
Pratyusha.Gandham, Ramesh N.V.K

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1614-1618

1614 | P a g e

PORTING THE LINUX KERNEL TO AN ARM BASED DEVELOPMENT

BOARD

Pratyusha.Gandham
1
, Ramesh N.V.K

2

1Research Scholar, Dept. of E.C.M, K.L. University, A.P,India

 2 Associate Professor, Dept. of E.C.M, K.L. University

Abstract
ARM development boards are the ideal platform for accelerating the development and reducing the risk of new SoC designs.

The combination of ASIC and FPGA technology in ARM boards delivers an optimal solution in terms of speed, accuracy,

flexibility and cost.. The Embedded modules,based on ARM, can become very complex machines since these are meant to

support varied tasks such as memory management, process management and peripheral interfaces.For seamless integration of

these functional modules an OS has to be ported on these ARM based CPUs .Traditionally this OS porting is often the

specialized work of third party vendors having expertise in this domain. For every new CPU architecture, the OS has to be

customized, compiled and burnt into the core .With the coming of age of Linux as an embedded OS all this has changed quite

significantly. Being in Open Source domain, Linux kernel can be freely downloaded and compiled for any system architecture

and this includes ARM based systems also. This enables the developers to port the OS themselves. This paper describes the

details of porting of Linux kernel to an ARM board.Building linux kernel,u-boot and x-loader are described in detail. SD card

configuration is also described.

 Index Terms: ARM, Operating System, Linux, Kernel.

---***--

1. INTRODUCTION
Linux has been available for the ARM architecture for many

years now. The original „port‟ was done by Russell King, and

he is still the maintainer through whom all ARM kernel

patches generally must pass. GNU/Linux is fast becoming the

operating system for embedded devices - mainly due to the

efficient and portable design of the Linux kernel. The ARM

Linux port effort, headed by Russell M. King, also makes life

a bit easier for people who run (or want to run) Linux on their

embedded devices.

The work was much harder than than it would be now, since at

the time the Linux kernel was still very Intel-centric. In fact,

modern Linux kernels come with a handy reference example

called asm-generic that shows all of the header files and

kernel interfaces that a new architecture port should provide.

Once the kernel has been ported to a given architecture, it is

necessary to implement support for a specific platform based

upon that architecture.

Texas Instruments implements the ARM architecture in its

OMAP processors. For example, Panda Board is a particular

variant of the OMAP4 platform. Panda Board is based on

ARM Cortex-A9 System-on-Chip (SoC) processor.

Figure1: Panda Board, an ARM based development board

from Texas Instruments.

2. BUILDING LINUX KERNEL
Latest stable version of linux kernel can be obtained from

kernel.org website. This is in the form of a source code and

we need to compile it. Figure 2 shows the basic architecture of

linux2.6.11.6. The Linux kernel supports a lot of different

Pratyusha.Gandham, Ramesh N.V.K

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1614-1618

1615 | P a g e

CPU architectures. The methods to port the Linux kernel to a

new board are therefore very architecture dependent. For

example, PowerPC and ARM are very different. PowerPC

relies on device trees to describe hardware details whereas

ARM relies on source code only. In the source tree, each

architecture has its own directory arch/arm for the ARM

architecture. For building the linux kernel, cross-compiler

should be made accessible on your execution path.

Figure 2:Linux kernel architecture

2.1 Get Latest Linux kernel code

Visit http://kernel.org/ and download the latest source code.

File name would be linux-x.y.z.tar.bz2, where x.y.z is actual

version number. For example file inux-2.6.25.tar.bz2

represents 2.6.25 kernel version. Use wget command to

download kernel source code:

 $wget

http://www.kernel.org/pub/linux/kernel/v2.6/linux-

x.y.z.tar.bz2

2.2 Extract tar (.tar.bz3) file

The tar program provides the ability to create tar archives, as

well as various other kinds of manipulation.Typing the

following command will extract it to current directory:

 # tar -xjvf linux-2.6.25.tar.bz2

2.3 Configure kernel

Before you configure kernel make sure you have development

tools (gcc compilers and related tools) are installed on your

system. If gcc compiler and tools are not installed then use

apt-get command under Debian Linux to install development

tools.

