
M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

875 | P a g e

Implementation of SPI Communication Protocol for Multipurpose

Applications with I2C Power and Area Reduction

M.Jyothi
#1

, L.Ravi Chandra
#2

, M.Sahithi
#3

,S.Daya Sagar

Chowdary
#4

,K.Rajasekhar
#5

,K.Purnima
#6

#1

M.Jyothi, M.Tech student, Department of ECE, K L University, Vijayawada, INDIA
#2, 3, 4, 5,6

Department of ECE, K L University, Vijayawada, INDIA
*
L. Ravi Chandra Department of ECE, KL University, Vijayawada, INDIA

Abstract—The main objective of this paper is to

implement the SPI communication used for the Fully

Configurable Freely Scalable Digital Audio System. First

we used Philipses 12C (Inter IC Communication), but it

was too slow, and the number of the connected devices was

limited. The speed of the communication between ICs is

much faster than for the Full Duplex proper of the SPI

communication. We use SPI protocol because it is

frequently used when few I/O lines are available, but

communication between two or more devices must be fast

and easy to implement. Here we mainly focus on the

advantages of SPI protocol when compared with I2C

protocol which are mainly used for communication

purpose.

Key words— I2C, SPI.

I. INTRODUCTION
Today at the low end of the communication protocols we

find two world wide protocols: I2C, SPI both protocols are

well suited for communications between integrated circuits for

low/medium data transfer speed with on-board peripherals.

The two protocols coexist in modern digital electronic systems,

and they probably will continue to complete in the future, as

they both I2C and SPI are actually quite complimentary for

this kind of communication. SPI plays virtual role in way of

communications.

II.INTER INTIGRATED CIRCUIT (I2C)
I²C (Inter-Integrated Circuit; generically referred to as "two-

wire interface") is a multi-master serial single-ended computer

bus invented by Philips that is used to attach low-speed

peripherals to a motherboard, embedded system, or cellphone

or other electronics. I2C is a two-wire, bi-directional serial

bus that provides a simple and efficient method of data

exchange between devices. It is most suitable for applications

requiring occasional communication over a short distance

between many devices. The I2C standard is a true multi-

master bus including collision detection and arbitration that

prevents data corruption if two or more masters attempt to

control the bus simultaneously.

A. Design

I²C uses only two bidirectional open-drain lines, Serial Data

Line (SDA) and Serial Clock (SCL), pulled up with resistors.

Typical voltages used are +5 V or +3.3 V although systems

with other voltages are permitted. The I²C reference design

has a 7-bit address space with 16 reserved addresses, so a

maximum of 112 nodes can communicate on the same bus.

Common I²C bus speeds are the 100 Kbit/s standard mode and

the 10 Kbit/s low-speed mode, but arbitrarily low clock

frequencies are also allowed. Recent revisions of I²C can host

more nodes and run at faster speeds (400 Kbit/s Fast mode, 1

Mbit/s Fast mode plus or Fm+, and 3.4 Mbit/s High Speed

mode). These speeds are more widely used on embedded

systems than on PCs. There are also other features, such as

16-bit addressing.

Note that the bit rates quoted are for the transactions between

master and slave without clock stretching or other hardware

overhead. Protocol overheads include a slave address and

perhaps a register address within the slave device as well as

per-byte ACK/NACK bits. So the actual transfer rate of user

data is lower than those peak bit rates alone would imply.

Fig: 1. I2C has two lines in total

The reference design, as mentioned above, is a bus with a

clock (SCL) and data (SDA) lines with 7-bit addressing. The

bus has two roles for nodes: master and slave:

 Master node — node that issues the clock and

addresses slaves

 Slave node — node that receives the clock line and

address.

The bus is a multi-master bus which means any number of

master nodes can be present. Additionally, master and slave

http://en.wikipedia.org/wiki/Multi-master_bus
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Single-ended_signalling
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Philips
http://en.wikipedia.org/wiki/Motherboard
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Cellphone
http://en.wikipedia.org/wiki/Open_drain
http://en.wikipedia.org/wiki/Pull-up_resistor
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Reference_design
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Kbit/s
http://en.wikipedia.org/wiki/Mbit/s
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Multi-master_bus

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

876 | P a g e

roles may be changed between messages (after a STOP is

sent). There are four potential modes of operation for a given

bus device, although most devices only use a single role and

its two modes:

 master transmit — master node is sending data to a

slave

 master receive — master node is receiving data from

a slave

 slave transmit — slave node is sending data to the

master

 slave receive — slave node is receiving data from the

master

The master is initially in master transmit mode by sending a

start bit followed by the 7-bit address of the slave it wishes to

communicate with, which is finally followed by a single bit

representing whether it wishes to write(0) to or read(1) from

the slave. If the slave exists on the bus then it will respond

with an ACK bit (active low for acknowledged) for that

address. The master then continues in either transmit or

receive mode (according to the read/write bit it sent), and the

slave continues in its complementary mode (receive or

transmit, respectively). The address and the data bytes are sent

most significant bit first. The start bit is indicated by a high-

to-low transition of SDA with SCL high; the stop bit is

indicated by a low-to-high transition of SDA with SCL high.

