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Abstract: The less time any processor takes in 

handling instructions the more would be its speed and 

efficiency. The speed of a processing device is not only 

based on it’s Architectural features or Operational 

frequencies but also it needs to be dependent on the 

Memory mapping. A processors memory management 

is helped out with the operating system on which it is 

working.  The memory management subsystem is one 

of the most important parts of the operating system. 

Since the early days of computing, there has been a 

need for more memory than exists physically in a 

system. Many considerations were raised leading to 

concepts of virtual and  physical memories. With all 

steps on improving side a concept of Cache Memory is 

also much impressive. The nearest block of storage to 

hike processor speed has the procedures of fast 

information transactions.  The retrieval of information 

(pages) from memories could be brought to fast extent 

by  fast replacements of pages. This paper presents the 

various replacement algorithms with their performance 

analysis. 
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1. Introduction 
The memory management subsystem is one of the most 

important parts of the operating system. In the 

Hierarchy status of memory the Cache memory stands 

at the nearest level to transact information towards the 

processing unit. Since the early days of computing, 

there has been a need for more memory than exists 

physically in a system. Apart from making the 

processors, memory[3]so on faster the best approach is 

to maintain caches of useful information and data that 

make some operations faster. Linux uses a number of 

memory management related caches. 

 

 

Strategies have been developed to overcome this 

limitation and the most successful of these is virtual 

memory. Virtual memory makes the system appear to 

have more memory than it actually has by sharing it 

between competing processes as they need it.  In most 

operating system texts, the treatment of memory 

management includes a section  entitled "replacement 

policy," which deals with the selection of a page in 

main memory to be replaced when a new page must be 

brought in. This topic is sometimes difficult to explain  

because several interrelated concepts are involved: 

 

-- How many page frames are to be allocated to each  

    active process  

-- Whether the set of pages to be considered for  

     replacement should be limited to those of the  

     process that caused the page fault or encompass all 

     the page frames in main memory  

-- Among the set of pages considered, which particular 

page should be selected for replacement   

 

2. The Memory Management Subsystem: 
Virtual memory does more than just make your 

computer's memory go further. The memory 

management subsystem provides:  

Large Address Spaces :The operating system makes 

the system appear as if it has a larger amount of 

memory than it actually has. The virtual memory can 

be many times larger than the physical memory in the 

system.[1,12] 

Protection:Each process in the system has its own 

virtual address space. These virtual address spaces are 

completely separate from each other and so a process 

running one application cannot affect another. Also, the 

hardware virtual memory mechanisms allow areas of 

memory to be protected against writing. This protects 

code and data from being overwritten by rogue 

applications.  

Memory Mapping :Memory mapping is used to map 

image and data files into a processes address space. In 
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memory mapping, the contents of a file are linked 

directly into the virtual address space of a process.  

Fair Physical Memory Allocation :The memory 

management subsystem allows each running process in 

the system a fair share of the physical memory of the 

system. 

Shared Virtual Memory :Although virtual memory 

allows processes to have separate (virtual) address 

spaces, there are times when you need processes to 

share memory. For example there could be several 

processes in the system running the bash command 

shell. Rather than have several copies of bash, one in 

each processes virtual address space, it is better to have 

only one copy in physical memory and all of the 

processes running bash share it. Dynamic libraries are 

another common example of executing code shared 

between several processes. Shared memory can also be 

used as an Inter Process Communication (IPC) 

[22,8,17] mechanism, with two or more processes 

exchanging information via memory common to all of 

them. Linux supports the Unix 
TM

 System V shared 

memory IPC.  

 

 
 

Figure 1: Abstract model of Virtual to Physical 

address mapping 

3.  Cache Memory: 
Apart from making the processors,   memory and so on 

faster the best approach is to maintain caches of useful 

information and data that make some operations faster. 

Linux uses a number of memory management related 

caches:  

 Buffer Cache:The buffer cache contains data buffers   

that are used by the block device drivers.  

These buffers are of fixed sizes (for example 512 

bytes) and contain blocks of information that have 

either been read from a block device or are being 

written to it. A block device is one that can only be 

accessed by reading and writing fixed sized blocks of 

data. All hard disks are block devices.  

