M.M.SHANMUGAPRIYA & K.ARJUNAN / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1633-1637

NOTES ON (Q, L)-FUZZY SUBNEARRINGS OF A NEARRING

M.M.SHANMUGAPRIYA & K.ARJUNAN

Department of Mathematics, Department of Mathematics, Karpagam University, H.H. The Rajah's College,

ABSTRACT: In this paper, we study some of the properties of (Q, L)-fuzzy subnearring of a nearring and prove some results on these.

2000 AMS SUBJECT CLASSIFICATION: 03F55, 08A72, 20N25.

KEY WORDS: (Q, L)-fuzzy subset, (Q, L)-fuzzy subnearring, (Q, L)-fuzzy relation, Product of (Q, L)-fuzzy subsets.

INTRODUCTION: After the introdution of fuzzy sets by L.A.Zadeh[19], several researchers explored on the generalization of the notion of fuzzy set. Azriel Rosenfeld[4] defined a fuzzy groups. Asok Kumer Ray[3] defined a product of fuzzy subgroups and A.Solairaju and R.Nagarajan[16, 17, 18] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of (Q, L)-fuzzy subnearing of a nearring and established some results.

1.PRELIMINARIES:

- **1.1 Definition:** Let X be a non-empty set and $L = (L, \leq)$ be a lattice with least element 0 and greatest element 1 and Q be a non-empty set. A (\mathbf{Q}, \mathbf{L}) -fuzzy subset A of X is a function A: $XxQ \to L$.
- **1.2 Definition:** Let $(R, +, \cdot)$ be a nearring and Q be a non empty set. A (Q, L)-fuzzy subset A of R is said to be a (Q, L)-fuzzy subnearring (QLFSNR) of R if the following conditions are satisfied:
 - (i) $A(x+y,q) \ge A(x,q) \wedge A(y,q)$,
 - (ii) $A(-x, q) \ge A(x, q)$,
 - (iii) $A(xy, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q.
- **1.3 Definition:** Let A and B be any two (Q, L)-fuzzy subsets of sets R and H, respectively. The product of A and B, denoted by AxB, is defined as $AxB = \{ \langle ((x, y), q), AxB((x, y), q) \rangle / AxB((x, y), q) = A(x, q) \land B(y, q). \}$
- **1.4 Definition:** Let A be a (Q, L)-fuzzy subset in a set S, the **strongest** (Q, L)-fuzzy relation on S, that is a (Q, L)-fuzzy relation V with respect to A given by $V((x, y), q) = A(x, q) \wedge A(y, q)$, for all x and y in S and q in Q.

2 – PROPERTIES OF (Q, L)-FUZZY SUBNEARRINGS:

2.1 Theorem: If A is a (Q, L)-fuzzy subnearring of a ring $(R, +, \cdot)$, then $A(x, q) \le A(e, q)$, for x in R, the identity e in R and q in Q.

Proof: For x in R, q in Q and e is the identity element of R. Now, A(e, q) = A(x-x, q) $\geq A(x, q) \land A(-x, q) = A(x, q)$. Therefore, $A(e, q) \geq A(x, q)$, for x in R and q in Q.

2.2 Theorem: If A is a (Q, L)-fuzzy subnearring of a ring $(R, +, \cdot)$, then A(x-y, q) = A(x, q) = A(y, q), for x and y in R, e in R and q in Q.

Proof: Let x and y in R, the identity e in R and q in Q. Now, A(x, q) = A(x-y+y, q) $\geq A(x-y, q) \land A(y, q) = A(e, q) \land A(y, q) = A(y, q) = A(x-y, q) \land A(x, q) = A(e, q) \land A(x, q) = A(x, q)$. Therefore, A(x, q) = A(y, q), for x and y in R and q in Q.

M.M.SHANMUGAPRIYA & K.ARJUNAN / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1633-1637

2.3 Theorem: A is a (Q, L)-fuzzy subnearring of a ring $(R, +, \cdot)$ if and only if $A(x-y, q) \ge A(x, q) \land A(y, q)$ and $A(xy, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q.

