
Jayeeta Majumder / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.721-724

721 | P a g e

Dictionary Attack on MD5 Hash

Jayeeta Majumder
Department of Computer Science and Engineering

Haldia Institute of Technology

Haldia, West Bengal

Abstract
MD5 message-digest algorithm takes as input a message of

arbitrary length and produces as output a 128-bit

"fingerprint" or "message digest" of the input .The MD5

algorithm is intended for digital signature applications,

where a large file must be "compressed" in a secure

manner before being encrypted with a private (secret) key

under a public-key cryptosystem. Message Digest 5 is

commonly used to create hash of passwords that is an

encrypted form of password to be sent over network or

stored in file system. Through out this paper we have gone

through different mechanism of md5. Throughout this

thesis we have analyzed several password-cracking

techniques and compare them for exploiting MD5 hashed

passwords. We have gone through cryptanalysis of MD5

based on dictionary attack.

Keywords : MD5 Hash, Dictionary Attack, MD5_DRIV

algorithm, MD5_IMPL algorithm

1. Introduction

A hash function H maps an arbitrary input message m to a

fixed length output called hash value h = H (m). Hash

functions can basically be divided in two groups, keyed

hash functions and

unkeyed hash functions. An example for keyed hash

functions are Message Authentication Codes MACs.

MACs should ensure the source of a message and its

integrity. As the input of these hash functions are the

message m and a particular key k, one needs to know the

key k to compute the correct hash value h = H (m, k).

Hence, without the knowledge of the key k it should be

computationally infeasible to find a message m
*
 such that

H (m
*
, k) = h.

A subclass of un keyed hash functions are Modification

Detection Codes MDCs. Contrary to MACs, we do not

need a special key to compute the hash value h = H(m).

Nevertheless, it should be computationally infeasible to

find two messages m m
*
 such that H (m) = H (m

*
, k) .

A hash function with n bits output yields in 2
n

possible

output hash values. Due to

the birthday paradox, we only have to compute 2
n/2

different input messages to find a collision with a certain

probability. If we are able to find a collision in less than 2 -
n/2

 the hash function is considered to be broken. Most hash

functions used in practice are designed as iterated hash

functions. The arbitrary input message m is split in k fixed

length blocks mi. Then, a so called compression function f

is applied to every single message block mi and the result

of the previous message block mi−1. For the application of

the compression function to the first message block m0, we

use a constant predefined initial value IV.

An example for an unkeyed hash function is MD5 [2] . As

the successor of MD4 it was proposed by Ronald L.

Rivestin 1992 because weaknesses were found in MD4

[16]. The hash function MD5 is designed as an iterated

hash function and computes a 128-bit hash value out of

arbitrary length messages. Today it is widely used in

SSL/TLS, IPSec, and on UNIX systems to store passwords

[2]. It would be a security weakness if passwords, for

instance on servers, were stored in plain text. Therefore

just the hash values of the passwords are stored in a public

file. If a user wants to log in, the hash function is applied to

the entered password. Then the computed hash value is

compared to the one in the password file and the user is

allowed to log in or not.

2. Overview of MD5
 Message Digest 5 (MD5) hash was developed by Rivest as

an update to his previous MD4[16] hash and published in

1992 [2]. MD5, like other cryptographic hash algorithms,

takes a message of arbitrary size and produces an output of

fixed size (128 bits).

Jayeeta Majumder / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.721-724

722 | P a g e

 Fig 1: Illustration of MD5 Hash Function

3. MD5 Hash Algorithm
MD5 is a hash function that takes an arbitrary message as

input and generates a 128-bit output digest. The initial

values (IV1, IV2, IV3, IV4) and the chaining variables (A,

B, C, D) are four 32-bit values. In the following, we

describe the algorithm with message pre-processing, the

application of the compression function, and the final hash

value h.

 fig 2. : Message pre-processing

At first, we append a binary 1 to the message and then

binary 0s unless the message length is 448 (mod 512).

Then, we append the 64-bit little endian message length to

this message. We now have an input message that has a

length of 0 (mod 512). The pre-processed message now

looks like M = (M0 , M1 , . . . , Mk-1) and the compression

function can be applied to every message block.

4. Active attacks on MD5

4.1 Brute Force Attack

The attacker tries every possible key on a piece of cipher

text [2] until an intelligible translation into plaintext is

obtained. On average, half of all possible keys to be tried

achieve success.

4.2. Chosen-Prefix Collisions Attack

We present a novel, automated way to find differential

paths for MD5. As an application we have shown how, at

an approximate expected cost of 2
29

 calls to the MD5

compression function, for any two chosen message

prefixes P and P' suffix s and S and S' can be constructed

such that the concatenated values P OR S and P′OR S'

collide under MD5. The practical attack potential of this

construction of chosen-prefix collisions [15] is of greater

concern than the MD5-collisions that were published

before. This is illustrated by a pair of MD5-based X.509

certificates one of which was signed by a commercial

Certification Authority (CA) as a legitimate website

certificate, while the other one is a certificate for a rogue

CA that is entirely under our control.

Given two arbitrarily chosen messages, we first apply

padding to the shorter of the two, if any, to make their

lengths equal. This is unavoidable, because Merkle-

Damgard strengthening, involving the message length, is

applied after the last message block has been compressed

by MD5[2]. We impose the additional requirement that

both resulting messages are a specific number of bits (such

as 64 or 96) short of a whole number of blocks. In

principle this can be avoided, but it leads to an efficient

method that allows relatively easy presentation. All these

requirements can easily be met, also in applications with

stringent formatting restrictions.

Given this message pair, we modify a suggestion by

Xiaoyun Wang (private communication) by finding a pair

of k-bit values that, when appended to the last incomplete

message blocks, results in a specific form of difference

vector between the IHVs after application of the MD5

compression function to the extended message pair.

