
Unnati Kavali, Tejal Abhang, Mr. Vaibhav Narawade / International Journal of Engineering 

Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.1448-1452 

1448 | P a g e  
 

DATA ALLOCATION STRATEGIES IN DATA LEAKAGE 

DETECTION 
Unnati Kavali               Tejal Abhang   Mr. Vaibhav Narawade 

Student of P.V.P.P.C.O.E.                               Student of P.V.P.P.C.O.E.       Associate Professor                                                                          
P.V.P.P.C.O.E., Mumbai  

   

 

Abstract--Some distributer or a BPO company 

has given sensitive data to a set of supposedly 

trusted companies or a set of agents (third 

parties). If the data distributed to third parties is 

found in a public/private domain then finding the 

guilty party is a nontrivial task to distributor. 

Traditionally, this leakage of data is handled by 

water marking technique which requires 

modification of data. If the watermarked copy is 

found at some unauthorized site then distributor 

can claim his ownership. To overcome the 

disadvantages of using watermark Data allocation 

strategies are used to improve the probability of 

identifying guilty third parties. In this project, we 

implement and analyze a guilt model that detects 

the agents using allocation strategies without 

modifying the original data. The guilty agent is 

one who leaks a portion of distributed data. The 

idea is to distribute the data intelligently to agents. 

 Keywords--sensitive data; fake objects; data 

allocation strategies. 

 

I. INTRODUCTION 
In this paper, we develop a model for finding the 

guilty agents. We also present algorithms for 

distributing objects to agents, in a way that improves 

our chances of identifying a leaker. Finally, we also 

consider the option of adding “fake” objects to the 

distributed set. Such objects do not correspond to real 

entities but appear realistic to the agents. In a sense, 

the fake objects act as a type of watermark for the 

entire set, without modifying any individual 

members. If it turns out that an agent was given one 

or more fake objects that were leaked, then the 

distributor can be more confident that agent was 

guilty. We also consider optimization in which 

leaked data is compared with original data and 

accordingly the third party who leaked the data is 

guessed. We will also be using approximation 

technique to encounter guilty agents. We proposed 

one model that can handle all the requests from 

customers and there is no limit on number of 

customers. The model gives the data allocation 

strategies to improve the probability of identifying 

leakages. Also there is application where there is a 

distributor, distributing and managing the files that 

contain sensitive information to users when they send 

request. The log is maintained for every request, 

which is later used to find overlapping with the 

leaked file set and the subjective risk and for 

Assessment of guilt probability. 

 

II. LITERATURE SURVEY: 
The guilt detection approach we present is related to 

the data provenance problem [3]: tracing the lineage 

of S objects implies essentially the detection of the 

guilty agents. and assume some prior knowledge on 

the way a data view is created out of data sources. 

Our problem formulation with objects and sets is 

more general As far as the data allocation strategies 

are concerned; our work is mostly relevant to 

watermarking that is used as a means of establishing 

original ownership of distributed objects. [3] Finally, 

there are also lots of other works on mechanisms that 

allow only authorized users to access sensitive data 

through access control policies [9], [2]. Such 

approaches prevent in some sense data leakage by 

sharing information only with trusted parties. 

However, these policies are restrictive and may make 

it impossible to satisfy agent’s requests. 

 

III. PROPOSED WORK 
Our goal is to detect when the distributor’s sensitive 

data has been leaked by agents, and if possible to 

identify the agent that leaked the data. Perturbation is 

a very useful technique where the data is modified 

and made “less sensitive” before being handed to 

agents. We develop unobtrusive techniques for 

detecting leakage of a set of objects or record In this 

section we develop a model for assessing the “guilt” 

of agents. We also present algorithms for distributing 

objects to agents, in a way that improves our chances 

of identifying a leaker. Finally, we also consider the 

option of adding “fake” objects to the distributed set. 

Such objects do not correspond to real entities but 

appear realistic to the agents. In a sense, the fake 

objects acts as a type of watermark for the entire set, 

without modifying any individual members. If it 

turns out an agent was given one or more fake objects 

that were leaked, then the distributor can be more 

confident that agent was guilty.       