 # apt-get install gcc

Now you can start kernel configuration by typing any one of

the command:

 $ make menuconfig - Text based color menus,

radiolists & dialogs. This option also useful on

remote server if you want to compile kernel

remotely.

 $ make xconfig - X windows (Qt) based

configuration tool, works best under KDE desktop

● $ make gconfig - X windows (Gtk) based

configuration tool, works best under Gnome Dekstop.

Figure 3: Configuring Linux Kernel using make

menuconfig.

2.4 Compile kernel

The Linux kernel supports a lot of different CPU

architectures.The methods to port the Linux kernel to a new

board are therefore very architecture dependent. In the source

tree, each architecture has its own directory arch/arm for the

ARM architecture.For building the linux kernel, cross-

compiler should be made accessible on your execution path.

Entering make command would start compilation and create a

compressed kernel image. The resulting kernel image is

placed in arch/arm/boot directory.

 $export ARCH=arm

 $ export CROSS_COMPILE= arm-none-linux-

gnueabi

 $ make

3. X-LOADER AND U-BOOT
X-loader is a small first stage boot loader derived from the u-

boot base code to be loaded into the internal static ram.

Because the internal static ram is very small (64k-32k), x-

loader is stripped down to the essentials and is used to

initialize memory and enough of the peripheral devices to

access and load the second stage loader (UBoot) into main

memory.U-Boot is designed to be the "Universal Bootloader"

and certainly goes a long ways to support multiple processors,

boards, and OS's. It's primary purpose is to setup the kernel

environment; and load and boot the kernel. The sources of u-

boot and x-loader specific to the ARM board can be obtained

and built using make utility on terminal. The procedure for

building it is same as it is for linux kernel. The output of the

build process is u-boot.bin and MLO.

http://kernel.org/
http://kernel.org/
http://kernel.org/
http://kernel.org/
http://kernel.org/
http://kernel.org/
http://kernel.org/
http://kernel.org/
http://kernel.org/
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-x.y.z.tar.bz2

Pratyusha.Gandham, Ramesh N.V.K

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1614-1618

1616 | P a g e

3.1 Building X-loader

In order to compile the X-loader, you need to set the

CROSS_COMPILE environment variable and specify the path

to tool chain.

 #export

PATH=/usr/local/xtools/armlinuxuclibcgnueabi/bi

n:$PATH

 #export CROSS_COMPILE= arm-none-linux-

gnueabi-

To set the configuration for the target board and build the

image, give the command:

 # make BOARDNAME_config

 # make

The resulting file is stored in the x-loader main directory as

x-load.bin. This file must be “signed” in order to be executed

by the processor. Using the signGP tool in the tools/

subdirectory of the main directory of the lab, sign the

xload.bin file. This produces an xload.bin.ift file. You can

copy it to the MMC card, renaming it as MLO.

3.2 Building U-boot

UBoot is a typical free software project.It is freely available

at http://www.denx.de/wiki/UBoot.Get the source code from

the website, and uncompress it.The include/configs/ directory

contains one configuration file for each supported board.It

defines the CPU type, the peripherals and their configuration,

the memory mapping, the UBoot features that should be

compiled in, etc.Assuming that your board is already

supported by UBoot, there should be one file corresponding

to your board, for example include/configs/omap2420h4.h.U-

Boot must be configured before being compiled.

 #make BOARDNAME_config

Make sure that the crosscompiler is available in PATH

 #export

PATH=/usr/local/uclibc0.9.292/arm/bin/:$PATH

Compile UBoot, by specifying the crosscompiler prefix.

