
Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1337 | P a g e

Transaction Control System On Various Techniques for

Maintaining Consistency of Databases

Prof. S.R. Thakare
1

Dr. C.A. Dhawale
2
 Prof. A.B. Gadicha

3

Department of MCA , P.R.Pote(Patil) College of Engg &Magmt Amravati
1,2

Department of Computer Science & Engg , P.R.Pote(Patil) College of Engg &Magmt Amravati
3

Abstract:- As Per Requirement of Application Transaction Perform on Database.These are Transaction must

maintenance Consistency .This Paper explain Various Technique of Transaction for Maintenance Consistency.

Introduction:
The transaction as used in most data management

systems generalizes to the network environment, that

network systems should provide of a transaction as

an abstraction which

Eases the construction of programs in a distributed

system. Transactions would provide the programmer

with the following types of transparencies.

(1) Location Transparency. Although data are

geographically distributed and may move from

place to place, the programmer can act as if all

the data were in one node.

(2) Replication Transparency. Although the same

data item may be replicated at several nodes of

the network, the programmer may treat the item

as if it were stored as a single item at a single

node.

(3) Concurrency Transparency. Although the system

runs many transactions

concurrently, to each transaction it appears as if

it were the only activity in the system.

Alternatively, it appears as if there were no

concurrency in the system.

(4) Failure Transparency. Either all the actions of a

transaction occur or none of them occur. Once a

transaction occurs, its effects survive hardware

and software failures.

They are Various Techniques of Transaction for

Maintenance Consistency as given below

1 Semantic Data Control in Database

Environment
 A centralized & distributed database is a

database distributed between several sites. The

reasons for the data distribution may include the

inherent distributed nature of the data or performance

reasons. In a distributed database the data at each site

is not necessarily an independent entity, but can be

rather related to the data stored on the other sites.

This relationship together with the integrity

assertions on the data are expressed in the form of

data constraints. Figure 1 shows a classification of

the possible data constraints that can hold on a

distributed database. Those constraints as an

invariant, which must hold at any given time instance

(static constraints) or during any time interval of

prespecified length (dynamic constraints).

 Figure 1 Distributed Database data constraints classification

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1338 | P a g e

At the top level there are two type of constraints

dynamic and static. To check whether a static

constraint holds, at any given time point, we need a

static snapshot of the database instance. On the other

hand, to verify whether a dynamic constraint holds

we need to have information about how the database

instance evolves over time. An example of a dynamic

constraint is: within every 5 minutes of the life of the

database instance something must happen, e.g. an

update must occur. On an orthogonal plane, data

constraints can be integrity or duplication. Integrity

constraints are independent of how the data is

distributed or duplicated If an integrity constraint is

based on a single collection of data objects and a

single variable it is called individual. Set constraints

are those that are based on more than one data

collections or on more than one variables. For

example, in the distributed database shown in Figure

2 ,

individual integrity constraints may include the

primary key constraints on the tables R1 and R2,

whiles a set integrity constraint may include a

referential foreign key constraint between the two

tables. Aggregate constraints are integrity constraints

involving aggregate operators such as min, max, sum,

count and average.

 Note, that integrity constraints can be both

dynamic and static. In particular a dynamic integrity

constraint may state that if an update, which violates

a constraint, is performed, a compensating update

which restores the constraint should be performed

within two minutes. On the other hand, static

integrity constraints require the integrity constraint to

be true at any given time instance.

Figure 2 A Distributed database Example

2 Real-Time Replication Control for Database System on Basis Algorithms

In real-time distributed database systems, timeliness

of results can be as important as their correctness

The problems related to replication control such as

the preservation of mutual and internal consistency

become more difficult when timing constraints are

imposed on transactions. Transactions must be

scheduled to meet the timing constraints and to

ensure data consistency. Real-time task scheduling

can be used to enforce timing constraints on

transactions, while concurrency control is employed

to maintain data consistency. The integration of the

two mechanisms is non trivial because of the trade-

offs involved. Serializability may be too strong as a

correctness criterion for concurrency control in

database systems with timing constraints, for

serializability severely limits concurrency. As a

consequence, data consistency might be

compromised to satisfy timing constraints.

