
Prahanthi, Radha Devi, K.Sandhya Rani / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1483-1487

1483 | P a g e

Analysis of Intrusion Detection System & Emergence of Online

Alert Aggregation

*Prahanthi **Radha Devi ***K.Sandhya Rani

Abstract — Network Intrusion detection is mainstream to identify alert aggregation and to cluster different

alerts produced by low-level intrusion detection systems firewalls etc. Belonging to a specific attack instance which

has been initiated by an attacker at a certain point in time, thus, meta-alerts can be generated for the clusters that

contain all the relevant information whereas the amount of data (i.e., alerts) can be reduced substantially. Meta-alerts

may then be the basis for reporting to security experts or for communication within a distributed intrusion detection

system. We propose a novel technique for online alert aggregation which is based on a dynamic, probabilistic model

of the current attack situation. Basically, it can be regarded as a data stream version of a maximum likelihood

approach for the estimation of the model parameters. In addition, meta-alerts are generated with a delay of typically

only a few seconds after observing the first alert belonging to a new attack instance.

Keywords – Network Dataset, Intrusion Detection System, Alert , Attacks, Metadata.

INTRODUCTION I
Intrusion and anomalies are two different kinds of

abnormal traffic events in an open network

environment. An intrusion takes place when an

unauthorized access of a host computer system is

attempted. An anomaly is observed at the network

connection level. Both attack types may compromise

valuable hosts, disclose sensitive data, deny services

to legitimate users, and pull down network based

computing resources [2]. The intrusion detection

system (IDS) offers intelligent protection of

networked computers or distributed resources much

better than using fixed-rule firewalls. Existing IDSs

are built with either signature-based or anomaly-

based systems [18]. Signature matching is based on a

misuse model, whereas anomaly detection is based

on a normal use model. Since the seminal work by

Denning in 1981 [1], many intrusion-detection

prototypes have been created. Sobirey maintains a

partial list of 59 of them. Intrusion-detection systems

have emerged in the computer security area

because of the difficulty of ensuring that an

information system will be free of security flaws.

Indeed, a taxonomy of security flaws by Landwehr et

al. [3] shows that computer systems suffer from

security vulnerabilities regardless of their purpose,

manufacturer, or origin, and that it is technically

difficult as well as economically costly (in terms of

both building and maintaining such a system) to

ensure that computer systems and networks are not

susceptible to attacks. An intrusion detection system

acquires information about an information system to

perform a diagnosis on the security status is to

discover breaches of security attempted breaches or

open vulnerabilities that could lead to potential

breaches.

Figure 1 states the model of simple intrusion

Detection system.

Intrusion detection system can be described at a very

macroscopic level as a detector that processes

information coming from the system to be protected.

Detector can also launch probes to trigger the audit

process such as requesting version numbers for

applications using three kinds of information such as

long-term information related to the technique used

to detect [4] intrusions, configuration information

about the current state of the system and audit

information describing the events that are happening

on the system. Role of the detector is to eliminate

unneeded information from the audit trail presents

either a synthetic view of the security related actions

taken during normal usage of the system, or synthetic

view of the current security state of the system.

Prahanthi, Radha Devi, K.Sandhya Rani / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1483-1487

1484 | P a g e

SECTION II
2.Survey on Intrusion Detection System: Intrusion

detection systems (IDS) process large amounts of

monitoring data. As an example, a host-based IDS

examines log files on a computer (or host) in order to

detect suspicious activities. Network-based IDS, on

the other hand, searches network monitoring data for

harmful packets or packet flows.

2.1. Types of Intrusion Detection System

2.1.1 Network Intrusion Detection System:
Network–based intrusion detection system (NIDS)

[8] that tries to detect malicious activity such as

denial of service attacks, port scan or even attempts

to crack into computer by monitoring network traffic.

NIDS does this by reading all incoming packets and

trying to find number of TCP connection requests to

a very large number of different ports is observed,

one could assume that there is someone conducting a

port scan of some or all of the computers in the

network. It mostly tries to detect incoming shell

codes in the same manner that an ordinary intrusion

detection system does. Often inspecting valuable

information about an ongoing intrusion can be

learned from outgoing or local traffic and also work

with other systems as well, for example update some

firewalls blacklist with the IP address of computers

used by suspected crackers.

 2.1.2. Host-based Intrusion Detection

System: Host-based intrusion detection system

(HIDS) [8] monitors parts of the dynamic behavior

and the state of computer system, dynamically

inspects the network packets. A HIDS could also

check that appropriate regions of memory have not

been modified, for example- the system-call table

comes to mind for Linux and various v table

structures in Microsoft Windows. For each object in

question usually remember its attributes

(permissions, size, modifications dates) and create a

checksum of some kind (an MD5, SHA1 hash or

similar) for the contents, if any, this information gets

stored in a secure database for later comparison

(checksum-database). At installation time- whenever

any of the monitored objects change legitimately- a

HIDS must initialize its checksum database by

scanning the relevant objects. Persons in charge of

computer security need to control this process tightly

in order to prevent intruders making un-authorized

changes to the database.