Proof: Let A be a (Q, L)-fuzzy subnearring of a nearring (R, +, ·) and x, y in R, q in Q. Then, $A(x-y, q) \ge A(x, q) \land A(-y, q) \ge A(x, q) \land A(y, q)$. Therefore, $A(x-y, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q and $A(xy, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q. Conversely, if $A(x-y, q) \ge A(x, q) \land A(y, q)$, replace y by x, then $A(x, q) \le A(e, q)$, for all x in R and q in Q. Now, $A(-x, q) = A(e-x, q) \ge A(e, q) \land A(x, q) = A(x, q)$. Therefore, $A(-x, q) \ge A(x, q)$, for all x in R and q in Q. It follows that, $A(x+y, q) = A(x-(-y), q) \ge A(x, q) \land A(-y, q) \ge A(x, q) \land A(y, q)$. Therefore, $A(x+y, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q and clearly $A(xy, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q. Hence A is a (Q, L)-fuzzy subnearring of R.

2.4 Theorem: Let A be a (Q, L)-fuzzy subset of a nearring $(R, +, \cdot)$. If A(e, q) = 1 and $A(x-y, q) \ge A(x, q) \land A(y, q), A(xy, q) \ge A(x, q) \land A(y, q)$, then A is a (Q, L)-fuzzy subnearring of R, for all x and y in R and q in Q, where e is the identity element of R.

Proof: Let x and y in R, e in R and q in Q. Now, $A(-x, q) = A(e-x, q) \ge A(e, q) \land A(x, q) = 1 \land A(x, q) = A(x, q)$. Therefore, $A(-x, q) \ge A(x, q)$, for all x in R and q in Q. Now, $A(x+y, q) = A(x-(-y), q) \ge A(x, q) \land A(-y, q) \ge A(x, q) \land A(y, q)$. Therefore, $A(x+y, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q and clearly $A(xy, q) \ge A(x, q) \land A(y, q)$, for all x and y in R and q in Q. Hence A is a (Q, L)-fuzzy subnearring of R.

2.5 Theorem: If A is a (Q, L)-fuzzy subnearring of a nearring (R, +, ·), then $X \in R : A(x, q) = 1$ } is either empty or is a subnearring of R.

Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $A(x-y, q) \ge A(x, q) \land A(-y, q) \ge A(x, q) \land A(y, q) = 1 \land 1 = 1$. Therefore, A(x-y, q) = 1.

We get x-y in H. And $A(xy, q) \ge A(x, q) \land A(y, q) = 1 \land 1 = 1$. Therefore, A(xy, q) = 1. We get xy in H. Therefore, H is a subnearring of R. Hence H is either empty or is a subnearring of R.

2.6 Theorem: If A is a (Q, L)-fuzzy subnearring of a ring (R, +, \cdot), then H = { $x \in R$: A(x, q) = A(e, q) } is a subnearring of R.

Proof: Let x and y be in H. Now, $A(x-y, q) \ge A(x, q) \land A(-y, q) \ge A(x, q) \land A(y, q) = A(e, q) \land A(e, q) = A(e, q)$. Therefore, $A(x-y, q) \ge A(e, q)$ ------ (1). And, $A(e, q) = A((x-y) - (x-y), q) \ge A(x-y, q) \land A(-(x-y), q) \ge A(x-y, q) \land A(x-y, q) = A(x-y, q)$.

Therefore, $A(e, q) \ge A(x-y, q)$ ----- (2). From (1) and (2), we get A(e, q) = A(x-y, q).

Therefore, x-y in H. Now, $A(xy, q) \ge A(x, q) \land A(y, q) = A(e, q) \land A(e, q) = A(e, q)$. Therefore, $A(xy, q) \ge A(e, q)$ ------(4).

From (3) and (4), we get A(e, q) = A(xy, q). Therefore, xy in H. Hence H is a subnearring of R.

2.7 Theorem: Let A be a (Q, L)-fuzzy subnearring of a ring $(R, +, \cdot)$. If A(x-y, q) = 1, then A(x, q) = A(y, q), for x and y in R and q in Q.