 Epsilon-serializability (ESR) is a

correctness criterion that enables asynchronous

maintenance of mutual consistency of replicated data

. A transaction with ESR as its correctness criterion is

called an epsilontransaction (ET). An ET is a query

ET if it consists of only reads. An ET containing at

least one write is an update ET. Query ETs may see

an inconsistent data state produced by update ETs.

The metric to control the level of inconsistency a

query may return is called the overlap. It is defined as

the set of all update ETs that are active and affecting

data objects that the query seeks to access. If a query

ET’s overlap is empty, then the query is serializable.

The overlap of an active query transaction Q can be

used as an upper bound of error on the degree of

inconsistency that may accumulate.

R2

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1339 | P a g e

Among several replica control methods based on

ESR, chosen the ordered updates approach. The

ordered updates approach allows more concurrency

than 1SR in two ways. First, query ETs can be

processed in any order because they are allowed to

see intermediate, inconsistent results. Second, update

ETs may update different replicas of the same object

asynchronously,but in the same order. In this way,

update ETs produce results equivalent to a serial

schedule; these results are therefore consistent. There

are two categories of transaction conflicts that

examine: conflicts between update transactions and

conflicts between update and query transactions.

Conflicts between update transactions can be either

RW conflicts orWW conflicts. Both types must be

strictly resolved. No correctness criteria can be

relaxed here, since execution of update transactions

must remain 1SR in order for replicas of data objects

to remain identical. Conflicts between update and

query transactions are of RW type. Each time a query

conflicts with an update, say that the query overlaps

with this update, and the overlap counter is

incremented by one. If the counter is still less than a

specified upper bound, then both operation requests

are processed normally, the conflict is ignored, and

no transaction is aborted. Otherwise, RW conflict

must be resolved by using the conventional 1SR

correctness criteria of the accommodating algorithm.

The performance gains of the above conflict

resolution policies are numerous. Update transactions

are rarely blocked or aborted in favor of query

transactions. They may be delayed on behalf of other

update transactions in order to preserve internal

database consistency. On the other hand, query

transactions are almost never blocked provided that

their overlap upper bound is not exceeded. Finally,

update transactions attain the flexibility to write

replicas in an asynchronous manner.

 A real-time replication control algorithm,

based on the majority consensus approach. he use of

ESR correctness criteria to control the inconsistency

of query transactions and the mechanism for conflict

resolution of real-time transactions.

3.Transaction Management using Coordinator
 Oracle constructs a session tree for the participating

nodes. The session tree describes the relations

between the nodes participating in any given

transaction. Each node plays one or more of the

following roles:

1. Client: A client is a node that references data from

another node.

2. Database Server: A server is a node that is being

referenced by another node because it

has needed data. A database server is a server that

supports a local database.

3. Global Coordinator: The global coordinator is the

node that initiated the transaction, and thus, is the

root of the session tree. The operations performed by

the global coordinator are as follows:

• In its role as a global coordinator and the root of the

session tree, all the SQL statements,

procedure calls, etc., are sent to the referenced nodes

by the global coordinator.

Instructs all the nodes, except the COMMIT point

site, to PREPARE

• If all sites PREPARE successfully, then the global

coordinator instructs the COMMIT

point site to initiate the commit phase

• If one or more of the nodes send an abort message,

then the global coordinator instructs

all nodes to perform a rollback.

4. Local Coordinator: A local coordinator is a node

that must reference data on another node

in order to complete its part. The local coordinator

carries out the following functions (Oracle8):

• Receiving and relaying status information among

the local nodes

• Passing queries to those nodes

• Receiving queries from those nodes and passing

them on to other nodes

• Returning the results of the queries to the nodes that

initiated them.

5. Commit Point Site: Before a COMMIT point

site can be designated, the COMMIT point strength

of each node must be determined. The COMMIT

point strength of each node of the distributed

database system is defined when the initial

connection is made between the nodes. The

COMMIT point site has to be a reliable node because

it has to take care of all the messages. When the

global coordinator initiates a transaction, it checks

the direct references to see which one is going to act

as a COMMIT point site. The COMMIT point site

cannot be a read-only site. If multiple nodes

have the same COMMIT point strength, then the

global coordinator selects one of them. In case of a

rollback, the PREPARE and COMMIT phases are

not needed and thus a COMMIT point site is not

selected. A transaction is considered to be committed

once the COMMIT point site commits locally.

