W i (t)+ cr [W i (t), X (t), di (t)] X (t)

Various learning rules are their assist the learning

process.

They are :

3.7.2.1 Hebbian learning rule

This rule represents purely feed forward,

unsupervised learning

According to this rule, we have

r=f(W
t
i, X)

and increment of weight becomes

Wi=c f(W
t
i, X) X

3.7.2.2 Perceptron learning rule

This learning is supervised and learning signal is

equal to

 r =di-Oi

Where Oi=sgn(W
t
i, X) and di is the desired response.

Weight adjustment in this method is

Wi=c[di- sgn(W
t
i, X)] X

in this method of learn ing, in itial weight can have

any value and neuron much be binary bipolar are

binary unipolar.

3.7.2.3. Delta learning rule

This rule is valid for continuous activation functions

and in the supervised training mode. The learning

signal is called as delta and is given as:

r=[di – f(W
t
i X)] f (W

t
i X)

The adjustment for the single weight in this rule is

given as:

Wi = c (di-Oi) f (net i) X

In this method of learning, the initial weight can have

any value and the neuron must be continuous.

3.7.2.4. Windrow-Hoff learning rule

This is applicable for the supervised training of

neural networks and is independent of activation

function.

Learn ing signal is given as

r = di – W
t
i X

The weight vector increment under this learn ing rule

is :

Wi=c (di - W
t
i X) X

3.7.2.5. Correlation learning rule

Substituting r = di in general learn ing rule, we obtain

correlation learn ing rule. The adjustment for the

weight vector is given by:

Wi = c di X

3.7.2.6. Winner-take all learning rule

This rule is applicable for an ensemble of neurons,

let‟s say being arranged in a layer of p units. This

learning is base on the premise that one of the

neurons in the layer, say the m
th

, has the maximum

response due to input x. This neuron is declared the

winner. It‟s increment is computed as follows

Wm = (X - Wm)

3.7.2.7. outstar learning rule

This is an another learning rule that is best explained

when the neurons are arranged in layers. Th is rule is

designed to produce a desired response d of the layer

of p neurons. This rule is concerned with the

supervised learning and the weight adjustment is

computed as:

Wj = (X - W j)

4. Training a neural network
Since the output of the neural network may not be

what is expected, the network needs to be trained.

Train ing involves altering the interconnection

weights between the neurons. A criterion is

needed to specify when to change the weights and

how to change them. Train ing is an external

process whiling learning is the process that takes

place internal to the network. The following

guideline will be of help as a step methodology

for training a network.

4.1. Choosing the number of neurons

 The number of h idden neurons affect how well

the network is able to separate the data. A large

number of hidden neurons will ensure correct

learning and the network is able to correct ly

predict the data it has been trained on, but its

performance on new data, its ability to generalize,

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

40 | P a g e

is compromised. With too few hidden neurons,

the network may be unable to learn the

relationship amongst the data and the error will

fail to fall below an acceptable level. Thus,

selection of the number of hidden neurons is a

crucial decision. Often a trial and error approach

is taken starting with a modest number o f hidden

neurons and gradually increasing the number if

the network fails to reduce its error. A much used

approximation for the number of hidden neurons

for a three layered network is N=1/2(j + k)+v P,

where J and K are the number of input neurons

and P is the number of patterns in the training set.

4.2. Choosing the initial weights

The learning algorithm uses steepest descent

technique, which rolls straight downhill in weight

space until the first valley is reached. This valley

may not correspond to a zero error for the

resulting network. This makes the choice of init ial

starting point in the mult idimensional weight

space critical. However, there are no

recommended rules for this selection except

trying several different weight values to see if the

network results are improved.

4.3. Choosing the learning rate

Learn ing rate effect ively controls the size of the step

that is taken in multid imensional weight space when

each weight is modified. If the selected learning rate

is too large then the local min imum may be over

stopped constantly, resulting in oscillations and slow

convergence to lower error state. If the learning rate

is too low, the number of iterations requires may be

too large, resulting in slow performance. Usually the

default value of most commercial neural network

packages are in the range 0.1-0.3 provid ing a

satisfactory balance between the two reducing the

learning rate may help improve convergence to a

local min imum of the error surface.

4.4. Choosing the activation function

The learning signal is a function of the error

multip lied by the gradient of the activation function

df/d (net). The larger the value of the gradient, the

more weight the learn ing will receive. For training,

the activation function must be monotonically

increasing from left to right, differentiable and

smooth.