Proof: Let x and y in R and q in Q. Now, $A(x, q) = A(x-y+y, q) \ge A(x-y, q) \land A(y, q) = 1 \land A(y, q) = A(y, q) = A(-y, q) = A(-x+x-y, q) \ge A(-x, q) \land A(x-y, q) = A(-x, q) \land 1 = A(-x, q) = A(x, q)$. Therefore, A(x, q) = A(y, q), for x and y in R, q in Q.

2.8 Theorem: Let A be a (Q, L)-fuzzy subnearring of a nearring $(R, +, \cdot)$. If A(x-y, q) = 0, then either A(x, q) = 0 or A(y, q) = 0, for all x and y in R and q in Q. **Proof:** Let x and y in R and q in Q. By the definition $A(x-y, q) \ge A(x, q) \land A(y, q)$ which implies that $0 \ge A(x, q) \land A(y, q)$. Therefore, either A(x, q) = 0 or A(y, q) = 0.

2.9 Theorem: Let $(R, +, \cdot)$ be a nearring and Q be a non-empty set. If A is a (Q, L)-fuzzy subnearring of R, then $A(x+y, q) = A(x, q) \land A(y, q)$ with $A(x, q) \neq A(y, q)$, for each x and y in R and q in Q.

Proof: Let x and y belongs to R and q in Q. Assume that A(x, q) > A(y, q). Now, $A(y, q) = A(-x + x + y, q) \ge A(-x, q) \land A(x + y, q) \ge A(x, q) \land A(x + y, q) \ge A(y, q) \land A(x + y, q) = A(y, q)$. And $A(y, q) = A(x, q) \land A(x+y, q) = A(x+y, q)$. Therefore, $A(x+y, q) = A(y, q) \land A(y, q)$, for all x and y in R and q in Q.

M.M.SHANMUGAPRIYA & K.ARJUNAN / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1633-1637

2.10 Theorem: If A and B are two (Q, L)-fuzzy subnearrings of a nearring R, then their intersection $A \cap B$ is a (Q, L)-fuzzy subnearring of R.

Proof: Let x and y belong to R and q in Q, $A = \{ (x, q), A(x, q) \} / x \text{ in R and q in Q } \}$ and $B = \{ (x, q), A(x, q) \} / x \text{ in R and q in Q } \}$ B(x, q) / x in R and q in Q \}. Let $C = A \cap B$ and $C = \{ (x, q), C(x, q) / x \text{ in R and q in Q } \}$. (i) C(x+y, q) $= A(x+y, q) \wedge B(x+y, q) \ge \{A(x, q) \wedge A(y, q)\} \wedge$ $\{B(x,q) \land B(y,q)\} \ge \{A(x,q) \land B(x,q)\}$ $\{A(y, q) \land B(y, q)\} = C(x, q) \land C(y, q)$. Therefore, $C(x+y, q) \ge C(x, q) \land C(y, q)$, for all x and y in R and q in Q. (ii) $C(-x, q) = A(-x, q) \land B(-x, q) \ge A(x, q) \land B(x, q) = C(x, q)$. Therefore, $C(-x, q) \ge C(x, q)$, for all x in R and q in Q. (iii) $C(xy, q) = A(xy, q) \land B(xy, q) \ge \{A(x, q) \land A(y, q)\} \land \{B(x, q) \land B(y, q)\}$ $\{A(x, q) \land B(x, q)\} \land \{A(y, q) \land B(y, q)\} = C(x, q) \land C(y, q)$. Therefore, $C(xy, q) \ge C(x, q) \land C(y, q)$, for all x and y in R and q in Q. Hence $A \cap B$ is a (Q, L)-fuzzy subnearring of the nearring R.

2.11Theorem: The intersection of a family of (Q, L)-fuzzy subnearrings of a nearring R is a (Q, L)-fuzzy subnearring of R.