Unnati Kavali, Tejal Abhang, Mr. Vaibhav Narawade / International Journal of Engineering 

Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.1448-1452 

1449 | P a g e  
 

 
 

 

Fig 1: Filtering of data objects. 

 

A. Problem Definition 

      The distributor owns the sensitive data set T= {t1, 

t2… tn}. The agent Ai request the data objects from 

distributor. The objects in T could be of any type and 

size, e.g. they could be tuples in a relation, or 

relations in a database. The distributor gives the 

subset of data to each agent. After giving objects to 

agents, the distributor discovers that a set L  of T has 

leaked. This means some third party has been caught 

in possession of L. The agent Ai receives a subset Ri 

of objects T determined either by implicit request or 

an explicit request. 

 Implicit Request Ri = Implicit (T,  mi) : Any 

subset of mi records from T can be given to 

agent Ai  

 Explicit Request Ri = Explicit (T, Condi) : 

Agent Ai receives all T objects that satisfy 

Condition. 

 

 

B. Data Allocation Problem 

1.Fake Objects: 

The distributor may be able to add fake objects to the 

distributed data in order to improve his effectiveness 

in detecting guilty agents. However, fake objects may 

impact the correctness of what agents do, so they 

may not always be allowable. Our use of fake objects 

is inspired by the use of “trace” records in mailing 

lists. In this case, company A sells to company B a 

mailing list to be used once (e.g., to send 

advertisements). Company A adds trace records that 

contain addresses owned by company A. Thus, each 

time company B uses the purchased mailing list, A 

receives copies of the mailing. These records are a 

type of fake objects that help identify improper use of 

data. The distributor creates and adds fake objects to 

the data that he distributes to agents. Depending upon 

the addition of fake tuples into the agent’s request, 

data allocation problem is divided into four  

cases as: 

i. Explicit request with fake tuples (EF) 

ii. Explicit request without fake tuples (E~F) 

iii. Implicit request with fake tuples (IF  

iv. Implicit request without fake tuples (I~F). 

 

 
                Fig 2: Leakage Problem Instances  

 

2. Optimization Problem: 
The distributor’s data allocation to agents has one 

constraint and one objective. The distributor’s 

constraint is to satisfy agents’ requests, by providing 

them with the number of objects they request or with 

all available objects that satisfy their conditions. His 

objective is to be able to detect an agent who leaks 

any portion of his data. 

 

The objective is to maximize the chances of 

detecting a guilty agent that leaks all his data objects. 

The Pr { Gj|S =Ri } or simply Pr {Gj |Ri } is the 

probability that agent is guilty if the distributor 

discovers a leaked table S that contains all objects. 

The difference functions 

Δ ( i, j ) is defined as: 

Δ ( i, j ) = Pr {Gj |Ri } – Pr {Gj |Ri } …….  

 

Let the    distributor    have data request from n 

agents. The distributor wants to give tables R1 

,R2……..Rn to agents A1 ,A2…………. An 

respectively, so that   

 Distribution satisfies agent’s request; and 

 Maximizes the guilt probability differences  

∆ (i, j) for all i, j= 1, 2, ……n and i≠j. 

maximize(overR1….,Rn) (…,.∆(i,j),…)  i≠j……..(A) 

minimize(over R1,….,Rn) (..,│Ri∩Rj│÷│Ri│,…) i≠j 

…….(B) 



Unnati Kavali, Tejal Abhang, Mr. Vaibhav Narawade / International Journal of Engineering 

Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.1448-1452 

1450 | P a g e  
 

 

3. Objective Approximation: 
We can approximate the objective of Equation (A) 

with Equation 8 that does not depend on agents’ guilt 

probabilities and therefore on p. In case of sample 

request, all requests are of fixed size. Therefore, 

maximizing the chance of detecting a guilty agent 

that leaks all his data by minimizing│Ri∩Rj│÷│Ri│ 

is equivalent to minimizing . The minimum value of 

|Ri∩Rj |  maximizes ∏|Ri∩Rj | and Δ ( i, j ), since 

∏│Ri│ is fixed. If agents have explicit data requests, 

then overlaps |Ri∩Rj | are defined by their own 

requests and |Ri∩Rj | are fixed. Therefore, 

minimizing |Ri | j is equivalent to maximizing | Ri| 

(with the addition of fake objects). The maximum 

value of |Ri | mimimizes Π(Ri ) and maximizes  

Δ( i, j), since Π(Ri ∩Rj ) is fixed. 

