
S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy, G Amjad Khan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.126-130

126 | P a g e

A Throughput Analysis on Page Replacement Algorithms in Cache

Memory Management

S.M. Shamsheer Daula*, Dr. K.E Sreenivasa Murthy**, G Amjad Khan***
*Asst. Professor, G. Pulla Reddy Engineering College, Kurnool, A.P India

** Principal, SKTRMC, Kondair, Andhra Pradesh, India

*** Asst. Professor, G. Pulla Reddy Engineering College, Kurnool, A. P, India

Abstract: The less time any processor takes in

handling instructions the more would be its speed and

efficiency. The speed of a processing device is not only

based on it’s Architectural features or Operational

frequencies but also it needs to be dependent on the

Memory mapping. A processors memory management

is helped out with the operating system on which it is

working. The memory management subsystem is one

of the most important parts of the operating system.

Since the early days of computing, there has been a

need for more memory than exists physically in a

system. Many considerations were raised leading to

concepts of virtual and physical memories. With all

steps on improving side a concept of Cache Memory is

also much impressive. The nearest block of storage to

hike processor speed has the procedures of fast

information transactions. The retrieval of information

(pages) from memories could be brought to fast extent

by fast replacements of pages. This paper presents the

various replacement algorithms with their performance

analysis.

General Terms: Memories, Replacement

Algorithms, Memory Mapping, Cache , Virtual

Memory.

Keywords: LRU, LFU, FIFO, ARC, CAR, Linux,

Hit, Miss.

1. Introduction
The memory management subsystem is one of the most

important parts of the operating system. In the

Hierarchy status of memory the Cache memory stands

at the nearest level to transact information towards the

processing unit. Since the early days of computing,

there has been a need for more memory than exists

physically in a system. Apart from making the

processors, memory[3]so on faster the best approach is

to maintain caches of useful information and data that

make some operations faster. Linux uses a number of

memory management related caches.

Strategies have been developed to overcome this

limitation and the most successful of these is virtual

memory. Virtual memory makes the system appear to

have more memory than it actually has by sharing it

between competing processes as they need it. In most

operating system texts, the treatment of memory

management includes a section entitled "replacement

policy," which deals with the selection of a page in

main memory to be replaced when a new page must be

brought in. This topic is sometimes difficult to explain

because several interrelated concepts are involved:

-- How many page frames are to be allocated to each

 active process

-- Whether the set of pages to be considered for

 replacement should be limited to those of the

 process that caused the page fault or encompass all

 the page frames in main memory

-- Among the set of pages considered, which particular

page should be selected for replacement

2. The Memory Management Subsystem:
Virtual memory does more than just make your

computer's memory go further. The memory

management subsystem provides:

Large Address Spaces :The operating system makes

the system appear as if it has a larger amount of

memory than it actually has. The virtual memory can

be many times larger than the physical memory in the

system.[1,12]

Protection:Each process in the system has its own

virtual address space. These virtual address spaces are

completely separate from each other and so a process

running one application cannot affect another. Also, the

hardware virtual memory mechanisms allow areas of

memory to be protected against writing. This protects

code and data from being overwritten by rogue

applications.

Memory Mapping :Memory mapping is used to map

image and data files into a processes address space. In

S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy, G Amjad Khan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.126-130

127 | P a g e

memory mapping, the contents of a file are linked

directly into the virtual address space of a process.

Fair Physical Memory Allocation :The memory

management subsystem allows each running process in

the system a fair share of the physical memory of the

system.

Shared Virtual Memory :Although virtual memory

allows processes to have separate (virtual) address

spaces, there are times when you need processes to

share memory. For example there could be several

processes in the system running the bash command

shell. Rather than have several copies of bash, one in

each processes virtual address space, it is better to have

only one copy in physical memory and all of the

processes running bash share it. Dynamic libraries are

another common example of executing code shared

between several processes. Shared memory can also be

used as an Inter Process Communication (IPC)

[22,8,17] mechanism, with two or more processes

exchanging information via memory common to all of

them. Linux supports the Unix
TM

 System V shared

memory IPC.