Proof: Let $\{A_i\}_{i\in I}$ be a family of (Q, L)-fuzzy subnearrings of a nearring R and

Then for x and y belongs to R and q in Q, we have (i) $A(x+y, q) = \inf_{i \in I} A_i(x+y, q) \ge \inf_{i \in I} \{A_i(x, q)\}$

 $\land A_{i}(y, q) \} \ge \inf_{i \in I} (A_{i}(x,q)) \land \inf_{i \in I} (A_{i}(y,q)) = A(x,q) \land A(y,q). \text{ Therefore, } A(x+y,q) \ge A(x,q) \land A(y,q) \land A(y,q$

A(y, q), for all x and y in R and q in Q. (ii) $A(-x, q) = \inf_{i \in I} A_i(-x, q) \ge \inf_{i \in I} A_i(x, q) = A(x, q)$.

Therefore, $A(-x, q) \ge A(x, q)$, for all x in R and q in Q. (iii) $A(xy, q) = \inf_{i \in I} A_i(xy, q) \ge \inf_{i \in I} \{A_i(x, q) \land A_i(y, q)\} \ge \inf_{i \in I} \{A_i(x, q) \land A_i(y, q)\} \ge \inf_{i \in I} \{A_i(x, q) \land A_i(y, q)\} \ge \inf_{i \in I} \{A_i(x, q) \land A_i(y, q)\} \ge A(x, q)$

∧ A(y, q), for all x and y in R and q in Q. Hence the intersection of a family of (Q, L)-fuzzy subnearrings of the nearring R is a (Q, L)-fuzzy subnearring of R.

2.12 Theorem: Let A be a (Q, L)-fuzzy subnearring of a nearring R. If A(x, q) < A(y, q), for some x and y in R and q in Q, then A(x+y, q) = A(x, q) = A(y+x, q), for all x and y in R and q in Q. **Proof:** Let A be a (Q, L)-fuzzy subnearring of a nearring R. Also we have A(x, q) < RA(y, q), for some x and y in R and q in Q, $A(x+y, q) \ge A(x, q) \land A(y, q) = A(x, q)$; and $A(x, q) = A(x+y-y, q) \ge A(x+y-q)$

 $+y,q) \land A(-y,q) \ge A(x+y,q) \land A(y,q) = A(x+y,q)$. Therefore, A(x+y,q) = A(x,q), for all x and y in R and q in Q. Hence A(x + y, q) =A(x, q) = A(y + x, q), for all x and y in R and q in Q.

2.13 Theorem: Let A be a (Q, L)-fuzzy subnearring of a nearring R. If A(x, q) > A(y, q), for some x and y in R and q in Q, then A(x + y, q) = A(y, q) = A(y + x, q), for all x and y in R and q in Q. **Proof:** It is trivial.

2.14 Theorem: Let A be a (Q, L)-fuzzy subnearring of a nearring R such that Im $A=\{\alpha\}$, where α in L. If $A=B\cup C$, where B and C are (Q, L)-fuzzy subnearrings of R, then either $B\subseteq C$ or $C\subseteq B$.

Proof: Let $A = B \cup C = \{ \langle (x, q), A(x, q) \rangle / x \text{ in R and q in } Q \}, B = \{ \langle (x, q), B(x, q) \rangle / x \text{ in R and q in } Q \}$ Q \} and C = \{\langle (x, q), C(x, q) \rangle / x \text{ in R and q in Q }\}. Suppose that neither B \subseteq C \text{ nor C \subseteq B. Assume that B(x, q) > C(x, q) and B(y, q) < C(y, q), for some x and y in R and q in Q. Then, $\alpha = A(x, q) = (B \cup C)(x, q)$ $= B(x, q) \lor C(x, q) = B(x, q) > C(x, q)$. Therefore, $\alpha > C(x, q)$. And, $\alpha = A(y, q) = (B \cup C)(y, q) = B(y, q) \lor$ C(y, q) = C(y, q) > B(y, q). Therefore, $\alpha > B(y, q)$. So that, C(y, q) > C(x, q) and B(x, q) > B(y, q).