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1340 | P a g e

4 Transaction Management using Schema
The primitives issued by a distributed transaction are

begin-transaction, read, write, execute, and commit

or abort. They are processed according to the

schemes outlined below. The algorithms As below:

Begin-transaction: Upon invocation of this operation,

the global transaction manager (GTM) writes a

begin-transaction record in the log, interprets the

request, and decides which nodes are going to be

accessed to complete the transaction. Next, it

initializes a run-time global table for the transaction.

This table has a column for each anticipating node.

The header of the column is

the ifentifier of the called node. Then, it issues a

local- begin-transaction primitive to all participating

nodes.

The local transaction managers (LTMs) of these

nodes respond by writing a local-begin-transaction

record in the log and creating and initializing new

columns in their run-time local tables. Each of the

headers of these columns contains the global

transaction number and the identifier of the calling

node.

Read(Xva1ue): The GTM looks in its run-time global

tables to find the table of the involved transaction.

Next, It looks for the column of the participating

node that contains Xvalue. If it finds a value for

Xvalue then it returns it to the calling transaction. If

not, it issues a localLread(

Xva1ue) primitive to the appropriate node. The LTM

of the latter, in turn, issues a disk_read(Xvalue)

primitive to the data mana er of its data storage files.

It

gets the requested value, adds it as an entry in the

corresponding column of the calling global

transaction, and sends it to the GTM. The latter adds

the information as an entry in the appropriate column

of its table and returns the value to the transaction.

5. Database Transactions on basis Integrity

Constrain
 For the embedding language assume a

programming language. It includes most of the usual

constructs, arithmetic expressions, assignment

statements, jumps, conditional-, repeating- and

compound- statements. In addition it is necessary to

describe the database operations. Each database

application has a data model as a basis. We will

restrict our discussion to the relational model and

SQL as database language. The interesting operations

are INSERT, DELETE, UPDATE and SELECT,

which we currently restrict to the untested versions.

However, we admit arithmetic expressions,

comparison operators, logical connectors and

aggregate functions (count, sum, avg, min, max).

These constructs are sufficient for most of the

transaction programs. consistency constraints are

much more powerful than those mentioned in the

SQL standard proposal. They include the same

constructs as the predicates in the SQL statements. In

addition the existential and the universal quantifier

are possible.

The calculus used for the integrity constraints is an

extension of predicate calculus extended by some

formulas of a nested predicate calculus. This is

necessary for constraints including aggregate

functions. For example, integrity constraints

corresponding to multiple tuples of more than one

relation often have a form like: This says that for

each element tl of relation rl there exist at least "in'

elements and at most "ax' elements in r2 related to tl.

Note that this is a simple but important generalization

of the 'referential integrity' of SQL by specifying

minimal and maximal cardinalities.The operator

card is used to describe the number of elements of a

set. It has the same meaning as the aggregate

function count.

The basic method used for analyzing the

transaction program is symbolic execution. Since we

analyze at compile time, the actual values of the

variables are not known. Therefore we execute the

program with symbolic values assigned to the input

variables. They end with the letter 's' in the following

examples. The output variables are computations

over the input variables.

To execute a program at the symbolic level

it is represented by a control flow graph. A path in a

control flow graph is a sequence of basic blocks, such

that there exists a possible connection between

adjacent nodes. The output of the symbolic execution

of a path is a set of output variables consisting of

computations over the input variables and a

conjunction of the path predicates resulting from the

branches of the control flow graph.

0 Loops:

The number of iterations often depend on input data.

Therefore, determining all paths is not possible. One

solution is to derive a closed form of the body of the

loop, which is not always possible. Another approach

is to execute the body K times, where K is

determined by the user or by the system.

Arrays:

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1341 | P a g e

The index of an array is often not known at execution

time. This makes it impossible to decide, whether

predicates containing different indices like 'a[i]=ab]'

are the same.

0 Procedure Calls:

There are two methods to handle procedure calls; the

first one is the inline substitution. Using this

approach, all procedure calls are replaced by the

program code. This method significantly increases

the number of executable paths. The second

possibility is to check the procedures separately and

to replace all procedure calls by their path conditions.

0 Selection of Paths:

Often it is impossible to execute all paths, because of

the complex structure of the program. Restricting the

number of paths checked, on the other hand, reduces

the quality of the result

.