Finding the k-bit appendages can be done using a birthday

procedure.

4.3. Dictionary Attack

A dictionary attack [15] refers to the general technique of

trying to guess some secret by running through a list of

likely possibilities, often a list of words from a dictionary

[5]. It contrasts to a brute force attack in which all

possibilities are tried. The attack works because users often

choose easy to guess passwords, even after being exhorted

against doing so. Dictionary attacks either precompute

hash values for a given dictionary file and then compare

target password hashes to the pre computed tables for a

match, or words in a dictionary file are hashed and

compared against a target password hash for a match.

Jayeeta Majumder / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.721-724

723 | P a g e

5. Algorithm Specification
In this paper first I have create a hash value of a particular

message. After that we have taken all dictionary Word to

create all hash value of the corresponding hash value then

match hash value with our target hash value.

5.1 Algorithm :

 Algorithm : MD5_DRIV

1. Open source file SOURCE.TXT

2. Argument passing from source file to

MD5_IMPL .

3. Hash Generation .

4. Hash code store in RESULT.TXT file as

output .

 Algorithm: MD5_IMPL

MD5 hash function:

m=m0m1m2….ms-1

1. Construct M=M[0]M[1]…M[N-1]

2. A←67452301

3. B←EFCDAB89

4. C←98BADCFE

5. D←10325476

6. For i=0 to N/16 -1 Do

7. For j=0 to 15 do

8. X[j]=M[i*16+j]

9. A′ ← A

10. B′← B

11. C'← C

12. D′← D

13. Round1(Algo1)

14. Round1(Algo2)

15. Round1(Algo3)

16. Round1(Algo4)

17. A← A+ A'

18. B← B+ B′

19. C← C+ C'

20. D← D+ D′

21. end for;

22. end for;

23. h(m)= A OR B OR C OR D

24. end

5.2 Complexity Analysis

Algorithm : MD5_DRIV

1. Open source file SOURCE.TXT

2. Argument passing from source file to

MD5_IMPL .

3. Hash Generation .

4. Hash code store in RESULT .TXT file as

output .

 O(1)

Algorithm : MD5_IMPL

MD5 hash function:

m=m0m1m2….ms-1

1. Construct M=M[0]M[1]…M[N-1]

2. A←67452301

3. B←EFCDAB89 O(1)

4. C←98BADCFE

5. D←10325476

6. For i=0 to N/16 -1 Do

7. For j=0 to 15 do 16n +c

8. X[j]=M[i*16+j]

9. A′ ← A

10. B′← B

11. C'← C O(1)

12. D′← D

13. Round1(Algo1) 16*c1

14. Round1(Algo2) 16*c2

15. Round1(Algo3) 16*c3

16. Round1(Algo4) 16*c4

17. A← A+ A'

18. B← B+ B′

19. C← C+ C' O(1)

20. D← D+ D′

21. end for;

22. end for;

23. h(m)= A OR B OR C OR D

24. end

Total Complexity = 0(1) + 0(1) + (16n+c) +(

16*c1+16*c2+16*c3+16*c4) + 0(1)

 = O(n)

6. References
[1] B.Schneier. Applied Cryptography. John Wiley and

Sons, second edition, 1996

[2] William Stallings, Cryptography and Network

Security-Principles and Practice, Third edition,

Prentice Hall publications 2004.

[3] Wikipedia http://www.wikipedia.org

[4] WordIQ http://www.wordiq.com/

 [5] Trappe and Washington, University of Maryland,

Introduction to Cryptography with Coding Theory,

Prentice Hall, 2002.

[6] Sun Microsystems

http://research.sun.com/projects/crypto/

[7] Certicom Corp. http://www.certicom.com/

[8] S. Lucks and M. Daum, The Story of Alice and her

Boss. Presented at the rump session of Eurocrypt '05,

May 2005

[9] X. Wang and H. Yu, How to Break MD5 and Other

Hash Functions.

[10] Barry M. Leiner and Vinton G. Cerf and David D.

Clark and Robert E. Kahn and Leonard Kleinrock and

Daniel C. Lynch and Jon Postel and Larry G. Roberts

and Stephen Wolff.

http://www.isoc.org/internet/history/brief. 9 January,

2006.

Jayeeta Majumder / International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 3, May-Jun 2012, pp.721-724

724 | P a g e

[11] National Institute of Standards and Technology

(NIST) , Computer Systems Laboratory. Secure Hash

Standard. Federal Information

 Processing Standards Publication (FIPS PUB) 180-2,

August 2002.

[12] Praveen Gauravaram and Adrian McCullagh and Ed

Dawson. The legal and practical implication of recent

attacks on 128-bit hash functions. First

MondayJournal,volume11.Number12,January,2006.htt

p://www.firstmonday.org/issues/issue11/gauravaram/i

ndex.html.

[13] National Institute of Standards and Technology

(NIST) Computer Systems Laboratory. Secure hash

standard. Federal Information Processing Standards

Publication (FIPS PUB) 180-1, April 1995.

[14] Adrian McCullagh and William Caelli. Non-

Repudiation in the Digital Environment. First

Monday–Peer-Reviewed Journal On the Internet, 5,

August 2000. This article is available at

http://www.firstmonday.dk/issues/issue5 8/mccullagh/

Last access date: 5 January 2006.

[15] Ronald Rivest. The MD5 Message-Digest Algorithm.

RFC 1321, MIT, RSA Data Security, April 1992.

[16] Hans Dobbertin. Cryptanalysis of md4. In Fast

Software Encryption, pages 53–69,1996.

http://world.std.com/~franl/crypto.html