The buffer cache is indexed via the device identifier 

and the desired block number and is used to quickly 

find a block of data. Block devices are only ever 

accessed via the buffer cache. If data can be found in 

the buffer cache then it does not need to be read from 

the physical block device, for example a hard disk, and 

access to it is much faster.  

Page Cache : This is used to speed up access to images 

and data on disk. It is used to cache the logical contents 

of a file a page at a time and is accessed via the file and 

offset within the file. As pages are read into memory 

from disk, they are cached in the page cache.  

Swap Cache :Only modified (or dirty) pages are saved 

in the swap file. So long as these pages are not 

modified after they have been written to the swap file 

then the next time the page is swapped out there is no 

need to write it to the swap file as the page is already in 

the swap file. Instead the page can simply be discarded. 

In a heavily swapping system this saves many 

unnecessary and costly disk operations.[11,16,20]  

Hardware Caches: One commonly implemented 

hardware cache is in the processor; a cache of Page 

Table Entries. In this case, the processor does not 

always read the page table directly but instead caches 

translations for pages as it needs them. These are the 

Translation Look-aside Buffers and contain cached 

copies of the page table entries from one or more 

processes in the system. When the reference to the 

virtual address is made, the processor will attempt to 

find a matching TLB entry. If it finds one, it can 

directly translate the virtual address into a physical one 

and perform the correct operation on the data. If the 

processor cannot find a matching TLB entry then it 

must get the operating system to help. It does this by 

signalling the operating system that a TLB miss has 

occurred. A system specific mechanism is used to 

deliver that exception to the operating system code that 

can fix things up. The operating system generates a 

new TLB entry for the address mapping. When the 

exception has been cleared, the processor will make 

another attempt to translate the virtual address. This 

time it will work because there is now a valid entry in 

the TLB for that address.  

 

4. Page Replacement Algorithms : 
A virtual memory system needs efficient page 

replacement algorithms to decide which pages to evict 

from memory in case of a page fault.[6,5,13,14,15] 

Over the years many algorithms have been proposed 
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for page replacement. Each algorithm attempts to 

minimize the page fault rate while incurring minimum 

overhead. As newer memory access patterns were 

explored, research mainly focused on formulating 

newer approaches to page replacement which could 

adapt to changing  workloads. A traditional CPU 

implementation, that contribute to the increase of code 

density and faster execution.  

Both cache and auxiliary memory handle uni-formly 

sized items called pages. Requests for pages 

go first to the cache. When a page is found in the 

cache, a hit occurs; otherwise, a cache miss hap-pens, 

and the request goes to the auxiliary memory. 

In the latter case, a copy is paged in to the cache. 

This practice, called  demand paging, rules out 

prefetching pages from the auxiliary memory into 

the cache. If the cache is full, before the system can 

page in a new page, it must page out one of the cur-

rently cached pages.[7] A replacement policy deter-

mines which page is evicted.  

4.1 Optimal and FIFO Algortihms: 

The optimal policy selects for replacement that page 

for which the time to the next reference is  

the longest. It can be shown that this policy results in 

the fewest number of page faults.[1,16] Clearly, this 

policy is impossible to implement, because it would 

require the operating system to have perfect knowledge 

of future events. However, it does serve as a standard 

against which to judge real-world algorithms. 

The first-in-first-out (FIFO) policy treats the page 

frames allocated to a process as a circular  

buffer, and pages are removed in round-robin style. All 

that is required is a pointer that circles through the page 

frames of the process. This is therefore one of the 

simplest page replacement policies to implement. The 

logic behind this choice, other than its simplicity, is 

that one is replacing the page that has been in memory 

the longest: A page fetched into memory a long time  

ago may have now fallen out of use. This reasoning 

will often be wrong, because there will often be regions 

of program or data that are heavily used throughout the 

life of a program. Those pages will be repeatedly paged 

in and out by the FIFO algorithm  

4.2 LRU: 

A commonly used criterion for evaluating a 

replacement policy is its hit ratio—the frequency 

with which it finds a page in the cache. Of course, 

the replacement policy’s implementation overhead 

should not exceed the anticipated time savings. 