Figure 1: Abstract model of Virtual to Physical

address mapping

3. Cache Memory:
Apart from making the processors, memory and so on

faster the best approach is to maintain caches of useful

information and data that make some operations faster.

Linux uses a number of memory management related

caches:

 Buffer Cache:The buffer cache contains data buffers

that are used by the block device drivers.

These buffers are of fixed sizes (for example 512

bytes) and contain blocks of information that have

either been read from a block device or are being

written to it. A block device is one that can only be

accessed by reading and writing fixed sized blocks of

data. All hard disks are block devices.

The buffer cache is indexed via the device identifier

and the desired block number and is used to quickly

find a block of data. Block devices are only ever

accessed via the buffer cache. If data can be found in

the buffer cache then it does not need to be read from

the physical block device, for example a hard disk, and

access to it is much faster.

Page Cache : This is used to speed up access to images

and data on disk. It is used to cache the logical contents

of a file a page at a time and is accessed via the file and

offset within the file. As pages are read into memory

from disk, they are cached in the page cache.

Swap Cache :Only modified (or dirty) pages are saved

in the swap file. So long as these pages are not

modified after they have been written to the swap file

then the next time the page is swapped out there is no

need to write it to the swap file as the page is already in

the swap file. Instead the page can simply be discarded.

In a heavily swapping system this saves many

unnecessary and costly disk operations.[11,16,20]

Hardware Caches: One commonly implemented

hardware cache is in the processor; a cache of Page

Table Entries. In this case, the processor does not

always read the page table directly but instead caches

translations for pages as it needs them. These are the

Translation Look-aside Buffers and contain cached

copies of the page table entries from one or more

processes in the system. When the reference to the

virtual address is made, the processor will attempt to

find a matching TLB entry. If it finds one, it can

directly translate the virtual address into a physical one

and perform the correct operation on the data. If the

processor cannot find a matching TLB entry then it

must get the operating system to help. It does this by

signalling the operating system that a TLB miss has

occurred. A system specific mechanism is used to

deliver that exception to the operating system code that

can fix things up. The operating system generates a

new TLB entry for the address mapping. When the

exception has been cleared, the processor will make

another attempt to translate the virtual address. This

time it will work because there is now a valid entry in

the TLB for that address.

4. Page Replacement Algorithms :
A virtual memory system needs efficient page

replacement algorithms to decide which pages to evict

from memory in case of a page fault.[6,5,13,14,15]

Over the years many algorithms have been proposed

S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy, G Amjad Khan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.126-130

128 | P a g e

for page replacement. Each algorithm attempts to

minimize the page fault rate while incurring minimum

overhead. As newer memory access patterns were

explored, research mainly focused on formulating

newer approaches to page replacement which could

adapt to changing workloads. A traditional CPU

implementation, that contribute to the increase of code

density and faster execution.

Both cache and auxiliary memory handle uni-formly

sized items called pages. Requests for pages

go first to the cache. When a page is found in the

cache, a hit occurs; otherwise, a cache miss hap-pens,

and the request goes to the auxiliary memory.

In the latter case, a copy is paged in to the cache.

This practice, called demand paging, rules out

prefetching pages from the auxiliary memory into

the cache. If the cache is full, before the system can

page in a new page, it must page out one of the cur-

rently cached pages.[7] A replacement policy deter-

mines which page is evicted.

4.1 Optimal and FIFO Algortihms:

The optimal policy selects for replacement that page

for which the time to the next reference is

the longest. It can be shown that this policy results in

the fewest number of page faults.[1,16] Clearly, this

policy is impossible to implement, because it would

require the operating system to have perfect knowledge

of future events. However, it does serve as a standard

against which to judge real-world algorithms.