2.1.3. Protocol-based Intrusion Detection

system: Protocol based intrusion detection system

(PIDS) [8] typically installed on a web server,

monitors the dynamic behavior and state of the

protocol, and typically consists of system or agent

that would sit at the front end of a server, monitoring

the HTTP protocol stream. Because it understands

the HTTP protocol relative to the web server/system

it is trying to protect it can offer grater protection

than less in-depth techniques such as filtering by IP

address or port number alone, however this greater

protection comes at the cost of increased computing

on the web server and analyzing the communication

between a connected device and the system it is

protecting.

2.1.4. Application Protocol-based Intrusion

Detection System: Application protocol-based

intrusion detection system (APIDS) [16] will monitor

the dynamic behavior and state of the protocol and

typically consists of a system or agent that would sit

between a process, or group of servers, monitoring

and analyzing the application protocol between two

connected

devices.

2.2 Approach of Existing IDS: Existing IDS are

optimized to detect attacks with high accuracy still

have various disadvantages that have been outlined in

a number of publications and a lot of work has been

done to analyze IDS. Correlation approach is attack

thread reconstruction, which can be seen as a kind of

attack instance recognition. No clustering algorithm

is used, but a strict sorting of alerts within a temporal

window of fixed length according to the source,

destination, and attack classification (attack type). In

[7], a similar approach is used to eliminate

duplicates, i.e., alerts that share the same quadruple

of source and destination address as well as source

and destination port. In addition, alerts are aggregated

(online) into predefined clusters (so-called situations)

in order to provide a more condensed view of the

current attack situation. The definition of such

situations is also used in [8] to cluster alerts. In [9],

alert clustering is used to group alerts that belong to

the same attack occurrence. Even though called

clustering, there is no clustering algorithm in a classic

sense. The alerts from one (or possibly several) IDS

are stored in a relational database and a similarity

relation—which is based on expert rules—is used to

group similar alerts together. Two alerts are defined

to be similar, for instance, if both occur within a

fixed time window and their source and target match

exactly. As already mentioned, these approaches are

likely to fail under real-life conditions with imperfect

classifiers (i.e., low-level IDS) with false alerts or

wrongly adjusted time windows.

Another approach to alert correlation is presented in

an approach to alert correlation is presented in [10].

A weighted, attribute-wise similarity operator is used

to decide whether to fuse two alerts or not. However,

as already stated in and [5], this approach suffers

from the high number of parameters that need to be

set. The similarity operator presented in [6] has the

same disadvantage there are lots of parameters that

must be set by the user and there is no or only little

Prahanthi, Radha Devi, K.Sandhya Rani / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1483-1487

1485 | P a g e

guidance in order to find good values. In [7], another

clustering algorithm that is based on attribute-wise

similarity measures with user defined parameters is

presented. However, a closer look at the parameter

setting reveals that the similarity measure, in fact,

degenerates to a strict sorting according to the source

and destination IP addresses and ports of the alerts.

 Reports

Re

Action

Alert Pocessing

Alert

Dectection

Sensor Layer

SECTION III
3. Problem Definition: Network Security is an

important issue in our current Task. Providing certain

firewall, antivirus, security for password become

hectic even though we cant control the network type

of anomalies or misuse activities. To maintain the

security issue at a time we introduce a novel method

call online alert aggregation which is based on

dynamic or probabilistic model of the current attack

situation.

3.1. Application Specific for Alert Aggregation

3.1.1. Server: Server module is the main

module for this project. This module acts as the

Intrusion Detection System. This module consists of

four layers viz. sensor layer (which detects the

user/client etc.), Detection layer, alert processing

layer and reaction layer. In addition there is also

Message Log, where all the alerts and messages are

stored for the references. This Message Log can also

be saved as Log file for future references for any

network environment.

3.1.2 Client: Client module is

developed for testing the Intrusion Detection System.

In this module the client can enter only with a valid

user name and password. If an intruder enters with

any guessing passwords then the alert is given to the

Server and the intruder is also blocked. Even if the

valid user enters the correct user name and password,

the user can use only for minimum number of times.

For example even if the valid user makes the login

for repeated number of times, the client will be

blocked and the alert is sent to the admin. In the

process level intrusion, each client would have given

a specific process only. For example, a client may

have given permission only for P1process. If the

client tries to make more then these processes the

client will be blocked and the alert is given by the

Intrusion Detection System. In this client module the

client can be able to send data. Here, when ever data

is sent Intrusion Detection System checks for the file.

If the size of the file is large then it is restricted or

else the data is sent.