Hence B(x+y, q) = B(y, q) and C(x+y, q) = C(x, q), by Theorem 2.12 and 2.13.

But then, $\alpha = A(x+y, q) = (B \cup C)(x+y, q) = B(x+y, q) \vee C(x+y, q) = B(y, q) \vee C(x, q) < \alpha$ -----(1). It is a contradiction by (1). Therefore, either $B \subset C$ or $C \subset B$ is true.

2.15 Theorem: If A and B are (Q, L)-fuzzy subnearrings of the nearrings R and H, respectively, then AxB is a (Q, L)-fuzzy subnearring of RxH.

M.M.SHANMUGAPRIYA & K.ARJUNAN / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1633-1637

Proof: Let A and B be (Q, L)-fuzzy subnearrings of the nearrings R and H respectively. Let x_1 and x_2 be in R, y_1 and y_2 be in H. Then (x_1, y_1) and (x_2, y_2) are in RxH and q in Q. Now, AxB $[(x_1, y_1) + (x_2, y_2), q] =$ $AxB((x_1 + x_2, y_1 + y_2), q) = A(x_1 + x_2, q) \land$ $B(y_1+y_2, q) \ge \{A(x_1, q) \land A(x_2, q)\} \land \{B(y_1, q)\}$ $\land B(y_2, q) \} = \{ A(x_1, q) \land B(y_1, q) \} \land$ ${A(x_2, q) \land B(y_2, q)} = AxB((x_1, y_1), q) \land AxB((x_2, y_2), q).$ Therefore, $AxB[(x_1, y_1)+(x_2, y_2), q] \ge AxB((x_1, y_1), q) \land AxB((x_2, y_2), q).$ And $AxB[-(x_1, y_1)+(x_2, y_2), q] \land AxB((x_1, y_1)+(x_2, y_2), q)$ y_1), q] = $AxB((-x_1, -y_1), q)$ = $A(-x_1, q) \land B(-y_1, q) \ge A(x_1, q) \land B(y_1, q)$ = $AxB((x_1, y_1), q)$. Therefore, AxB $[-(x_1, y_1), q] \ge AxB((x_1, y_1), q)$. Now, AxB $[(x_1, y_1)(x_2, y_2), q] =$ $AxB((x_1x_2,$ y_1y_2), q)= A(x_1x_2 , q) \land B(y_1y_2 , q) \ge {A(x_1 , q) \land A(x_2 , q)} \land { B(y_1 , q) \land $B(y_2, q) = \{A(x_1, q) \land$ $B(y_1, q) \ \land \{ A(x_2, q) \land B(y_2, q) \} = AxB((x_1, y_1), q) \land$ $AxB((x_2, y_2), q)$. Therefore, $AxB[(x_1, y_2), q)$ $(y_1)(x_2, y_2)$, (x_1, y_1) , (x_2, y_2) , (x_2, y_2) , (x_3, y_2) , $(x_4, y_2$

- **2.16 Theorem:** Let A and B be (Q, L)-fuzzy subsets of the nearrings R and H, respectively. Suppose that e and e are the identity element of R and H, respectively. If AxB is a (Q, L)-fuzzy subnearring of RxH, then at least one of the following two statements must hold.
- (i) $B(e^{t}, q) \ge A(x, q)$, for all x in R and q in Q,
- (ii) $A(e, q) \ge B(y, q)$, for all y in H and q in Q.

Proof: Let AxB be a (Q, L)-fuzzy subnearring of RxH.

By contra positive, suppose that none of the statements (i) and (ii) holds. Then we can find a in R and b in H such that $A(a,q) > B(e^l,q)$ and B(b,q) > A(e,q), q in Q. We have, $AxB((a,b),q) = A(a,q) \land B(b,q) > A(e,q) \land B(e^l,q) = AxB((e,e^l),q)$. Thus AxB is not a (Q, L)-fuzzy subnearring of RxH. Hence either $B(e^l,q) \ge A(x,q)$, for all x in R and q in Q or $A(e,q) \ge B(y,q)$, for all y in H and q in Q.