5. Models Of artificial Neural Networks
 There are different kinds of neural network

models that can be used. Some of the common ones

are:

5.1. Perception model

This is a very simple model and consis ts of a single

„trainable‟ neuron. Trainable means that its threshold

and input each input has a desired output (determined

by us). If the neuron doesn‟t gives the desired output,

then it has made a mistake. To rectify this, its

threshold and/or input weights must be changed.

How this change is to be calculated is determined by

the learning algorithm.

The output of the perceptron is constrained to

Boolean values – (true, false), (1, 0), (1, -1) or

whatever. This is not a limitation because if the

output of the perceptron were to be the input for

something else, then the output edge could be made

to have a weight. Then the output would be

dependant on this weight.The perceptron looks like

X1, X2, …………., Xn are inputs. These could be real

numbers or Boolean values depending on the

problem.

y is the output and is Boolean.

w 1, w2, …………, wn are weights of the edges and are

real valued.

T is the threshold and is a real valued.

The output y is 1 if the net input which is :

w1 x1 + w2 x2 + …….+ wn xn

 is greater than the threshold T. Otherwise the output is

zero.

5.2. Feed – Forward Model

 Elementary feed forward architecture of m neurons

and receiving n inputs is shown in the figure. Its output

and input vectors are respectfully.

 O = [O] O2 ………Om]

 X = [x] x2………..xn]

Weight Wij connects the i
th

 neuron with the j
th

 input.

Hence activation value net i for the i
th

 neuron is

 Net i = j=1
n
 Wij Xj

 for i=1, 2, 3,……, n

Hence, the output is given as

 Oi = f(W
t
i X) for i = 1, 2, 3,

……….., m

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

41 | P a g e

Where Wi is the weight vector containing the weights

leading towards

the i
th

 output node and defined as

 Wi = [Wi1 Wi2 …………. Win]

If is the nonlinear matrix operarte, the mapping of input

space X to output space O implemented by the

network can be exp ressed

 O = W X

Where W is the weight matrix, also called the connection

matrix.

 The generic feedforward network is characterized by

the lack of feedback. This type network can be

connected in cascade to create a multip layer network.

 feed forward neural network

5.3. Feed-Back model

A feedback network can be obtained from the

feedforawrd network by connecting the neuron‟s outputs

to their inputs, as shown in the fig. The essence of

closing the feedback loop is to hold control of output Oi

through outputs Oj; for j =1, 2, ……, m. o r controlling

the output at instant t+Δ by the output at instant t. This

delay Δ is introduced by the delay element in the

feedback loop. The mapping of O(t) into O(t+ Δ) can

now be written as

 O(t+ Δ) = ┌[W o(t)]

5.4. Notations Used

M1 is a 2-D matrix where M1[i] [j] represents the

weight on the connection from the i
th

 input neuron to

the j
th

 neuron in the hidden layer.

M2 is a 2 –D matrix where M2[i][j] denotes the

weight on the connection from the i
th

 hidden layer

neuron to the j
th

 output layer neuron.

 x, y and z are used to denote the outputs of neurons

from the input layer, hidden layer and output layer

respectively.

If there are m input data, then (x1, x2, ……., xm). P

denotes the desired output pattern with components

(p1, p2, ………, pr) for r outputs.

Let the number of h idden layer neurons be n.

βo = learn ing parameter fo r the output layer.

βh = learn ing parameter fo r the hidden layer.

α = momentum term

θ j = threshold value (bias) for the j
th

 hidden layer

neuron.

τj = threshold value for the j
th

 output layer neuron.

ej = error at the j
th

 output layer neuron.

tj = error at the j
th

 hidden layer neuron.

Threshold function = sigmoid function : F(x) = 1/(1 +

exp(x)).

5.5 Mathematical expressions

 Output of j
th

 hidden layer neuron : y j = f((Σi

xi M1[i][j]) + θ j)

Output of j
th

 output layer neuron : zj = f((Σi yi

M2[i][j]) + τj).

i
th

 component of vector of output differences:

 desired value – computed value = Pj – zj

i
th

 component of output error at the output layer:

 ej = pj – zj.

i
th

 component of output error at the hidden layer:

 ti = yi (1 – yi) (Σj M2[i][j] ej)

Adjustment of weights between the i
th

neuron in the

hidden layer and j
th

 output neuron:

ΔM2[i][j] (t) = β0 yi ej + α ΔM2 [i][j] (t - 1)

Adjustment of weights between the i
th

 input neuron

and j
th

 neuron in the hidden layer :

 ΔM1[i][j] = βh xi tj + α ΔM1 [i][j] (t

- 1)

Adjustment of the threshold value for the j
th

 output

neuron:

 Δ τj = β0 ej

Adjustment of the threshold value for the j
th

 hidden

layer neuron:

 Δ θ j = βh ej

6. Neural network applications
Aerospace

 High performance aircraft autopilot,

flight path simulation, aircraft control

systems, autopilot enhancements,

aircraft component simulation, aircraft

component fault detection.