 

C. Guilt Assessment 

      Let L denote the leaked data set that may be 

leaked intentionally or guessed by the target user. 

Since agent having some of the leaked data of L, may 

be susceptible for leaking the data. But he may argue 

that he is innocent and that the L data were obtained 

by target through some other means. Our goal is to 

assess the likelihood that the leaked data came from 

the agents as opposed to other resources. E.g. if one 

of the object of L was given to only agent A1, we 

may suspect A1 more. So probability that agent A1 is 

guilty for leaking data set L is denoted as Pr {Gi| L}. 

 

 

D. .Guilt Probability Computation (agent guilt 
model) 

 For the sake of simplicity our model relies on two 

assumptions: 

Assumption 1:  For all t1, t2… tn Є L and    t1≠ t2, 

the provenance of t1is independent of t2  

Assumption 2: Tuple tЄL can only be obtained by 

third user in one of the two ways: 

    1. Single user A1 leaked t or 

    2. Third user guessed t with the help of other           

resources. 

         Now to compute the guilt probability that he 

leaks a single object t to L, we define a set of users. 

To find the probability that an agent Ai is guilty for 

the given set L, consider the target guessed t1 with 

probability p and that agent leaks t1 to L with 

probability 1-p.  First compute the probability that he 

leaks a single object to L. To compute this, define the 

set of agents Ut = { Ai | tЄ Ri  } that have t in their 

data sets. Then using Assumption 2 and known 

probability p,we have,  

Pr{Some agent leaked t to L=1-p----------------(1)  

Assuming that all agents that belongs to Ut can leak t 

to L with equal probability and using Assumption 2 

we get, 

Pr(Ai leaked t to L)={(1-p)÷U1) if Ai € U1 ---- (2) 

Given that user Ai is guilty if he leaks at least one 

value to L, with assumption 1 and equation 2, we can 

compute the probability that user Pr {Gi| L} Ai is 

guilty 

Pr {Gi| L=1- ∏ t € L∩Ri (1-((1-p)÷U1))} that user Ai is 

guilty :-----(3) 

 

 E. Data Allocation Strategies 

In this section we describe allocation strategies that 

solve exactly or approximately the scalar versions of 

approximation equation. We resort to approximate 

solutions in cases where it is inefficient to solve 

accurately the optimization problem. 

 

1. Explicit Data Requests 

In case of explicit data request with fake not allowed, 

the distributor is not allowed to add fake objects to 

the distributed data. So Data allocation is fully 

defined by the agent’s data request. In case of explicit 

data request with fake allowed, the distributor cannot 

remove or alter the requests R from the agent. 

However distributor can add the fake object. In 

algorithm for data allocation for explicit request, the 

input to this is a set of request ,……, from n agents 

and different conditions for requests. The e-optimal 

algorithm finds the agents that are eligible to 

receiving fake objects. Then create one fake object in 

iteration and allocate it to the agent selected. The e-

optimal algorithm minimizes every term of the 

objective summation by adding maximum number of 

fake objects to every set yielding optimal solution. 

Step 1: Calculate total fake records as sum of fake 

             Records allowed. 

Step 2: While total fake objects > 0 

Step 3: Select agent that will yield the greatest 

            improvement in the sum objective i.e.  

            i =argmax((1/│Ri│)-(1/(│Ri+1│)))∑Ri∩Rj 

Step 4: Create fake record 

Step 5: Add this fake record to the agent and also to 

           fake record set. 

Step 6: Decrement fake record from total fake 

            record set. 

       Algorithm makes a greedy choice by selecting 

the agent that will yield the greatest improvement in 

the sum-objective. 

 

2 Sample Data Requests 

With sample data requests, each agent Ui may 

receive any T subset out of different object 

allocations. In every allocation, the distributor can 

permute T objects and keep the same chances of 

guilty agent detection. The reason is that the guilt 

probability depends only on which agents have 



Unnati Kavali, Tejal Abhang, Mr. Vaibhav Narawade / International Journal of Engineering 

Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.1448-1452 

1451 | P a g e  
 

received the leaked objects and not on the identity of 

the leaked objects.  