3.1.3. DARPA Dataset: This module is

integrated in the Server module. This is an offline

type of testing the intrusions. In this module, the

DARPA Data Set is used to check the technique of

the Online Intrusion Alert Aggregation with

Generative Data Stream Modeling. The DARPA data

set is downloaded and separated according to each

layers. So we test the instance of DARPA Dataset

using the open file dialog box. Whenever the dataset

is chosen based on the conditions specified the

Intrusion Detection System works.

3.1.3. Mobile: This module is developed

using J2ME. The traditional system uses the message

log for storing the alerts. In this system, the system

admin or user can get the alerts in their mobile.

Whenever alert message received in the message log

of the server, the mobile too receives the alert

message.

3.1.3. Attack Simulation: In this module,

the attack simulation is made for ours elf to test the

system. Attacks are classified and made to simulate

here. Whenever an attack is launched the Intrusion

Detection System must be capable of detecting it. So

our system will also be capable of detecting such

attacks. For example if an IP trace attack is launched,

the Intrusion Detection System must detect it and

must kill or block the process.

3.2. Algorithm for Proposed Architecture IDS:

Step 1: Select the ‗n‘ layers needed for the

whole IDS.

Step 2: Build Sensor Layer to detect

Network and Host Systems.

Step 3: Build Detection Layer based on

Misuse and Anomaly detection technique.

 Reporting &Intrusion Prevention

Decentralized Alert

Correlation

Communicati

on

Alert Aggregation

SVM Misuse and Anomaly Detection

Snort

 TCP UDP ICMP smart sensors LOG BSM FW

Network

Prahanthi, Radha Devi, K.Sandhya Rani / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1483-1487

1486 | P a g e

Step 4: Classify various types of alerts. (For

example alert for System level intrusion or process

level intrusion)

Step 5: Code the system for detecting

various types of attacks and alerts for respective

attacks.

Step 6: Integrate the system with Mobile

device to get alerts from the proposed IDS.

Step 7: Specify each type of alert on which

category it falls, so that user can easily recognize the

attack type.

Step 8: Build Reaction layer with various

options so that administrator/user can have various

options to select or react on any type of intrusion.

Step 9: Test the system using Attack

Simulation module, by sending different attacks to

the proposed IDS.

Step 10: Build a log file, so that all the

reports generated can be saved for future references.

3.3. Alert Aggregation when the user is at

OffLine: Assume that a host with an ID agent is

exposed to a certain intrusion situation with one or

several attacks launch several attack instances

belonging to various attack types. The attack

instances each cause a number of alerts with various

attributes values.

1. False alerts are not recognized as such

and wrongly assigned to clusters: This situation is

acceptable as long as the number of false alerts is

comparably low.

2. True alerts are wrongly assigned to

clusters: This situation is not really problematic as

long as the majority of alerts belonging to that cluster

is correctly assigned. Then, no attack instance is

missed.

3. Clusters are wrongly split: This situation

is undesired but clearly unproblematic as it leads to

redundant meta-alerts only. Only the data reduction

rate is lower, no attack instance is missed.

4. Several clusters are wrongly combined

into one: This situation is definitely problematic as

attack instances may be missed.

3.4. Dataset Alert Aggregation: Assume that in the

environement observed by an ID agent attackers

initiate new attack instances that cause alerts for a

certain time interval until this attack instance is

completed at point in time the ID agent which is

assumed to have a model of the current situation.

1. Component adaption: Alerts associated

with already recognized attack instances must be

identified as such and assigned to already existing

clusters while adapting the respective component

parameters.

2. Component creation (novelty detection):

The occurrence of new attack instances must be

stated. New components must be parameterized

accordingly.

3. Component deletion (obsoleteness

detection): The completion of attack instances must

be detected and the respective components must be

deleted from the model.

SECTION V
5. Comparative Study: Previous IDS are optimized

to detect attacks with high accuracy. However, they

still have various disadvantages that have been

outlined in a number of publications and a lot of

work has been done to analyze IDS in order to direct

future research Besides others, one drawback is the

large amount of alerts produced. Alerts can be given

only in System logs. Existing IDS does not have

general framework which cannot be customized by

adding domain specific knowledge as per the specific

requirements of the users or network administrators.

Compare to already known application system our

work states that Online Intrusion Alert Aggregation

with Generative Data Stream Modeling is a

generative modeling approach using probabilistic

methods. Assuming that attack instances can be

regarded as random processes ―producing‖ alerts, we

aim at modeling these processes using approximate

maximum likelihood parameter estimation

techniques. Thus, the beginning as well as the

completion of attack instances can be detected. It is a

data stream approach, i.e., each observed alert is

processed only a few times. Thus, it can be applied

online and under harsh timing constraints. In the

proposed scheme of Online Intrusion Alert

Aggregation with Generative Data Stream Modeling,

we extend our idea of sending Intrusion alerts to the

mobile. This makes the process easier and

comfortable. Online Intrusion Alert Aggregation with

Generative Data Stream Modeling does not degrade

system performance as individual layers are

independent and are trained with only a small number

of features, thereby, resulting in an efficient system.