Discarding the least-recently-used page is the  

pol-icy of choice in cache management.  

Until recently, attempts to outperform LRU in practice 

had notsucceeded because of overhead issues and the 

need to pretune parameters. The adaptive replacement 

cache is a self-tuning, low-overhead algorithm that 

responds online to changing access patterns. ARC 

continually balances between the recency and fre-

quency features of the workload, demonstrating that 

adaptation eliminates the need for the work-load-

specific pretuning that plagued many previous 

proposals to improve LRU.[5,6,14] ARC’s online 

adaptation will likely have benefits for real-life 

workloads due to their richness and variability with 

time. These workloads can contain long sequential I/Os 

or moving hot spots, changing frequency and scale of 

temporal locality and fluc-tuating between stable, 

repeating access patterns and patterns with transient 

clustered references.  

4.2 ARC[ Adaptive Replacement Cache]:     

Like LRU, ARC is easy to implement, and its run-ning 

time per request is essentially independent of 

the cache size. A real-life implementation revealed 

that ARC has a low space overhead—0.75 percent 

of the cache size. Also, unlike LRU, ARC is scan-

resistant in that it allows one-time sequential 

requests to pass through without polluting the 

cache or flushing pages that have temporal 

locality.[17,11]. 

Likewise, ARC also effectively handles long peri-ods 

of low temporal locality. ARC leads to sub-The self-

tuning, low-overhead, scan-resistant adaptive 

replacement cache algorithm outperforms the least-

recently-used algorithm by dynamically responding to 

changing access patterns and continually balancing 

between workload recency and frequency features. 

stantial performance gains in terms of an improved 

hit ratio compared with LRU for a wide range of 

cache sizes.[6] 

4.3 CAR [CLOCK with Adaptive Replacement]:  
CLOCK is a classical cache replacement policy dating 

back to 1968 that was proposed as a low-complexity 

approximation to LRU. On every cache hit, the policy 

LRU needs to move the accessed item to the most 

recently used position, at which point, to ensure 

consistency and correctness, it serializes cache hits 

behind a single global lock.[23,15,16]inates this lock 

contention. The algorithm CAR is inspired by the 

Adaptive Replacement Cache (ARC) algorithm, and 

inherits virtually all advantages of ARC including its 

high performance, but does not serialize cache hits 

behind a single global lock. 

The average memory reference time is 

 

    T = m * Tm + Th + E 
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CAR is a refinement of the Clock algorithm using the 

principles of ARC . The basic idea is to maintain two 

clocks, say, T1 and T2, where T1 contains pages with 

―recency‖ or ―short-term utility‖ and T2 contains pages 

with ―frequency‖ or ―longterm utility‖. New pages ar 

first inserted in T1 and graduate to T2 upon passing a 

certain test of long-term utility.[8,17,19] By using a 

certain precise history mechanism that remembers 

recently evicted pages from T1 and T2,  algorithm 

adaptively determine the sizes of these lists in a data-

driven fashion. CAR has a very low overhead on cache 

hits. 

CAR is self-tuning. The policy CAR requires no 

Tunable parameters, it is scan-resistant. A scan is any 

sequence of one-time use requests. CAR has very low 

space over head. 

4.3.1 Related Operation: 
The first key point of the above algorithm 

is the simplicity, where cache hits are not serialized 

behind a lock and virtually no overhead is involved. 