Example, if your crosscompiler executable is armlinuxgcc:

 #make CROSS_COMPILE=armlinux

This command would result in u-boot.bin file in working

directory

4.SD CARD CONFIGURATION
Some ARM boards do not have any onboard flash, to keep

their bootloader. Rather, code onboard the board (presumably

in ROM) reads the second-stage bootloaders from the SD card

.For the OMAP to find and boot off the SD Card, the first

primary partition must contain a FAT32 partition formatted

with 255 heads and 63 sectors. It is very specific, but not hard

to setup. The SD Card should have 2 partitions : a smaller

FAT32 boot partition and a larger ext3 partition for the

filesystem or rootfs. Following are the steps to partition the

SD card on a linux machine.

4.1 Formatting the SD Card

To determine which device the SD Card Reader is on your

system,plug the SD Card into the SD Card Reader and then

plug the SD Card Reader into your system. After doing that,

do the following to determine which device it is on your

system.

$ [dmesg | tail]

...

[6854.215650] sd 7:0:0:0: [sdc] Mode Sense: 0b 00 00 08

[6854.215653] sd 7:0:0:0: [sdc] Assuming drive cache: write

through

[6854.215659] sdc: sdc1

[6854.218079] sd 7:0:0:0: [sdc] Attached SCSI removable

disk

...

In this case, it shows up as /dev/sdc.

Fdisk utilty is used to partition SD card on a linux machine.

The following command starts the fdisk. We must clear the

partition table before changing the underlying geome

 Command (m for help): [d]

 Selected partition 1

4.2 Set the Geometry of the SD Card

If the print out above does not show 255 heads, 63

sectors/track, then do the following expert mode steps to redo

the SD Card:

 Go into expert mode.

Command (m for help): [x]

 Set the number of heads to 255.

Expert Command (m for help): [h]

Number of heads (1-256, default xxx): [255]

 Set the number of sectors to 63.

Expert Command (m for help): [s]

Number of sectors (1-63, default xxx): [63]

 Now Calculate the number of Cylinders for your SD

Card.

#cylinders = FLOOR (the number of Bytes on the SD Card

(from above) / 255 / 63 / 512)So for this example:

2021654528 / 255 / 63 / 512 = 245.79. So we use 245 (i.e.

truncate, don't round).

 Set the number of cylinders to the number calculated.

Expert Command (m for help): [c]

Number of cylinders (1-256, default xxx): [enter the number

you calculated]

 Return to Normal mode.

Expert Command (m for help): [r]

Pratyusha.Gandham, Ramesh N.V.K

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1614-1618

1617 | P a g e

4.3 Partitioning the SD card

4.3.1 Create the FAT32 partition for booting

 Command (m for help): [n]

Command action

 e extended

 p primary partition (1-4)

 [p]

 Partition number (1-4): [1]

 First cylinder (1-245, default 1): [(press Enter)]

 Using default value 1

 Last cylinder or +size or +sizeM or +sizeK (1-245, default

245): [+50]

 Command (m for help): [t]

Selected partition 1

Hex code (type L to list codes): [c]

Changed system type of partition 1 to c (W95 FAT32 (LBA))

Command (m for help): [a]

Partition number (1-4): [1]

4.3.2 Create the Linux partition for the root file system

 Command (m for help): [n]

Command action

 e extended

 p primary partition (1-4)

[p]

Partition number (1-4): [2]

First cylinder (52-245, default 52): [(press Enter)]

Using default value 52

Last cylinder or +size or +sizeM or +sizeK (52-245, default

245): [(press Enter)]

Using default value 245

 Save the new partition records on the SD Card

This is an important step. All the work up to now has been

temporary.

 Command (m for help): [w]

4.4 Formating the partitions

The two partitions are given the volume names LABEL1 and

LABEL2 by these commands. You can substitute your own

volume labels.

$ [sudo mkfs.msdos -F 32 /dev/sdc1 -n LABEL1]

mkfs.msdos 2.11 (12 Mar 2005)

$ [sudo mkfs.ext3 -L LABEL2 /dev/sdc2]

mke2fs 1.40-WIP (14-Nov-2006)

4.5 Finalizing SD Card

Finalizing SD card involves coping x-loader, u-boot, and

kernel images to the boot partition.You can have multiple

kernel images and name isn't important.The signed x-loader

must be called MLO on the card.The first file you need to

copy is the “MLO” from X-Loader. This has to be the first file

as it is the primary bootloader and the system just looks on the

first few cluster on the SD Card to find it. The second file is

the “u-boot.bin” and the third file is the kernel, “uImage”. The

root system has now to be untared to the second partition.