 The distributor gives the data to agents such that he 

can easily detect the guilty agent in case of leakage of 

data. To improve the chances of detecting guilty 

agent, he injects fake objects into the distributed 

dataset. These fake objects are created in such a 

manner that, agent cannot distinguish it from original 

objects. One can maintain the separate dataset of fake 

objects or can create it on demand. In this paper we 

have used the dataset of fake tuples. 

      For example, distributor sends the tuples to 

agents A1 and A2 as R1= {t1, t2} and R2= {t1}. If 

the leaked dataset is L= {t1}, then agent A2 appears 

more guilty than A1. So to minimize the overlap, we 

insert the fake objects in to one of the agent’s dataset. 

            Practically server (Distributor) has given 

sensitive data to agent. In that distributor can send 

data with fake information. And   that fake 

information does not affect to Original Data.  Fake 

formation cannot identify by client. it also finds the 

data leakage from which agent (client) 

  

 

IV. METHODOLOGY 
      In this paper, we presented the algorithm and the 

corresponding results for the explicit data allocation 

with the addition of fake tuples. We are still working 

on minimizing the overlap in case of implicit request. 

Whenever any user request for the tuple, it follows 

the following steps: 

1. The request is sent by the user to the distributor. 

2. The request may be implicit or explicit. 

3. If it is implicit a subset of the data is given. 

4. If request is explicit, it is checked with the log, if 

any previous request is same. 

5. If request is same then system gives the data 

objects that are not given to previous agent. 

6. The fake objects are added to agent’s request set. 

7. Leaked data set L, obtained by distributor is given 

as an input. 

8. Calculate the guilt probability Gi of user using II. 

In the case where we get similar guilt probabilities of 

the agents, we consider the trust value of agent. 

These trust values are calculated from the historical 

behavior of agents. The calculation of trust value is 

not given here, we just assumed it. The agent having 

low trust value is considered as guilty agent. The 

algorithm for allocation of dataset on agent’s explicit 

request is given below. 

 

a. Algorithm1:  

Allocation of Data Explicitly: 

Input: - i. T= {t1, t2, t3, .tn}-Distributor’s Dataset 

             ii. R- Request of the agent 

             iii. Cond- Condition given by the agent 

             iv. m= number of tuples given to an agent      

      m<n, selected randomly 

Output: - D- Data sent to agent 

               1. D=Φ, T’=Φ 

               2. For i=1 to n do 

               3. If(t  .fields==cond) then 

               4. T’=T’U{ t i} 

               5. For i=0 to i<m do 

               6. D=DU{ ti} 

               7. T’=T’-{ ti} 

               8. If T’=Φ then 

               9. Goto step 2 

             10. Allocate dataset D to particular agent 

             11. Repeat the steps for every agent 

To improve the chances of finding guilty agent we 

can also add the fake tuples to their data sets. Here 

we maintained the table for duplicate tuples and add 

randomly these tuples to the  

Agent’s dataset. 

 

b. Algorithm2: 

Addition of fake tuples: 

Input:  i. D- Dataset of agent 

            ii. F- Set of fake tuples 

            iii. Cond- Condition given by agent 

            iv. b- number of fake objects to be sent  

Output:- D- Dataset with fake tuples 

             1. While b>0 do 

             2. f= select Fake Object at random from set F 

             3. D= DU {f} 

             4. F= F-{f} 

             5. b=b-1 

             6. if F=Ф then reinitialize the fake data set. 

Similarly, we can distribute the dataset for implicit 

request of agent. For implicit request the subset of 

distributor’s dataset is selected randomly. Thus with 

the implicit data request we get different subsets. 

Hence there are different data allocations. An object 

allocation that satisfies requests and ignores the 

distributor’s objective to give each agent unique 

subset of T of  size m. The s-max algorithm allocates 

to an agent the data record that yields the minimum 

increase of the maximum relative overlap among any 

pair of agents.  