[22,10,17,18]. The second , key point is the continual 

adaptation of the target size. This observation produced 

by the below presented steps of operation( Part of the 

complete function is presented) 

CAR( x) 

INPUT: The requested page x. 

 if (x is in T1 ∪  T2 ) then /* cache hit */ 

 Set the page reference bit for x to one. 

 else /* cache miss */ 

 if (| T1 | + | T2 | = c) then 

/* cache full, replace a page from cache */ 

 replace( ) /* cache directory replacement */ 

 if ((x is not in B 1 ∪  B2 ) and (| T1 | + | B 1 | = c)) then 

 Discard the LRU page in B 1 . 

 elseif ((| T1 | + | T2 | + | B 1 | + | B 2 | = 2 c) and (x is 

not in B 1 ∪  B2 )) then 

 Discard the LRU page in B 2 . 

 endif 

 endif /* cache directory miss */ 

 if (x is not in B 1 ∪  B2 ) then 

 Insert x at the tail of T1 . Set the page reference bit of 

x to 0. /* cache directory hit */ 

elseif (x is in B 1 ) then 

 Adapt: Increase the target size for the list T1 as: p = 

min {p + max {1, | B 

 Move x at the tail of T2 . Set the page reference bit of 

x to 0. /* cache directory hit */ 

 else /* x must be in B 2 */ 

 Adapt: Decrease the target size for the list T1 as: p = 

max {p − max {1, | 

 Move x at the tail of T2 . Set the page reference bit of 

x to 0. 

 endif 

 endif 

replace() 

 found = 0 

 repeat 

 if (| T1 | >= max(1 , p )) then 

 if (the page reference bit of head page in T 1 is 0) then 

 found = 1; 

 Demote the head page in T1 and make it the MRU 

page in B 1 . 

 else 

 Set the page reference bit of head page in T 1 to 0, and 

make it the ta 

 endif 

 else 

 if (the page reference bit of head page in T 2 is 0), then 

 found = 1; 

 Demote the head page in T2 and make it the MRU 

page in B 2 . 

 else 

 Set the page reference bit of head page in T 2 to 0, and 

make it the ta 

 endif 

 endif 

 until (found)  

 

5. Experimental Results:  
A case of procedure of each explained algorithm is 

figured by taking  page request with page size of 4 KB 

to 4 MB over a memory block of 16 GB, The results 

are traced based on the percentage values, the high 

level end embedded C source is coded to get the 

results, The Comparisons are Tabulated as 

Table 1: A comparison of  Hit Ratios of the     

               Replacement algorithms 

 

6. Conclusions and Future works: 
CAR removes the cache hit serialization problem of 

LRU and ARC. The CAR attempts to merge the 

adaptive policy of ARC with the implementation 

efficiency of CLOCK. The self-tuning nature of CAR 

makes it very attractive for deployment in 

environments where no a priori knowledge of the 

workloads is available. CAR is scan-resistant. A scan is 

any sequence ofone-time use requests. 

CAR moves ahead with new approach CART- Clock 

Adaptive Replacement algorithm with Temporal 

Cache 

Pages 

 

Percentage of Hit Ratios 

 

CAR ARC LRU FIFO OPT 

1,024 42.43 39.17 38.41 33.8 32.27 

2,048 51.68 42.2 41.44 36.2 36.12 

4,096 55.4 47.59 46.05 39.13 38.24 

8,192 65.13 56.14 53.06 44.8 44.19 
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filtering, which has all the features and advantages of 

CAR in addition, it employs a much stricter and more 

precise criterion to distinguish pages with short-term 

utility from those with long-term utility. 

6. References 
[1] L. A. Belady, ―A study of replacement algorithms 

for virtual storage computers,‖ IBM Sys. J., vol. 

5, no. 2, pp. 78–101, 1966. 

[2] M. J. Bach, The Design of the UNIX Operating 

System. Engle- wood Cliffs, NJ: Prentice-Hall, 

1986. 

[3] A. S. Tanenbaum and A. S. Woodhull, Operating 

Systems: 

       Design and Implementation. Prentice-Hall, 1997. 

[4] A. Silberschatz and P. B. Galvin, Operating 

System Concepts.Reading, MA: Addison-Wesley, 

1995. 

[5] J. E. G. Coffman and P. J. Denning, Operating 

Systems Theory. Englewood Cliffs, NJ: Prentice-

Hall, 1973. 

[6] F. J. Corbat ´o, ―A paging experiment with the 

multics system,‖ in In Honor of P. M. Morse, pp. 

217–228, MIT Press, 1969. Also as MIT Project 

MAC Report MAC-M-384, May 1968. 