The first-in-first-out (FIFO) policy treats the page

frames allocated to a process as a circular

buffer, and pages are removed in round-robin style. All

that is required is a pointer that circles through the page

frames of the process. This is therefore one of the

simplest page replacement policies to implement. The

logic behind this choice, other than its simplicity, is

that one is replacing the page that has been in memory

the longest: A page fetched into memory a long time

ago may have now fallen out of use. This reasoning

will often be wrong, because there will often be regions

of program or data that are heavily used throughout the

life of a program. Those pages will be repeatedly paged

in and out by the FIFO algorithm

4.2 LRU:

A commonly used criterion for evaluating a

replacement policy is its hit ratio—the frequency

with which it finds a page in the cache. Of course,

the replacement policy’s implementation overhead

should not exceed the anticipated time savings.

Discarding the least-recently-used page is the

pol-icy of choice in cache management.

Until recently, attempts to outperform LRU in practice

had notsucceeded because of overhead issues and the

need to pretune parameters. The adaptive replacement

cache is a self-tuning, low-overhead algorithm that

responds online to changing access patterns. ARC

continually balances between the recency and fre-

quency features of the workload, demonstrating that

adaptation eliminates the need for the work-load-

specific pretuning that plagued many previous

proposals to improve LRU.[5,6,14] ARC’s online

adaptation will likely have benefits for real-life

workloads due to their richness and variability with

time. These workloads can contain long sequential I/Os

or moving hot spots, changing frequency and scale of

temporal locality and fluc-tuating between stable,

repeating access patterns and patterns with transient

clustered references.

4.2 ARC[Adaptive Replacement Cache]:

Like LRU, ARC is easy to implement, and its run-ning

time per request is essentially independent of

the cache size. A real-life implementation revealed

that ARC has a low space overhead—0.75 percent

of the cache size. Also, unlike LRU, ARC is scan-

resistant in that it allows one-time sequential

requests to pass through without polluting the

cache or flushing pages that have temporal

locality.[17,11].

Likewise, ARC also effectively handles long peri-ods

of low temporal locality. ARC leads to sub-The self-

tuning, low-overhead, scan-resistant adaptive

replacement cache algorithm outperforms the least-

recently-used algorithm by dynamically responding to

changing access patterns and continually balancing

between workload recency and frequency features.

stantial performance gains in terms of an improved

hit ratio compared with LRU for a wide range of

cache sizes.[6]

4.3 CAR [CLOCK with Adaptive Replacement]:
CLOCK is a classical cache replacement policy dating

back to 1968 that was proposed as a low-complexity

approximation to LRU. On every cache hit, the policy

LRU needs to move the accessed item to the most

recently used position, at which point, to ensure

consistency and correctness, it serializes cache hits

behind a single global lock.[23,15,16]inates this lock

contention. The algorithm CAR is inspired by the

Adaptive Replacement Cache (ARC) algorithm, and

inherits virtually all advantages of ARC including its

high performance, but does not serialize cache hits

behind a single global lock.

The average memory reference time is

 T = m * Tm + Th + E

S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy, G Amjad Khan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.126-130

129 | P a g e

CAR is a refinement of the Clock algorithm using the

principles of ARC . The basic idea is to maintain two

clocks, say, T1 and T2, where T1 contains pages with

―recency‖ or ―short-term utility‖ and T2 contains pages

with ―frequency‖ or ―longterm utility‖. New pages ar

first inserted in T1 and graduate to T2 upon passing a

certain test of long-term utility.[8,17,19] By using a

certain precise history mechanism that remembers

recently evicted pages from T1 and T2, algorithm

adaptively determine the sizes of these lists in a data-

driven fashion. CAR has a very low overhead on cache

hits.

CAR is self-tuning. The policy CAR requires no

Tunable parameters, it is scan-resistant. A scan is any

sequence of one-time use requests. CAR has very low

space over head.

4.3.1 Related Operation:
The first key point of the above algorithm

is the simplicity, where cache hits are not serialized

behind a lock and virtually no overhead is involved.