6 Database Transactions on basis Object
The schemas of three databases: DB1, DB2, and

DB3, which are located in different sites and used to

store the personal information at the same school.

The global schema is constructed by integrating

these three component schemas. The schemas only

include the class composition hierarchies without the

class hierarchy. The missing data mainly come from

the existence of missing attributes for the constituent

classes, The missing attributes for a class can be

divided into primitive missing attributes and complex

missing attributes according to their types of being

primitive or complex attributes. A predicate which

iinv'olves a nested attribute of the range class is

called a nested predicate. The nested attributes are

represented by path expressions in a query. consider

the queries containing one range class, whose

predicates contain nested predicates combined in

conjunctive form. The range class is the root class of

the composition hierarchy involved in the predicates;

the other classes specified in the hierarchy are named

branch classes for the query. The constituent classes

of a root class and a branch class are called local root

classes and local branch classes, respectively.

The following three phases are necessary for

processing the queries involving missing data.

 0 phaseO: this phase examines the GOid

mapping tables to find the isomeric objects which can

provide

the missing data. In other words, this is the step for

looking up the assistant objects. For the localized

approach, the task for checking the assistant objects

is also included in this phase.

0 phase I: this phalse integrates the

information of one object and its isomeric objects.

For the localized

approach, it means the step for certifying the local

maybe resullt~ia nd the unsolved items.

0 phase P: this phatse does the predicate

evaluation. It is possible that, the concerned

predicates are local

predicates when the localized approach is applied.

phase I has to be executed after phase 0. the basic

processing algorithms are provided by analyzing the

combination of these three phases.

Centralized Approach (CA)

The centralized follows the 0 →I → P order for

executing the three necessary phases. The procedures

executed in the

global processing site and each component database

are as follows

global processing site

Step CA-G1: Send the request to component

databases for retrieving the objects in the local root

classes and local branch classes, then wait €or the

response.

Step CA-G2: To materialize each global class

involved in the query, outerjoin is used over join

attribute GOid to integrate the objects in the

constituent classes (phase 0 and phase I).

Step CA-G3: Evaluate the predicates on the

materialized global classes (phase P).

component database

Step CA-C1: When receiving the request from the

global processing site, retrieve and send out all

objects in the local root class and local branch classes

of the query.

Basic Localized Approach (BL)

The basic localized approach for explaining the

concept of the localized approach. The execution

order for the

necessary phases is P → 0→ I. The tasks of the

global processing site and the component databases

are described

as follows

global processing site

Step BL-G1: For each component database

containing the local root class, produce a local query

against the local root class. The predicates remain

unchanged at this step. Then send the local queries to

the component databases and wait for

the response.

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1342 | P a g e

Step BL-G2: According to the certification rule,

certify the local results using the results of checking

the assistant objects (phase I). Get he final certain

results and maybe results.

component database

Case 1: receive the local query sent from the global

processing site

Step BL-C1: Only evaluate the local predicates in

the local query if the missing data is involved in the

original predicates (phase P).

Step BL-C2: Examine GOid mapping tables to find

the LOids of the assistant objects for the unsolved

items of the local maybe results. The LOids of the

assistant objects and the corresponding unsolved

predicates are sent to the other associated component

databases for further checking (part of phase 0).T he

local results are then sent back to the

global processing site.

Case 2: receive the request from other component

databases for checking the assistant objects.

Step BL-C3: Retrieve the objects for the LOid list of

the assistant objects and evaluate the appended

unsolved predicates. The LOids of the satisfied

objects are sent back to the global processing site

(phase 0)

Parallel Localized Approach (PL)

The execution order for the parallel localized

approach is 0 → P → I. This approach makes the

tasks for checking the assistant objects and evaluating

local predicates to be executed in parallel in different

component databases.

global processing site

Step PL-G1: This step is the same as step BL-G1.

Step PL-G2: This step is the same as step BL-GZ.

component database

Case 1: receive the local query sent from the global

processing site

Step PL-C1: For any object o in the local root class,

retrieve the objects in the nested complex attributes

of 0, which have associated missing attributes. There

exists at least one unsolved predicate for these

retrieved objects. Check GOid

mapping tables to find the LOids of the assistant

objects for these objects. Send the LOids of the

assistant objects and the corresponding unsolved

predicates to the associated component databases

(part of phase 0)

The difference between the parallel localized

approach and the basic localized approach is the

order for executing

.