Online Intrusion Alert Aggregation with Generative

Data Stream Modeling is easily customizable and the

number of layers can be adjusted depending upon the

requirements of the target network. Our framework is

not restrictive in using a single method to detect

attacks. Different methods can be seamlessly

integrated in our framework to build effective

intrusion detectors.Our framework has the advantage

that the type of attack can be inferred directly from

the layer at which it is detected. As a result, specific

intrusion response mechanisms can be activated for

different attacks.

Prahanthi, Radha Devi, K.Sandhya Rani / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1483-1487

1487 | P a g e

Refernces
[1] U.M. Fayyad and K.B. Irani, ―Multi-Interval

Discretization of Continuous-Valued attributes

from Classification Learning,‖ Proc. Int‘l Joint

Conf. Artificial Intelligence (IJCAI ‘93), pp.

1022-1027, 1993.

[2] K. Hwang, Y. Chen, and H. Liu, ―Defending

Distributed Computing Systems from Malicious

Intrusions and Network Anomalies,‖ Proc. IEEE

Workshop Security in Systems and Networks

(SSN ‘05) held with the IEEE Int‘l Parallel &

Distributed Processing Symp., 2005.

 [3] Carl E. Landwehr, Alan R. Bull, John P.

McDermott, and William S. Choi. A taxonomy

of computer program security aws. ACM

Computing Surveys, 26(3):211{254, September

1994.

[4] K. Hwang, Y. Kwok, S. Song, M. Cai, Y. Chen,

and Y. Chen, ―DHT-Based Security

Infrastructure for Trusted Internet and Grid

Computing,‖ Int‘l J. Critical Infrastructures, vol.

2, no. 4, pp. 412- 433, Dec. 2006.

[5] T. Pietraszek, ―Alert Classification to Reduce

False Positives in Intrusion Detection,‖ PhD

dissertation, Universita¨ t Freiburg, 2006.

[6] F. Autrel and F. Cuppens, ―Using an Intrusion

Detection Alert Similarity Operator to Aggregate

and Fuse Alerts,‖ Proc. Fourth Conf. Security

and Network Architectures, pp. 312-322, 2005.

[7] G. Giacinto, R. Perdisci, and F. Roli, ―Alarm

Clustering for Intrusion Detection Systems in

Computer Networks,‖ Machine Learning and

Data Mining in Pattern Recognition, P. Perner

and A. Imiya, eds. pp. 184-193, Springer, 2005.

[8] O. Dain and R. Cunningham, ―Fusing a

Heterogeneous Alert Stream into Scenarios,‖

Proc. 2001 ACM Workshop Data Mining for

Security Applications, pp. 1-13, 2001.

[9] J. Song, H. Ohba, H. Takakura, Y. Okabe, K.

Ohira, and Y. Kwon, ―A Comprehensive

Approach to Detect Unknown Attacks via

Intrusion Detection Alerts,‖ Advances in

Computer Science—ASIAN2007, Computer and

Network Security, I. Cervesato, ed., pp. 247-253,

Springer, 2008.

[10] R. Smith, N. Japkowicz, M. Dondo, and P.

Mason, ―Using Unsupervised Learning for

Network Alert Correlation,‖ Advances in

Artificial Intelligence, R. Goebel, J. Siekmann,

and W. Wahlster, eds. pp. 308-319, Springer,

2008.

Prahanthi M.Tech

Computer Science &

Engineering from

JNTU Hyderabad

B.Tech from Rajiv

Gandhi Institute of

Technology. Currently

she is working at

Samskruthi College of

Engineering has

guided many UG&PG

students previously

she worked in

Tirumala Engineering

College. Her research areas are Mobile Computing,

Compiler Design, Computer Architecture.

K.Sandhya Rani

B.Tech IT from

Jayamukhi Institute

of Science &

Technology M.Tech

Software

Engineering from

CVSR College of

Engineering

currently working

as Asst Prof at

Samskruti College

of Engineering &

Technology having

five years of

experience in academic has guided many UG

students. Her research areas include Databases Web

Technology Multimedia Application Development.

Radha Devi M.Tech

Computer Science &

Engineering from

G.Narayanamma

Institute of Technology

& Science MSc Physics

from St.Pious Degree

and P.G. College.

Currently she is

Working at Samskruthi

College of Engineering

has guided many UG &

PG students previously she worked in Tirumala

Engineering College. Her research areas are

Computer Networks, Network Security, Data

Warehousing & Data Mining.