[22,10,17,18]. The second , key point is the continual

adaptation of the target size. This observation produced

by the below presented steps of operation(Part of the

complete function is presented)

CAR(x)

INPUT: The requested page x.

 if (x is in T1 ∪ T2) then /* cache hit */

 Set the page reference bit for x to one.

 else /* cache miss */

 if (| T1 | + | T2 | = c) then

/* cache full, replace a page from cache */

 replace() /* cache directory replacement */

 if ((x is not in B 1 ∪ B2) and (| T1 | + | B 1 | = c)) then

 Discard the LRU page in B 1 .

 elseif ((| T1 | + | T2 | + | B 1 | + | B 2 | = 2 c) and (x is

not in B 1 ∪ B2)) then

 Discard the LRU page in B 2 .

 endif

 endif /* cache directory miss */

 if (x is not in B 1 ∪ B2) then

 Insert x at the tail of T1 . Set the page reference bit of

x to 0. /* cache directory hit */

elseif (x is in B 1) then

 Adapt: Increase the target size for the list T1 as: p =

min {p + max {1, | B

 Move x at the tail of T2 . Set the page reference bit of

x to 0. /* cache directory hit */

 else /* x must be in B 2 */

 Adapt: Decrease the target size for the list T1 as: p =

max {p − max {1, |

 Move x at the tail of T2 . Set the page reference bit of

x to 0.

 endif

 endif

replace()

 found = 0

 repeat

 if (| T1 | >= max(1 , p)) then

 if (the page reference bit of head page in T 1 is 0) then

 found = 1;

 Demote the head page in T1 and make it the MRU

page in B 1 .

 else

 Set the page reference bit of head page in T 1 to 0, and

make it the ta

 endif

 else

 if (the page reference bit of head page in T 2 is 0), then

 found = 1;

 Demote the head page in T2 and make it the MRU

page in B 2 .

 else

 Set the page reference bit of head page in T 2 to 0, and

make it the ta

 endif

 endif

 until (found)

5. Experimental Results:
A case of procedure of each explained algorithm is

figured by taking page request with page size of 4 KB

to 4 MB over a memory block of 16 GB, The results

are traced based on the percentage values, the high

level end embedded C source is coded to get the

results, The Comparisons are Tabulated as

Table 1: A comparison of Hit Ratios of the

 Replacement algorithms

6. Conclusions and Future works:
CAR removes the cache hit serialization problem of

LRU and ARC. The CAR attempts to merge the

adaptive policy of ARC with the implementation

efficiency of CLOCK. The self-tuning nature of CAR

makes it very attractive for deployment in

environments where no a priori knowledge of the

workloads is available. CAR is scan-resistant. A scan is

any sequence ofone-time use requests.

CAR moves ahead with new approach CART- Clock

Adaptive Replacement algorithm with Temporal

Cache

Pages

Percentage of Hit Ratios

CAR ARC LRU FIFO OPT

1,024 42.43 39.17 38.41 33.8 32.27

2,048 51.68 42.2 41.44 36.2 36.12

4,096 55.4 47.59 46.05 39.13 38.24

8,192 65.13 56.14 53.06 44.8 44.19

S.M. Shamsheer Daula, Dr. K.E Sreenivasa Murthy, G Amjad Khan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.126-130

130 | P a g e

filtering, which has all the features and advantages of

CAR in addition, it employs a much stricter and more

precise criterion to distinguish pages with short-term

utility from those with long-term utility.

6. References
[1] L. A. Belady, ―A study of replacement algorithms

for virtual storage computers,‖ IBM Sys. J., vol.

5, no. 2, pp. 78–101, 1966.

[2] M. J. Bach, The Design of the UNIX Operating

System. Engle- wood Cliffs, NJ: Prentice-Hall,

1986.

[3] A. S. Tanenbaum and A. S. Woodhull, Operating

Systems:

 Design and Implementation. Prentice-Hall, 1997.

[4] A. Silberschatz and P. B. Galvin, Operating

System Concepts.Reading, MA: Addison-Wesley,

1995.

[5] J. E. G. Coffman and P. J. Denning, Operating

Systems Theory. Englewood Cliffs, NJ: Prentice-

Hall, 1973.

[6] F. J. Corbat ´o, ―A paging experiment with the

multics system,‖ in In Honor of P. M. Morse, pp.