Automobile control

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

42 | P a g e

 Automobile automatic guidance system,

warranty activity analysis.

Banking

 Check and other document reading

credit applicat ion evaluation.

Cred it card activ ity checking

 Neural networks are used to spot

unusual credit card activity that might

possibly be associated with loss of a

credit card

Defense

 Weapon steering, target tracking, object

discrimination, facial recognition, new

kinds of sensors, sonar, radar and image

signal processing including data

compression, feature extract ion and

noise suppression, signal/ image

identification.

Electronics

 Code sequence prediction, integrated

circuit chip laying, process control, chip

failure analysis, machine vision voice

synthesis, nonlinear modeling.

Entertainment

 Animat ion, special effects, market

forecasting.

Financial

 Real estate appraisals, loan advisor,

mortgage screening, corporate bond

rating, credit-line use analysis, and

portfolio trading program, corporate

financial analysis, and currency price

prediction.

Industrial

 Neural networks are being trained to

predict the output gasses of furnaces

and other industrial process. They then

replace complex and costly equipment

used for this purpose in the past.

Insurance

 Neural networks are used in policy

application evaluation, product

optimization.

Manufacturing

 Neural networks are used in

manufacturing process control, product

design and analysis, process and

machine diagnosis, real-time part icle

identification, visual quality analysis,

paper quality prediction, computer –

chip quality analysis, analysis of

grinding operations, chemical product

design analysis, machine maintenance

analysis, project bidding, planning and

management, dynamic modeling of

chemical p rocess system.

Medical

 Neural networks are used in breast

cancer cell analysis, EEG and ECG

analysis, prosthesis design, optimizat ion

of transplant times, hospital expense

reduction, hospital quality

improvement, and emergency room test

advisement.

Oil and Gas

 Neural networks are used in explorat ion

of oil and gas.

Robotics

 Neural networks are used in trajectory

control, forklift robot, manipulator

controllers, vision systems

Other applicat ion

 Artificial intelligence

 Character recognition

 Image understanding

 Logistics

 Optimization

 Quality Control

 Visualizat ion

7. Advantages Of ANN
1. It involve human like thinking.

2. They handle noisy or missing data.

3. They create their own relationship amongst

informat ion – no equations!

4. They can work with large number of

variables or parameters.

5. They provide general solutions with good

predictive accuracy.

6. System has got property of continuous

learning.

7. They deal with the non-linearity in the world

in which we live.

8. Conclusion
In this present world of automation to automate

systems neural network and fuzzy logic systems are

required. Fuzzy logic deals with vagueness or

uncertainty and neural network related to human like

thinking. If we use only fuzzy systems or only NN

complete automation is never possible. The

combination is suitable because fuzzy logic has

tolerance for impression of data, while neural

networks have tolerance for noisy data. As there are

different advantages and disadvantages usage of NN

thus we use combination of neural networks and

Fuzzy logic in order to implement a real world

system without manual interference. Very promising

results have been obtained in the sense that both an

Pradeep.A.V, Sharmili.S / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.035-043

43 | P a g e

improvement in the recognition rate and a reduction in

the complexity of the models are achieved.

Bibliography

References books:--

 “Introduction to Artificial Neural Network”,

by Jacek M. Zurada; Jaico Publishing

House, 1999.

 “An Introduction to Neural Network”, by

James A. Anderson; PHI, 1999.

 “Elements of Artificial Neural Network”, K.

Mehrotra, C.K. Mohan and Sanjay ranka,

MIT Press, 1997.

 “Neural Network nad Fuzzy System”, by

Bart Kosko; PHI, 1992.

 “Neural Network – A comprehensive

foundation”, Simon Haykin, Macmillan

Publishing Co., Newyork, 1993.

Reference sites –

 http://www.cs.stir.ac.uk/~lss/NNInro/invSlid

es.htm

 http://www.bitstar.com/nnet.htm

 http://www.pmsi.fr/s xcxmpa.htm

 http://www.pmsi.fr/neurin ia.htm

http://www.cs.stir.ac.uk/~lss/NNInro/invSlides.htm
http://www.cs.stir.ac.uk/~lss/NNInro/invSlides.htm
http://www.bitstar.com/nnet.htm
http://www.pmsi.fr/sxcxmpa.htm
http://www.pmsi.fr/neurinia.htm