7. Database Transactions on basis Prewrite operation
A prewrite operation before an actual write

operation is executed on design objects to increase

the potential concurrency. A prewrite operation

makes available the model cf the design that the

object will have after the design is finally produced.

A prewrite operation does not make the design but

only provides the

model or the picture of the design (including its

dimensions, colour combination etc.) a transaction

intends to make in future. Once the prewrite design

of a transaction is announced, the associated

transaction executes a precommit operation. After the

transaction has finally produced the design (for which

the prewrite design has been announced), it commits.

A read transaction can read the prewrite design

before the precommitted transaction has produced

that design. The prewrite design is made available for

reads after the associated transaction has executed a

precommit but before it has been committed. Hence,

prewrites increase concurrency as compared to the

environment where only read and write operations

are allowed on design objects.

Once a transaction has announced a precommit, it is

not allowed to abort. This is due to the following

reasons. First, it will help in avoiding cascading

aborts since the prewrite design has been made

available before the

transaction has finally produced the design and

committed. Second, it is desirable for a longduration

transaction so that it does not lose all the design work

at finishing stage in case there is an abort or a system

failure. To accomplish this, a precommit operation is

executed only after all the prewrite log records are

stored on stable storage. Once write operations start,

each write log is also stored on stable storage.

Thus, in

case of a failure after pre-commit, there is no need of

executing rollback (undo) operations. The recovery

algorithm has to at the most redo those operations

(using the prewrite logs and the write logs) whose

effects are not there on stable storage. The failed

transaction then can restart from the state as exists at

the time cf

failure . If a transaction aborts before executing all

prewrite operations and a precommit, it is rolled back

by discarding all the announced prewrites In

engineering design applications , by introducing

prewrite designs, shortduration transactions can

access the model or picture or the working copy of

the design held by a long transaction.

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1343 | P a g e

Reads are allowed to access the sketches once they

are prewritten but before they are actually made.

Therefore, using prewrites, one can have a system

consisting cf short and long transactions without

causing delay for short-duration transactions. Thus,

prewrites help in increasing the throughput of the

system by making the response of the system faster

for read-only operations. For read-only

transactions, the picture or the model of the design to

be produced is important rather then the finally

completed design. In the production, the dimension

or certain colour combinations of the design may

vary from the prewrite version of the design,

however, the readonly transactions are not affected.

In our algorithm, the user transactions explicitly

mention a prewrite operation before an actual write.

Also, user transactions explicitly mention whether it

wants to access the prewrite design (we call it pre-

read operation) or the final design (we call it read

operation). That is, the existence of a prewrite is

visible to the scheduler, data manager (DM) and to

user transactions. The user transaction submits

prewrite, pre-read, write and read for the design

objects it wants to access. Once a transaction is

submitted to the Data Manager (DM), the DM

analyses the received transaction. If the transaction

has a prewrite operation, the DM will store the

announced design for the object in the prewrite-

buffer. If the transaction has a preread operation, the

DM will return the

corresponrling prewrite design from the

prewritebuffer. If the operation is a read, it returns the

final produced design from the write-buffer. In our

algorithm, two versions of the same design may be

available for reading. The first version is the final

design released for manufacturing or the last design

checked for correctness. The other is the most recent

working copy of the design (prewrite design).

However, after the final version of the design is

produced, prewnte version of the design will be no

longer available. That is, after the final design is

released, a read transaction can not access its prewrite

design. Also, the independent writing on these two

different versions of design are also not allowed.

Concurrency Control Algorithm

the conflicting and nonconflicting operations in our

model. The following operations on the same design

object

conflict :

1. Two prewrites conflict since two prewrite design

for the same object can not be announced at the same

time in the same prewrite-buffer. It produces a

prewrite-prewrite type of the conflict.

2. A prewrite operation conflicts with a pre-read

operation since pre-read returns the value from the

prewrite-buffer whereas prewrite changes the

contents of the prewrite-buffer. Therefore, it will

generate a conflict of the type pre-read and prewrite.

3. Two writes conflict since both of them will modify

the same design object at the same time.

This will generate a write-write type of the conflict.

4. A write operation conflicts with a read operation

since the read retums the value from the write-

buffer. and a write changes its contents. Therefore, it

will generate a conflict of the type read and write.

