
SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA, RAJEEV GANDHI

BAKKA, DEEPIKA RANI / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.891-896

891 | P a g e

 ENHANCED PROGRESSIVE PARAMETRIC APPROACH FOR

QUERY OPTIMIZATION

SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA,

RAJEEV GANDHI BAKKA, DEEPIKA RANI

Abstract—
To interact with Database industrial application depends on precompiled parameterized procedures. Unfortunately,

executing a procedure with a set of parameters different from those used at compilation time may be arbitrarily

suboptimal. By identifying the optimal plans at each point of the parameter space at the time of compilation by using

parametric query optimization the above mentioned issue can be solved .Parametric Query Optimization is likely not

cost-effective if the executed with values only within a subset of the parameter space or if it is query is executed

infrequently . As an alternative to progressively exploring the parameter space and building a parametric plan during

several executions of the same query , we are going to propose an algorithm as parametric parametric plans are

populated, are able to frequently bypass the optimizer but still execute optimal or near-optimal plans.

Introduction
Query optimization is a function of many relational

database management systems in which multiple query

plans for satisfying a query are examined and query

plan is identified. This may or not be the absolute best

strategy because there are many ways of doing plans.

There is a tradeoff between the amount of time spent

figuring out the best plan and the amount for running

the plan. Different qualities of database management

systems have different ways of balancing these two.

Cost based query optimizers evaluate the resource

footprint of various query plans and use this as the

basis for plan selection. In many applications, the

values of runtime parameters of the system, data, or

queries themselves are unknown when queries are

originally optimized. In these scenarios, there are

typically two trivial alternatives to deal with the

optimization and execution of such parameterized

queries. One approach, termed here as Optimize-

Always, is to call the optimizer and generate a new

execution plan every time a new instance of the query

is invoked. Another trivial approach, termed Optimize-

Once, is to optimize the query just once, with some set

of parameter values, and reuse the resulting physical

plan for any subsequent set of parameters. Both

approaches have clear disadvantages. Optimize-

Always requires an optimization call for each

execution of a query instance. These optimization calls

may be a significant part of the total query execution

time, especially for simple queries. In addition,

Optimize-Always may limit the number of concurrent

queries in the system, as the optimization process itself

may consume too much memory. On the other hand,

Optimize-Once returns a single plan that is used for all

points in the parameter space. The chosen plan may be

arbitrarily suboptimal for parameter values different

from those for which the query was originally

optimized.

Typically the resources which are costed are

CPU path length, amount of disk buffer space, disk

storage service time, and interconnect usage between

units of parallelism. The set of query plans examined

is formed by examining possible access paths (e.g.,

primary index access, secondary index access, full file

scan) and various relational table join techniques (e.g.,

merge join, hash join, product join). The search space

can become quite large depending on the complexity

of the SQL query. There are two types of optimization.

These consist of logical optimization which generates

a sequence of relational algebra to solve the query. In

addition there is physical optimization which is used to

determine the means of carrying out each operation.

The goal is to eliminate as many unneeded tuples, or

rows as possible. The following is a look at relational

algebra as it eliminates unneeded tuples.

The project operator is straightforward to

implement if <attribute list> contains a key to relation

R. If it does not include a key of R, it must be

eliminated. This must be done by sorting (see sort

methods below) and eliminating duplicates. This

method can also use hashing to eliminate duplicates

Hash table.

Given a query and its parameter values, a

traditional optimizer returns the optimal execution

plan along with its estimated cost. In contrast, a

PPQO-enabled optimizer introduces a data structure

called PP, which incrementally maintains plans and

optimality regions, allowing us to reuse work across

optimizations. As the PP data structure becomes

populated, it is possible to completely bypass the

optimization process without hurting the quality of the

resulting execution plans. When a new instance of a

parametric query arrives, PPQO tries to obtain an

optimal (or near-optimal) plan by consulting the PP

data structure. If it is successful, it returns such plan,

and a full optimization call is avoided. Otherwise, it

makes an optimization call, and both the resulting

optimal plan and cost are added to the PP for future

use. Due to the size of the parameter space, PPs should

SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA, RAJEEV GANDHI

BAKKA, DEEPIKA RANI / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.891-896

892 | P a g e

not be implemented as exact lookup caches of plans

because there would be too many “cache misses.”

Also, due to the nonlinear and discontinuous nature of

cost functions, PPs should not be implemented as

nearest neighbor lookup structures as there will be no

guarantee that the optimal plan of the nearest neighbor

is optimal or close to optimal for the point in the

parameter space.