- **2.17 Theorem:** Let A and B be (Q, L)-fuzzy subsets of the nearrings R and H, respectively and AxB is a (Q, L)-fuzzy subnearring of RxH. Then the following are true:
 - (i) if $A(x, q) \le B(e^{l}, q)$, then A is a (Q, L)-fuzzy subnearring of R.
 - (ii) if $B(x, q) \le A(e, q)$, then B is a (Q, L)-fuzzy subnearring of H.
 - (iii) either A is a Q-fuzzy subnearring of R or B is a Q-fuzzy subnearring of H.

Proof: Let AxB be a (Q, L)-fuzzy subnearring of RxH, x and y in R and q in Q. Then (y, e^{\prime}) are in RxH. Now, using the property $A(x, q) \leq B(e^{\prime}, q)$, for all x in R and q in Q, we get, A(x-y, q) = $A(x-y, q) \land B(e^{l}e^{l}, q) = AxB((x-y, (e^{l}e^{l}), q) = AxB[(x, e^{l}) + (-y, e^{l}), q] \ge AxB((x, e^{l}), q) \land AxB((x, e^{l}), q$ $(-y, e^1), q) = \{A(x, q) \land B(e^1, q)\} \land \{A(-y, q) \land B(e^1, q)\} = A(x, q) \land A(-y, q) \ge A(x, q) \land A(y, q).$ Therefore, $A(x-y, q) \ge A(x, q) \land A(y, q)$, for all x, y in R and q in Q. And, $A(xy, q) = A(xy, q) \land B(e^l e^l, q) = A(xy, q) \land B(e^l e^l,$ $AxB(((xy), (e^le^l)), q) = AxB[(x, e^l)(y, e^l), q] \ge AxB((x, e^l), q) \land AxB((y, e^l), q) = \{A(x, q) \land B(e^l), q\} = \{A(x, q)$ $\{a, b\} \land A(y, q) \land B(e^l, q) = A(x, q) \land A(y, q) \ge A(x, q) \land A(y, q)$. Therefore, $\{a, b\} \ne A(x, q) \land A(y, q)$, for (Q, L)-fuzzy subnearring of R. Thus (i) is proved. Now, all x, y in R and q in Q. Hence A is a using the property $B(x, q) \le A(e, q)$, for all x in H and q in Q, we get, $B(x-y, q) = B(x-y, q) \land A(ee, q) =$ $AxB(((ee),(x-y)), q)=AxB[(e, x)+(e, -y), q] \ge AxB((e, x), q) \land AxB((e, -y), q)$ $q \land A(e, q) \land \{B(-y, q) \land A(e, q)\} = B(x, q) \land B(-y, q) \ge B(x, q) \land B(y, q)$. Therefore, $B(x-y, q) \ge B(x, q) \land B(y, q)$. B(y, q), for all x and y in H and q in O. And, B(xy, q) = B(xy, q) \wedge A(ee, q) = AxB(((ee),(xy)), q) = $AxB[(e, x)(e, y), q] \ge AxB((e, x), q) \land AxB((e, y), q) = \{B(x, q) \land A(e, q)\} \land \{B(y, q) \land A(e, q)\} = B(x, q) \land A(e, q) \land A(e$ $q \land B(y, q) \ge B(x, q) \land B(y, q)$. Therefore, $B(xy, q) \ge B(x, q) \land B(y, q)$, for all x and y in H and q in Q. Hence B is a (Q, L)-fuzzy subnearring of H. Thus (ii) is proved. (iii) is clear.

2.18 Theorem: Let A be a (Q, L)-fuzzy subset of a nearring R and V be the strongest (Q, L)-fuzzy relation of R with respect to A. Then A is a (Q, L)-fuzzy subnearring of R if and only if V is a (Q, L)-fuzzy subnearring of RxR.