[7] L. M. Haas, W. Chang, G. M. Lohman, J. 

McPherson, P. F. 

      Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J. 

Carey, and 

      E. Shekita, ―Starburst mid-flight: As the dust 

clears,‖ IEEE 

        Trans. Knowledge and Data Engineering, vol. 2, 

no. 1, pp. 143– 160, 1990. 

[8] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. 

Quarter- 

      man, The Design and Implementation of the 

4.4BSD Operating System. Addison-Wesley, 

1996..  

[9] S. Bansal, and D. Modha, ―CAR: Clock with 

Adaptive Replacement‖, FAST-’04 Proceedings 

of the 3rd 

      USENIX Conference on File and  Storage 

Technologies, pp. 187-200, 2004.   

[10]A. Janapsatya, A. Ignjatovic, J. Peddersen and S. 

Parameswaran, ―Dueling CLOCK: Adaptive 

cache replacement policy based on the CLOCK 

algorithm‖,  Design, Automation and Test in 

Europe Conference and Exhibition, pp. 920-925, 

2010.   

[11] S. Jiang, and X. Zhang, ―LIRS: An Efficient 

Policy to improve Buffer Cache Performance‖,  

IEEE Transcations on Computers, pp. 939-952, 

2005.  

[12] S. Jiang, X. Zhang, and F. Chen, ―CLOCK-Pro: 

An Effective Improvement of the CLOCK 

Replacement‖, ATEC ’05 Proceedings of the 

annual conference on USENIX Anuual 

Tecchnical Conference, pp. 35, 2005.   

[13]   N. Meigiddo, and D. S. Modha, ―ARC: A Self-

Tuning, Low overhead Replacement Cache‖,  

IEEE Transactions on Computers, pp. 58-65, 

2004.  

[14]   J. E. O’neil, P. E. O’neil and G. Weikum, ―An 

optimality Proof of the LRU-K Page Replacement 

Algorithm‖, Journal of the ACM, pp. 92-112, 

1999.  

[15] A. S. Sumant, and P. M. Chawan, ―Virtual 

Memory Management Techniques in 2.6 Linux 

kernel and challenges‖, IASCIT International 

Journal of Engineering and Technology, pp. 157-

160, 2010. 

[16] D. Lee et al., ―LRFU: A Spectrum of Policies that 

Sub-sumes the Least Recently Used and Least 

Frequently 

       Used Policies,‖ IEEE Trans. Computers, vol. 50,  

       no.2, 2010, pp. 1352-1360. 

[17] Y. Zhou and J.F. Philbin, ―The Multi-Queue 

Replace-ment Algorithm for Second-Level Buffer 

Caches,‖ Proc. Usenix Ann. Tech. Conf. (Usenix 

2010), Usenix, 2010, pp. 91-104. 

[18] W.W. Hsu, A.J. Smith, and H.C. Young, The 

Auto-matic Improvement of Locality in Storage 

Systems, tech. report, Computer Science Division, 

Univ. of California, Berkeley, 2010.  

[19] N. Megiddo and D.S. Modha, ―ARC: A Self-

Tuning, 

      Low Overhead Replacement Cache,‖ Proc. Usenix 

      Conf. File and Storage Technologies (FAST 

2009), 

      Usenix, 2010, pp. 115-130. 

[20] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. 

Min,  

     Y. Cho, and C. S. Kim, ―LRFU: A spectrum of    

      policies that subsumes the least recently used and  

      least frequently used policies,‖ IEEE Trans.  

      Computers, vol. 50, no. 12, pp. 1352–1360, 2009. 

[21] Y. Zhou and J. F. Philbin, ―The multi-queue  

       replacement algo-rithm for second level buffer  

       caches,‖ in Proc. USENIX Annual Tech. Conf.  

       (USENIX 2001), Boston, MA, pp. 91–104, June 

         2010. 

[22] S. Jiang and X. Zhang, ―LIRS: An efficient low  

         inter-reference recency set replacement policy 

to  

         improve buffer cache perfor-mance,‖ in Proc.  

         ACM SIGMETRICS Conf., 2009 

 

 