Previous Work
Before PPQO, processing parameterized queries was

an all or nothing approach: either the optimizer

explores all the parameter space and computes the full

PQO solution (traditional PQO) or it relies on luck and

uses the very first plan it gets for a query. PPQO is

able to progressively construct information about the

parametric space and approximate optimality regions,

being able to bypass the optimizer up to 99 percent of

the times, while still returning plans within 5 percent

of the cost-optimal plan for 99 percent of the cases.

Previous 3 techniques used are:

1. Adaptive Query Processing

2. Plan Reduction or Plan Diagram

3. Compilation Queries

1. Adaptive Query Processing

It has been applied log running continuous

query over data streams.There is no unifying

comparison from one time bound another time

bound.It can contains Large Body inter-related work

communication process.It can provides the outdated

statics representation.Some of the deisadvantages of

using this kind of query processing are: It can provides

some of the optimization errors.It can contains large

data sets for executing the query processing

environment.There is no prediction technique

implementation.There is no environment change

processing.

2. Plan Reduction Or Plan Diagram
It can contains more number of execution plans.Which

execution plan can cover total space no one can

identify.It can contains different types of

patterns.Which pattern is the best scalability pattern no

one can identified exactly. Some of the deisadvantages

of using this kind of query processing are:It can

contains redundancy patterns.It can contains more

search space specification process.It can be identified

as a NP hard problem.There is no fast estimators.

3. Compilation Queries

It can working based on query solution specification.

Each and every query plan can takes how much

execution time now can identify exactly. Which Query

complier is the optimization query complier no one

can identified specifically. Which path is best path no

one can defined efficiently. Some of the disadvantages

of using this kind of query processing are: Every

Region maintains many number of query plans

specification process. Some compilation of queries can

takes more computation time specification process. It

can contains optimal set solutions.

ARCHITECTURE OF QUERY PROCESSING

The main idea of PPQO is to incrementally solve (or

approximate) the solution to the PQO problem as

successive query execution calls are submitted to the

DBMS. Fig. 1 shows a high-level architecture of our

approach.

Fig.1: Processing a Query

Given a query and its parameter values, a traditional

optimizer returns the optimal execution plan along

with its estimated cost ((1) and (2) in the figure). In

contrast, a PPQO-enabled optimizer introduces a data

structure called PP, which incrementally maintains

plans and optimality regions, allowing us to reuse

work across optimizations. As the PP data structure

becomes populated, it is possible to completely bypass

the optimization process without hurting the quality of

the resulting execution plans. When a new instance of

a parametric query arrives ((3) in Fig. 1), PPQO tries

to obtain an optimal (or near-optimal) plan by

consulting the PP data structure. If it is successful, it

returns such plan, and a full optimization call is

avoided ((4) in Fig. 1). Otherwise, it makes an

optimization call ((5) in Fig. 1), and both the resulting

optimal plan and cost are added to the PP for future

use ((6) in Fig. 1).

Due to the size of the parameter space, PPs

should not be implemented as exact lookup caches of

plans because there would be too many “cache

misses.” Also, due to the nonlinear and discontinuous

nature of cost functions, PPs should not be

implemented as nearest neighbour lookup structures as

there will be no guarantee that the optimal plan of the

SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA, RAJEEV GANDHI

BAKKA, DEEPIKA RANI / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.891-896

893 | P a g e

nearest neighbour is optimal or close to optimal for the

point in the parameter space being considered.

A parametric query Q is a text representation

of a relational query with placeholders for m

parameters vpt = (v1….vm). Vector vpt is called a

Value Point. Examples of parameter values are system

parameters (e.g., available memory) and query-

dependant parameters (e.g., constants in parametric

predicates). Using vpt directly to model the parameter

space and characterize regions of optimality for plans

is in general difficult To address this problem, a

transformation function Ω is used, which is optimizer

specific and transforms Value Points into Cost Points.

A Cost Point is a vector cpt = (c1…..cn), where each

ci is a cost parameter with an ordered domain. A well

known implementation of Ω is transforming

parametric predicate values into the corresponding

predicate selectivities.

For instance, consider predicate age < X,

with parameter X. Function Ω would then map a

specific constant c for X into the selectivity of the

nonparametric predicate age < c. Let p be some

execution plan that evaluates query Q for a given vpt.