The following operations, in general, do not conflict :

1. A pre-read operation (to read a prewrite design)

and a write operation do not conflict. A write

operation operates on the writehEer whereas a pre-

read operates on the prewrite-buffer.

2. A prewrite and write conflict do not conflict as

prewrite and writes operate on their respective

buffers.

3. A nead and prewrite do not conflict as they operate

on different buffers; read operates on

write-biuffer whereas prewrite operates on the

prewrite-buffer.

the ordered-shared locks are acquired. Once the

prewrite-lock of T2 is converted to the writelock,

the two write operations of the transactions are

executed in the order their write-locks are acquired.

Another improvement over is that transaction Tz can

commit before T I . In, the transactions with ordered-

shared locking are allowed to commit in the order

they obtained their locks.

8 Database Transactions on basis Domain
A methodology for learning across different

application domains. Across domain learning

involves generalizing elements for example, from

Airline, Railway, and Busline domainsÐto a higher-

level node, such as Transportation as shown in

Fig. 3 . Whenever common knowledge is

generalized and a higher level node is created,

the hierarchical structure of the ADB is

reorganized. To illustrate, consider the example

shown in Fig. . The original structure of the

ADB is shown on the left where the Service

node has four children nodes: Airline, Railway,

Car-Rental, and Video-Rental. By comparing these

nodes, the first two have certain similarities

between them, so a new node, called

Transportation, is created to capture the common

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1344 | P a g e

elements. Similarly, a new node called Rental is

created so that the common elements between

Car-Rental and Video-Rental can be stored at the

appropriate level of generality. However, the

creation of these two new nodes results in the

Service node being split into two subnodes. In

general, whenever a few nodes are grouped into

higher level nodes, the parent node is split into

lower level nodes. This reorganization is automatic

and ensures that the design knowledge is always

stored at the proper level of generality.

Thus, for the reorganization of the hierarchical

structure to occur, we need the ability to

compare two nodes at the same level and

determine if they have enough common elements

for propagation and creation of a new node. A

number of challenges are involved in making a

comparison across different application domains

:

Fig. 3. Learning across application domains.

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1345 | P a g e

shown in Fig. . Comparing the domains

Airline and Railway, a higher-level node (say,

Transportation) could be created with entities

Operator (a generalization of Pilot and Engineer),

Equipment (a generalization of Airplane and Train),

Company (a generalization of Airline and

Railway), and Passenger (a generalization of

Freq_Flyer), and the relation ships between them.

This generic model would be used to reason

about subsequent transportation applications. For

example, a bus company should have Driver

and Bus entities, specializations of Operator and

Equipment, respectively. The system would

provide the generic names; the more specific

terms, such as Driver and Bus, could then be

elicited from a user.

The learning process involves analyzing

entities and relationships from different domains

to discover general facts that can be propagated

to a higher-level node in the hierarchical

organization of common knowledge. It is

necessary to judge what facts are general and

whether there is enough knowledge to warrant

the formation of a new node. Our approach to

making such judgments is similar to cluster

analysis , where a set of objects is

partitioned into disjoint subsets (called clusters)

based on a distance measure. When comparing

two domains, find the largest cluster (subschema)

from one domain whose distance from a

corresponding similar cluster (subschema) of

another domain falls below a threshold. The

common elements (entities and relationships) of

these clusters are then propagated to form a

new node. The process of clustering involves

estimating the closeness between two clusters. We

use a distance measure similar to the one used , to

judge the closeness between two clusters. The

distance between two clusters is calculated as

an average of the distances of their

corresponding elements (entities). The distance

between two entities, in turn, is calculated as

an average of the distances of the elements of the

entities.

9 Database Transactions on basis Architecture
The Shared Information Platform(SIP) is an effective

way to settle the information bottleneck of freeway

construction. The abroad studies of ITS pay much

attention to information technology, system

integration and integrated information platform.The

domestic studies of Shared Information Platform

focus on two aspects, one is the traffic information

system(TIS), the other is the urban transportation

system(UTS).The Shared Information Platform of

Freeway Transportation (SIPFT) is the sub-platform

of SIP for transportation (SIPT).