 $\begin{array}{l} \textbf{Proof:} \ \text{Suppose that A is a } (Q,L)\text{-fuzzy subnearring of } R. \ \text{Then for any } x = (x_1,x_2) \ \text{and} \qquad y = (y_1,x_2) \ \text{are in } RxR \ \text{and } q \ \text{in } Q. \ \text{We have, } V(x-y,q) = V\left[(x_1,x_2)-(y_1,y_2),q\right] = V((x_1-y_1,x_2-y_2),q) = A(\ (x_1-y_1),q) \ \text{and} \qquad y = (y_1,x_2) \ \text{and} \qquad y = (y_1,x_$

M.M.SHANMUGAPRIYA & K.ARJUNAN / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1633-1637

 $(y_1,y_2),\,q)=V\,(x,q)\,\wedge V\,(y,q). \mbox{ Therefore, }V((xy),q)\geq \qquad V(x,q)\,\wedge V(y,q), \mbox{ for all }x\mbox{ and }y\mbox{ in }RxR \mbox{ and }q\mbox{ in }Q. \mbox{ This proves that }V\mbox{ is a }(Q,L)\mbox{-fuzzy subnearring of }RxR. \mbox{ Conversely, assume that }V\mbox{ is a }(Q,L)\mbox{-fuzzy subnearring of }RxR, \mbox{ then for any }x=(x_1,x_2)\mbox{ and }y=(y_1,y_2)\mbox{ are in }RxR, \mbox{ we have }A(x_1-y_1,q)\,\wedge A(x_2-y_2,q)=V((x_1-y_1,x_2-y_2),q)=V[(x_1,x_2)-(y_1,y_2),q]=V(x-y,q)\geq V(x,q)\wedge V\,(y,q)=V((x_1,x_2),q)\,\wedge V\,((y_1,y_2),q)=\{A(x_1,q)\,\wedge A(x_2,q)\}\,\wedge \{A(y_1,q)\,\wedge A(y_2,q)\}. \mbox{ If we put }x_2=y_2=e,\mbox{ where }e\mbox{ is the identity element of }R. \mbox{ We get, }A((x_1-y_1),q)\geq A(x_1,q)\,\wedge A(y_1,q),\mbox{ for all }x_1\mbox{ and }y_1\mbox{ in }R\mbox{ and }q\mbox{ in }RxR$

REFERENCE

- 1. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76.
- 2. Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130 (1979)
- 3. Asok Kumer Ray, On product of fuzzy subgroups, Fuzzy sets and systems, 105, 181-183 (1999).
- 4. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
- 5. Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).
- 6. Davvaz.B and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV-0710.3884VI(MATH.RA) 20 OCT 2007, 1-16.
- 7. Goguen.J.A., L-fuzzy Sets, J. Math. Anal. Appl. 18 145-147(1967).
- 8. Kog.A and Balkanay.E, θ-Euclidean L-fuzzy ideals of rings, Turkish journal of mathematics 26 (2002) 149-158.
- 9. Kumbhojkar.H.V., and Bapat.M.S., Correspondence theorem for fuzzy ideals, Fuzzy sets and systems, (1991)
- 10. Mohamed Asaad, Groups and fuzzy subgroups, Fuzzy sets and systems, North-Holland, (1991).
- 11. Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988).
- 12. Palaniappan. N & K. Arjunan, 2007. Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1): 59-64.
- 13. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July 1993.
- 14. Salah Abou-Zaid, On generalized characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, 235-241 (1991).
- 15. Sidky.F.I and Atif Mishref.M, Fuzzy cosets and cyclic and abelian fuzzy subgroups, Fuzzy sets and systems, 43(1991) 243-250.
- 16. Solairaju. A and Nagarajan. R, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics, Volume 4, Number 1 (2009) pp. 23-29.
- 17. Solairaju. A and Nagarajan. R, Lattice Valued Q-fuzzy left R-submodules of near rings with respect to T-norms, Advances in fuzzy mathematics, Vol 4, Num. 2, 137-145(2009).
- 18. Solairaju. A and Nagarajan.R, "Q-Fuzzy left R-subgroups of near rings with respect to t-norms". Antarctica Journal of Mathematics, 5(2008) 1-2, 59-63.
- 19. Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).