The cost function of p, denoted p(cpt), takes a Cost

Point cpt as an input and returns the cost of evaluating

plan p under cpt. For every legal value of the

parameters, there is some plan that is optimal. Given a

parametric query Q, the maximum parametric set of

plans (MPSP) is the set of plans, each of which is

optimal for some point in the n-dimensional cost-based

parameter space. The region of optimality for plan p,

denoted r(p), is defined as

r(p)={(t1……..tn) | p is optimal at (c1 = t1; . . . ; cn =

tn)}

Finally, a parametric optimal set of plans

(POSP) is a minimal subset of MPSP that includes at

least one optimal plan for each point in the parameter

space. Cost parameters are estimated during query

optimization from value parameters and from

information in the database catalog. Physical

characteristics that affect the cost of plans do not

depend on query parameters, such as the average tuple

size or the cost of a random I/O, are considered

physical constants instead of cost parameters. A

crucial cost parameter that is used during optimization

is the estimated number of tuples in (intermediate)

relations processed by the query plan: most query

plans have cost formulas that are monotonic in the

number of tuples processed by the query.

Implementation
The current application is implemented on an

Insurance management System. In that system for each

and every query execution, these optimization

techniques are called and the queries are implemented.

The functional requirements which we are going to

propose in this paper are as follows:

1. The Query cost should be minimal.

2. The Query has to consume minimum

recourses like CPU cycles, memory etc.

3. The Optimizer has to be implemented for

query optimization.

4. Query Optimization should be done with

PPQO.

The proposed Modules in this paper are:

 Parametric Query Representation

 Parameter Transformation Function

 Parametric Plan Interface

 Bounded PPQO implementation

 Efficient implementation of get plan

Parametric Query Representation
A parametric query Q is a text representation of a

relational query with placeholders for m parameters

vpt =(v1; . . . ; vm).

 Vector vpt is called a Value Point. Examples of

parameter values are system parameters (e.g., available

memory) and query-dependant parameters (e.g.,

constants in parametric predicates). We focus on

query-dependant parameters since they cover the most

common scenarios.

Parameter Transformation Function
Recall that a value parameter refers to an input value

of the parametric SQL query to execute. On the other

hand, a cost parameter is an input parameter in the

formulas used by the optimizer to estimate the cost of

a query plan. Cost parameters are estimated during

query optimization from value parameters and from

information in the database catalog.

Parametric Plan Interface
We component of PPQO by describing its two main

operations:

Add Plan Q; cpt; p; cÞ. This operation registers that

plan p, with estimated cost c, is optimal for query Q at

Cost Point cpt.

Get Plan Q; cptÞ. This operation returns the plan that

should be used for query Q and cost values cpt or

returns null if no plan is considered good enough for

Q. Now give an operational description of the PP

Fig : Optimize always implementation

SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA, RAJEEV GANDHI

BAKKA, DEEPIKA RANI / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.891-896

894 | P a g e

Fig : Optimize once implementation

Bounded PPQO implementation
 The intuition for the Bounded-PPQO

implementation is given as follows: Consider a

parametric query with two parameters. If plans pi and

pj are optimal in some Cost Points cpti and cptj, which

delimit a box.

Fig : Bounded’s addplan Implementation

Fig : Bounded’s Getplan implementation

Efficient implementation of get plan
The naive implementation of get Plan in enumerates

all pairs of tuples, that were introduced by add Plan

and tests if any pair bounds cpt. If some pair (ti; tj)

bounds cpt, then plan pj can be returned as the answer

to get Plan.

 The complexity of this procedure is clearly

quadratic in the size of TQ. To avoid the enumeration

of all of pairs of triples that have to be checked, we

apply an optimization that allows us to choose a single

pair of triples (t1; t2) to be checked.

Fig : Effecient Getplan Implementation

RESULTS

Fig : Login Page of PPQO

SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA, RAJEEV GANDHI

BAKKA, DEEPIKA RANI / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.891-896

895 | P a g e

Fig : TO View all customer information

Fig : To retrieve optimizer data

Fig : user’s optimization data

Conclusion
PPQO is also amenable to be implemented in a

complex commercial database system as it requires no

changes in the optimization or execution processes. In

fact, PPQO prototype ran outside the DBMS server.

However, it is important to note that the function can

be implemented by simply manipulating in memory

histograms, which is a negligible fraction of

optimization time and would not have resulted in any

noticeable difference in our experimental evaluation.

PPQO was evaluated in a variety of settings, with

queries joining up to eight tables, with multiple sub

queries, up to four parameters, and in plan spaces with

close to 400 different optimal plans.