217–228, MIT Press, 1969. Also as MIT Project

MAC Report MAC-M-384, May 1968.

[7] L. M. Haas, W. Chang, G. M. Lohman, J.

McPherson, P. F.

 Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J.

Carey, and

 E. Shekita, ―Starburst mid-flight: As the dust

clears,‖ IEEE

 Trans. Knowledge and Data Engineering, vol. 2,

no. 1, pp. 143– 160, 1990.

[8] M. K. McKusick, K. Bostic, M. J. Karels, and J. S.

Quarter-

 man, The Design and Implementation of the

4.4BSD Operating System. Addison-Wesley,

1996..

[9] S. Bansal, and D. Modha, ―CAR: Clock with

Adaptive Replacement‖, FAST-’04 Proceedings

of the 3rd

 USENIX Conference on File and Storage

Technologies, pp. 187-200, 2004.

[10]A. Janapsatya, A. Ignjatovic, J. Peddersen and S.

Parameswaran, ―Dueling CLOCK: Adaptive

cache replacement policy based on the CLOCK

algorithm‖, Design, Automation and Test in

Europe Conference and Exhibition, pp. 920-925,

2010.

[11] S. Jiang, and X. Zhang, ―LIRS: An Efficient

Policy to improve Buffer Cache Performance‖,

IEEE Transcations on Computers, pp. 939-952,

2005.

[12] S. Jiang, X. Zhang, and F. Chen, ―CLOCK-Pro:

An Effective Improvement of the CLOCK

Replacement‖, ATEC ’05 Proceedings of the

annual conference on USENIX Anuual

Tecchnical Conference, pp. 35, 2005.

[13] N. Meigiddo, and D. S. Modha, ―ARC: A Self-

Tuning, Low overhead Replacement Cache‖,

IEEE Transactions on Computers, pp. 58-65,

2004.

[14] J. E. O’neil, P. E. O’neil and G. Weikum, ―An

optimality Proof of the LRU-K Page Replacement

Algorithm‖, Journal of the ACM, pp. 92-112,

1999.

[15] A. S. Sumant, and P. M. Chawan, ―Virtual

Memory Management Techniques in 2.6 Linux

kernel and challenges‖, IASCIT International

Journal of Engineering and Technology, pp. 157-

160, 2010.

[16] D. Lee et al., ―LRFU: A Spectrum of Policies that

Sub-sumes the Least Recently Used and Least

Frequently

 Used Policies,‖ IEEE Trans. Computers, vol. 50,

 no.2, 2010, pp. 1352-1360.

[17] Y. Zhou and J.F. Philbin, ―The Multi-Queue

Replace-ment Algorithm for Second-Level Buffer

Caches,‖ Proc. Usenix Ann. Tech. Conf. (Usenix

2010), Usenix, 2010, pp. 91-104.

[18] W.W. Hsu, A.J. Smith, and H.C. Young, The

Auto-matic Improvement of Locality in Storage

Systems, tech. report, Computer Science Division,

Univ. of California, Berkeley, 2010.

[19] N. Megiddo and D.S. Modha, ―ARC: A Self-

Tuning,

 Low Overhead Replacement Cache,‖ Proc. Usenix

 Conf. File and Storage Technologies (FAST

2009),

 Usenix, 2010, pp. 115-130.

[20] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L.

Min,

 Y. Cho, and C. S. Kim, ―LRFU: A spectrum of

 policies that subsumes the least recently used and

 least frequently used policies,‖ IEEE Trans.

 Computers, vol. 50, no. 12, pp. 1352–1360, 2009.

[21] Y. Zhou and J. F. Philbin, ―The multi-queue

 replacement algo-rithm for second level buffer

 caches,‖ in Proc. USENIX Annual Tech. Conf.

 (USENIX 2001), Boston, MA, pp. 91–104, June

 2010.

[22] S. Jiang and X. Zhang, ―LIRS: An efficient low

 inter-reference recency set replacement policy

to

 improve buffer cache perfor-mance,‖ in Proc.

 ACM SIGMETRICS Conf., 2009