           The s-max algorithm is as follows: 

1. Initialize Min_Overlap, the minimum out of the 

minimum relative overlaps that the allocations of 

different 

objects to Ai 

2. for k do Initialize max_rel_ov←0, the maximum 

relative overlap between Ri the allocation of tk to Ai 

3. for all j=1,……,n:j=I and tk ЄRj do calculate 

absolute 

overlap as abs_ov← 

calculate relative overlap as 

rel_ov←abs_ov/min(mi, mj) 

4. Find maximum relative overlap as 



Unnati Kavali, Tejal Abhang, Mr. Vaibhav Narawade / International Journal of Engineering 

Research and Applications (IJERA)      ISSN: 2248-9622   www.ijera.com 

Vol. 2, Issue 2,Mar-Apr 2012, pp.1448-1452 

1452 | P a g e  
 

Max_rel_ov←MAX(max_rel_ov, rel_ov) 

If max_rel_ov≤ min_ov then 

Min_ov←max_rel_ov 

ret_k←k 

Return ret_k 

The algorithm presented implements a variety of data 

distribution strategies that can improve the 

distributor’s chances of identifying a leaker. It is 

shown that distributing objects judiciously can make 

a significant difference in identifying guilty agents, 

especially in cases where there is large overlap in the 

data that agents must receive. 

  

EXPERIMENTAL RESULTS 

      In our scenarios we have taken a set of 500 

objects and requests from every agent are accepted. 

There is no limit on number of agents, as we are 

considering here their trust values.  

The flow of our system is given as below: 

1. Agent’s Request: Either Explicit or Implicit. 

2. Leaked dataset given as an input to the system. 

3. The list of all agents having common tuples as that 

of leaked tuples is found and the corresponding guilt 

probabilities are calculated. 

4. It shows that as the overlap with the leaked dataset 

minimizes the chances of finding guilty agent 

increases. 

 

V. CONCLUSION 
      Data leakage is a silent type of threat. Your 

employee as an insider can intentionally or 

accidentally leak sensitive information. This sensitive 

information can be electronically distributed via e-

mail, Web sites, FTP, instant messaging, 

spreadsheets, databases, and any other electronic 

means available – all without your knowledge. To 

assess the risk of distributing data two things are 

important, where first one is data allocation strategy 

that helps to distribute the tuples among customers 

with minimum overlap and second one is calculating 

guilt probability which is based on overlapping of his 

data set with the leaked data set. 

 

VI      REFERENCES: 
[1] Papadimitriou P, Garcia-Molina H. A Model 

For Data Leakage Detection// IEEE 

Transaction On Knowledge And Data 

EngineeringJan.2011. 

 

[2] International Journal of Computer Trends 

and Technology- volume3Issue1- 2012 

ISSN:2231-2803 

http://www.internationaljournalssrg.org 

Data Allocation Strategies for Detecting 

Data LeakageSrikanth Yadav, Dr. Y. Eswara 

rao, V. Shanmukha Rao, R. Vasantha 

 

[3] International Journal of Computer 

Applications in Engineering Sciences 

[ISSN: 2231-4946]197 | P a g e 

Development of Data leakage Detection 

Using Data Allocation Strategies 

Rudragouda G Patil Dept of CSE,The 

Oxford College of Engg, Bangalore.   

 

[4] P. Buneman, S. Khanna and W.C. Tan. Why 

and where: A characterization of data 

provenance. ICDT 2001, 8th International 

Conference, London, UK, January4-6, 2001, 

Proceedings, volume 1973 of Lecture Notes 

in Computer Science, Springer, 2001 

. 

[5]  S. Jajodia, P. Samarati, M.L. Sapino, and 

V.S. Subrahmanian, “Flexible Support for 

Multiple Access Control Policies,” ACM 

Trans. Database Systems, vol. 26, no. 2, pp. 

214-260, 2001. 

 

[6] P. Bonatti, S.D.C. di Vimercati, and P. 

Samarati, “An Algebra for Composing 

Access Control Policies,” ACM Trans. 

Information and System Security, vol. 5, no. 

1, pp. 1-35, 2002. 

 

[7] YIN Fan, WANG Yu, WANG Lina, Yu 

Rongwei A Trustworthiness-Based 

Distribution Model for Data Leakage 

Detection: Wuhan University Journal Of 

Natural Sciences. 

 

[8] Rakesh Agrawal, Jerry Kiernan. 

Watermarking Relational Databases// IBM 

Almaden Research Center. 

http://www.internationaljournalssrg.org/