5. ARM BOARD SERIAL TERMINAL SET-UP
For a Linux machine, a serial terminal such as Minicom or

Kermit can be used. Minicom is a text-based modem control

and terminal emulation program for Unix-like operating

systems whereas gtkterm is a terminal emulator written with

GTK+.It is lightweight and simple that drives serial ports

Ubuntu users wanting a graphical terminal program can install

gtkterm. Later versions which include many bug fixes can be

obtained from the current maintainer's website.On a Windows

PC, you could use HyperTerminal or TeraTerm. Insert the SD

card into the SD card slot of the target board. Connect the

target board to host machine using RS232 serial cable. Apply

power supply to the target board.

6. BOOTING UP THE ARM BOARD
The term „booting‟ is short for „bootstrapping‟, which refers to

the process by which a computer prepares itself to load an

operating system. Small, resource-constrained systems such as

the BeagleBoard use a slightly different, multi step process

because of the constrained memory. The board boots up in

four stages . The boot process on the ARM Board works like

this:

X-Loader -> U-Boot -> Kernel

Figure4: Booting up the arm board

7.Conclusion
The paper discussed a generic environment build of Linux for

ARM core family. This generic build has a limited

functionality, as it just enables the kernel to boot and send

debug messages through the configured serial port. For a full

fledged embedded module his is quit elementary without the

support for various peripherals through device drivers which

http://en.wikipedia.org/wiki/Text-based
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Terminal_emulation
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Terminal_emulator
http://en.wikipedia.org/wiki/GTK%2B
https://fedorahosted.org/gtkterm/

Pratyusha.Gandham, Ramesh N.V.K

/ International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1614-1618

1618 | P a g e

are paramount to the module. Linux kernel though monolithic

has an excellent modular approach which enables the driver

modules to be attached and detached at run time itself. This

very much suits the embedded environment which are always

constrained or system memory.

ACKNOWLEDGEMENT
We thank to our principal, Prof. K. Raja Shekar Rao, for

providing necessary facilities towards carrying out this work.

We acknowledge the diligent efforts of our Head of the

Department Dr.S.Balaji in assisting us towards

implementation of this idea.

REFERENCES
[1] HU Jie, ZHANG Gen-bao, “Research transplanting

method of embedded linux kernel based on ARM

platform”, 2010 International Conference of

Information Science and Management Engineering, E-

ISBN : 978-1-4244-7670-1, 8 Aug. 2010

[2] http://www.kernel.org.

[3] http://www.arm.linux.org.uk/developer/machines

[4] http://sourceforge.net/projects/u-boot

[5] Vincent Sanders, “Booting ARM Linux”,

rev.1.10,June2004.http://www.simtec.co.uk/products/S

WLINUX/files/booting_article.html

[6] Wooking and Tak-Shing, “Porting the Linux kernel to a

new ARM Platform”, Aleph One, vol. 4, summer 2002.

[7] Chun-yue Bi; Yun-peng Liu; Ren-fang Wang;

“Research of key technologies for embedded Linux

based on ARM”, Computer Application and System

Modeling (ICCASM),2010 International Conference,

 22-24 Oct. 2010, E-ISBN : 978-1-4244-7237-6.

[8] DongSeok Cho; DooHwan Bae, “Case Study on

Installing a Porting Process for Embedded Operating

System in a Small Team”, Secure Software Integration

& Reliability Improvement Companion (SSIRI-C),

2011 5th International Conference, 27-29 June 2011, E-

ISBN : 978-0-7695-4454-0.

http://www.kernel.org/
http://www.arm.linux.org.uk/developer/machines
http://sourceforge.net/projects/u-boot
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5602791
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5602791
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6003672
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6003672
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6003672
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6003672