 The shared information of SIPFT is the data

which need to be organized and stored by the

database system, including static traffic information,

dynamic traffic information and

other relevant information of management

information system. The input information of

database system involves a large number of highway

attribute data and complex spatial

data. The mass data of GIS and the attribute data of

traffic information constitute the core of platform

database According to the construction of national

freeway information system, the above-mentioned

information belongs to different management

department and application

system, and the corresponding databases are built

with different management funtions. Such as the

database of charge system, the database of

monitoring system, the database of highway project,

the database of maintenance system, the database of

disaster emergency management

system and so on. Based on the user's request of data

from different sources.

 SYSTEM DESIGN

A. Idea of System Design

1) Construction process

As we all know, Domestic freeway infrastructure is

in a period of large-scale development, the new road

and the corresponding sub-system platform continue

to emerge. However, the construction technology of

the SIP is not mature, which need more accumulation

of experience. So, the database system of platform

can not be realized in one step, the way of

progressive stages and gradually improving should be

adopted.

2) Information processing

GIS integrates database technology and computer

graphics technology, possesses powerful function of

data management and space analysis, and can provide

support with space property for data mining,

information service and decision-making. Freeway

traffic information contains a lot of geographic data,

therefore, the database system of platform should be

a spatial database system based on GIS.

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1346 | P a g e

3) Database organization

The data of SIPFT has the following characteristics:

the information sources and users are geographically

dispersed, but the management is relative

concentrated. The fuction module of sub-system is

local control and decentralized management, but

platform is overall control and comanagement. In

addition, the data of SIPFT meets the characteristics

of the distributed database systems, which is identical

logically and dispersed physically. Consequently, the

distributed database is adopted to organizated the

database of SIPFT, which is in line with the

management ideas and management methods of SIP.

4) Integration of heterogeneous database

The information of SIPFT is derived from different

subsystems, for this reason, the database design, data

structure and communication way of those sub-

systems are different.

Because the databases of sub-systems can not be

changed when the database of platform is build, the

federated database system(FDBMS) can be used to

resolve such a heterogeneous distributed database.

The FDBMS, under the premise of maintaining the

independent management of

sub-systems, realizes the integration of the

heterogeneous database.

5) Integration model

Part of the databases of domestic freeway

information systems are relatively mature, so, the

integrated model of platform database should

combine distributed database with the comprehensive

database of commanding center. The distributed

database of new information systems and the

comprehensive database should be built using top-

down approach, On the contrary, the distributed

database of the existing system should be federated

into platform using

down-top approach

The model of multi-level structure and co-

existence is applied to the integrated database of

SIPFT. The shared information which is frequently

used should be storaged by the comprehensive

database of commanding center. The less used shared

information as well as the unshared information

should be storaged by the distributed database, the

stored location and the updated time of those

informations are recorded in the comprehensive

database, which can be

extracted when they need to be queried or used. This

system model, not only supporting the independent

sub-system but also supporting the sub-system

coordinating with each other,

achieves the integration of heterogeneous database

and the sharing of traffic information, at the same

time, the specific management of the sub-system is

maintained. The comprehensive database and

heterogeneous distributed database can be connected

by LAN or WAN. The system

frame is shown in Fig.4 .

Figure 4. Frame of database system

The comprehensive database includes spatial

database (SDB), spatial database management system

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1347 | P a g e

(SDBMS) and spatial database engine (SDE). Among

those, SDE plays the role of middleware. Because the

development of information system of domestic

highway is in its infancy, the comprehensive database

can be built from scratch. The construction of

database can be overall planned in accordance with

the unified thinking. The heterogeneous distributed

database of the subsystem can be local visited. In

order to realize the mutual visit of the

sub-systems, interface server needs to be installed.

Through the development of uniform standards for

information, the comprehensive database can be

connected well with the

database of sub-system. The mature database of sub-

system can be federated into SIP using down-top

approach and the new database using top-down

approach.

A. Frame of Database System

Based on the space database of GIS, linked by mobile

communication and network communication, the

present system integrates the related systems

seamlessly, including

vehicle location tracking system, electrical and

mechanical equipment management system,

emergency response system, information publication

system, traffic flow analysis system

and network charge system. The overall structure of

database system is shown in Fig. .

Figure 5 . Overall structure of database system

B. Data Classification of Platform

The platform data can be divided into non-spatial

data and spatial data according to data features.

Spatial data includes topographic maps, route data,

and facilities locations of traffic engineer and so on.