References
[1] S. Ganguly, “Design and Analysis of Parametric

Query Optimization Algorithms,” Proc. 24th Int’l

Conf. Very Large Data Bases (VLDB), 1998.

[2] A. Ghosh, J. Parikh, V.S. Sengar, and J.R. Haritsa,

“Plan Selection Based on Query Clustering,” Proc.

28th Int’l Conf. Very Large Data Bases (VLDB),

2002.

[3] G. Graefe and K. Ward, “Dynamic Query Evaluation

Plans,” Proc. ACM SIGMOD, 1989.

[4] A. Hulgeri and S. Sudarshan, “Parametric Query

Optimization for Linear and Piecewise Linear Cost

Functions,” Proc. 28th Int’l Conf.Very Large Data

Bases (VLDB),2002.

[5] A. Hulgeri and S. Sudarshan, “AniPQO: Almost

Non-Intrusive Parametric Query Optimization for

Nonlinear Cost Functions,” Proc. 28th Int’l Conf.

Very Large Data Bases (VLDB), 2003.

[6] Y.E. Ioannidis, R.T. Ng, K. Shim, and T.K. Sellis,

“Parametric Query Optimization,” Proc. 18th Int’l

Conf. Very Large Data Bases (VLDB), 1992.

[7] Microsoft Corp., “Plan Forcing Scenario: Create a

Plan Guide That Uses a USE PLAN Query Hint,”

SQL Server 2005 Books Online, 2005.

[8] V.G.V. Prasad, “Parametric Query Optimization: A

Geometric Approach,” MSc thesis, IIT, Kampur,

1999.

[9] S.V.U. Maheswara Rao, “Parametric Query

Optimization: A Non-Geometric Approach,”

master’s thesis, IIT, Kampur, 1999.

[10] N. Reddy and J.R. Haritsa, “Analyzing Plan

Diagrams of Database Query Optimizers,” Proc. 31st

Int’l Conf. Very Large Data Bases(VLDB), 2005.

AUTHORS LIST:

SWATHI SAMBANGI received her

Bachelor’s Degree in Information Technology in

GMR Institute of Technology Affiliated to JNTU

Kakinada and pursuing Masters of Technology in

Software Engineering in Gokul Institute of

Technology and Sciences affiliated to JNTU

Kakinada. She is presently working as Assistant

SWATHI SAMBANGI, NAGARAM PHANI KUMAR, KIRAN KATTA, RAJEEV GANDHI

BAKKA, DEEPIKA RANI / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2,Mar-Apr 2012, pp.891-896

896 | P a g e

Professor in Vishaka Institute of Engineering and

Technology, Visakhapatnam. She is a reviewer of

IJCSIS Journal and her research areas of interest are

Software Engineering, Computer Networks and Data

Mining.

NAGARAM PHANI KUMAR received

B.E (C.S.E) from JNTU-Kakinada, M.Tech (IT) from

Vignan University. Presently he is working as Asst

Professor at RAJA MAHENDRA COLLEGE OF

ENGINEERING, IBRAHIMPATNAM, RANGA

REDDY DIST. Andhra Pradesh, India. He is having 6

months of teaching experience in the field of

Computer Science & Engineering.

KIRAN KATTA received B.E (C.S.E)

from Acharya Nagarjuna University, M.Tech (CSE)

from JNTU-Kakinada. Presently he is working as Asst

Professor at RAJA MAHENDRA COLLEGE OF

ENGINEERING, IBRAHIMPATNAM, RANGA

REDDY DIST. Andhra Pradesh, India. He is having

5+ years of teaching experience in the field of

Computer Science & Engineering.

RAJEEV GANDHI BAKKA received

B.E (C.S.E) from Acharya Nagarjuna University,

M.Tech (CSE) from Acharya Nagarjuna University.

Presently he is working as Asst Professor at MALLA

REDDY GROUP OF INSTITUTIONS (CM

ENGINEERING COLLEGE), DHULAPULLY,

RANGA REDDY DIST. Andhra Pradesh, India. He is

having 5+ years of teaching experience in the field of

Computer Science & Engineering.

 DEEPIKA RANI KAMPALLY

received Bachelor’s degree in Computer science and

Engineering from JNTUH, Pursuing M.Tech in

Computer Science and Engineering from JNTUH. She

is a research scholar in field of Information Security.

She is having an experience of 3.8 Years in the field of

Computer Science and Engineering, presently working

as Assistant Professor in the department of CSE.