Non-spatial data includes the information of

electrical and mechanical equipment management,

network charge, real-time location of vehicle

tracking, road maintenance and office automation.

Conclusion :- All above Techniques suggested

the convenient way of Transaction view of databases

as per requirements of user to enhanced the

Performance

Prof. S.R. Thakare, Dr. C.A. Dhawale, Prof. A.B. Gadicha / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.1337-1348

1348 | P a g e

References :-
1) Christina Liebelt “Designing Consistency-

Preserving Database Transactions” 0730-`

 3157/89/OOO0/0300 1989 IEEE

2) Jia-Ling Koh and Arbee L.P. Chen” Query

Execution Strategies for Missing Data in

Distributed Heterogeneous Object Databases”

Proceedings of the 16th ICDCS1063-

6927/96 ,1996 IEEE.

3) C.C. Chibelushit, S. Gandon, J.S.D.Masont, F.

Deravit, R.D. Johnston” DESIGN ISSUES

FOR A DIGITAL AUDIO-VISUAL

INTEGRATED DATABASE” 1996 The

Institution of Electrical Engineers. Printed

and published by the IEE, Savoy Place,

London WC2R OBL.

4) Sanjay Kumar Madria and Abdullah Embonig

“User Defined Prewrites for Increasing

Concurrency in Design Databases”

International Conference on Information,

Communications and Signal Processing

ICICS '97 Singapore, 9-12 September

1997,0-7803-3676-3/97, 1997 IEEE

5) Veda C. Storey,Debabrata Dey “A

Methodology for Learning Across Application

Domain for Database Design System” IEEE

TRANSACTIONS on Knowledge and Data

Engineering,Vol 14,No.1,January/February

2002,1041-4347,2002 IEEE

6) Jia-Ling Koh and Arbee L.P. Chen, Member,

IEEE “Efficient Query Processing in

Integrated Multiple Object Databases with

Maybe Result Certification” IEEE

TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, VOL. 14, NO. 4,

JULY/AUGUST 2002

7) Zhao Han-tao, Zhai Jing “Database System

Design and Application of Freeway Shared

Information Platform” 2009 First International

Workshop on Database Technology and

Applications, 2009 IEEE

8) Anastasia Ailamaki ” Embarrassingly Scalable

Database Systems” , ICDE Conference 2011

978-1-4244-8960-2/11, 2011 IEEE

9) Vaidehi V, Sharmila Devi D “Distributed

Database Management and Join of Multiple

Data Streams in Wireless Sensor Network using

Querying Techniques”, IEEE-International

Conference on Recent Trends in Information

Technology, ICRTIT 2011 IEEE MIT, Anna

University, Chennai. June 3-5, 2011

10) Kjetil Nørvag, Olav Sandsta, and Kjell

Bratbergsengen,” Concurrency Control in

Distributed Object-Oriented Database Systems”

Advances in Databases and Information

Systems, 1997

11) David J. DeWitt, Jim Gray,” Parallel

Database Systems: The Future of High

Performance Database Processing” Appeared in

Communications of the ACM, Vol. 36, No. 6,

June 1992.

12) Arun Kumar Yadav, Dr. Ajay Agarwal,” A

Distributed Architecture for Transactions

Synchronization in Distributed Database

Systems” Arun Kumar Yadav et. al. / (IJCSE)

International Journal on Computer Science and

Engineering Vol. 02, No. 06, 2010.

13) Ali Asghar Alesheikh” Design and

Implementation of a Moving Object Database

for Truck Information Systems” Department

of GIS, Faculty of Geomatics Eng., K.N. Toosi

University of Technology ValiAsr St., Vanak

Sq., Tehran, Iran , MME08 PN 32

14) Paul Hardy, Marc-Olivier Briat, Cory

Eicher, Thierry Kressmann,” DATABASE-

DRIVEN CARTOGRAPHY FROM A

DIGITAL LANDSCAPE MODEL, WITH

MULTIPLE REPRESENTATIONS AND

HUMAN OVERRIDES” ICA Generalisation

Workshop, Leicester, August 2004 – Paul

Hardy, ESRI.

15) S.BING YAO, ALAN R.HEVNER,”Analysis

of Database System Architectures Using

Benchmarks” IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. SE-

13, NO. 6, JUNE 1987