If the master wishes to write to the slave then it repeatedly

sends a byte with the slave sending an ACK bit. (In this

situation, the master is in master transmit mode and the slave

is in slave receive mode.) If the master wishes to read from

the slave then it repeatedly receives a byte from the slave, the

master sending an ACK bit after every byte but the last one.

(In this situation, the master is in master receive mode and the

slave is in slave transmit mode.) The master then ends

transmission with a stop bit, or it may send another START

bit if it wishes to retain control of the bus for another transfer

(a "combined message").

B. Message protocols

 I²C defines three basic types of messages, each of which

begins with a START and ends with a STOP:

 Single message where a master writes data to a slave;

 Single message where a master reads data from a

slave;

 Combined messages, where a master issues at least

two reads and/or writes to one or more slaves.

In a combined message, each read or write begins with a

START and the slave address. After the first START, these

are also called repeated START bits; repeated START bits are

not preceded by STOP bits, which is how slaves know the

next transfer is part of the same message. Any given slave will

only respond to particular messages, as defined by its product

documentation. Pure I²C systems support arbitrary message

structures. SMBus is restricted to nine of those structures,

such as read word N and write word N, involving a single

slave. PMBus extends SMBus with a Group protocol,

allowing multiple such SMBus transactions to be sent in one

combined message. The terminating STOP indicates when

those grouped actions should take effect. For example, one

PMBus operation might reconfigure three power supplies

(using three different I2C slave addresses), and their new

configurations would take effect at the same time: when they

receive that STOP. With only a few exceptions, neither I²C

nor SMBus define message semantics, such as the meaning of

data bytes in messages. Message semantics are otherwise

product-specific. Those exceptions include messages

addressed to the I²C general call address (0x00) or to the

SMBus Alert Response Address; and messages involved in

the SMBus Address Resolution Protocol (ARP) for dynamic

address allocation and management. In practice, most slaves

adopt request/response control models, where one or more

bytes following a write command are treated as a command or

address. Those bytes determine how subsequent written bytes

are treated and/or how the slave responds on subsequent reads.

Most SMBus operations involve single byte commands.

C. I2C Protocol

 The I2C bus physically consists of 2 active wires and a

ground connection. The active wires, called SDA and SCL,

are both bidirectional. SDA is the Serial Data line, and SCL is

the Serial Clock line. Every device hooked up to the bus has

its own unique address, no matter whether it is an MCU, LCD

driver, memory, or ASIC. Each of these chips can act as a

receiver and/or transmitter, depending on the functionality.

Obviously, an LCD driver is only a receiver, while a memory

or I/O chip can be both transmitter and receiver. The I2C bus

is a multi-master bus. This means that more than one IC

capable of initiating a data transfer can be connected to it. The

I2C protocol specification states that the IC that initiates a

data transfer on the bus is considered the Bus Master, which

generally is a microcontroller. Consequently, at that time, all

the other ICs are regarded to be Bus Slaves. First, the MCU

will issue a START condition. This acts as an 'Attention'

signal to all of the connected devices. All ICs on the bus will

listen to the bus for incoming data. Then the MCU sends the

ADDRESS of the device it wants to access, along with an

indication whether the access is a Read or Write operation

(Write in our example). Having received the address, all IC's

will compare it with their own address. If it doesn't match,

they simply wait until the bus is released by the stop condition

(see below). If the address matches, however, the chip will

produce a response called the ACKNOWLEDGEMENT

signal. Once the MCU receives the acknowledgement, it can

start transmitting or receiving DATA. In our case, the MCU

will transmit data. When all is done, the MCU will issue the

STOP condition. This is a signal that the bus has been released

http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
http://en.wikipedia.org/wiki/Start_bit
http://en.wikipedia.org/wiki/Acknowledgement_%28data_networks%29
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Stop_bit
http://en.wikipedia.org/wiki/SMBus
http://en.wikipedia.org/wiki/PMBus

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

877 | P a g e

and that the connected ICs may expect another transmission to

start any moment.

Fig: 2. I2C Communication

D. I2C Configuration

i. The Start and Stop Configuration

Fig: 3. Start and stop with SDA and SCL

� A single message can contain multiple Start conditions. The

use of this so-called "repeated start" is common in I2C.

� A Stop condition ALWAYS denotes the END of a

transmission. Even if it is issued in the middle of a transaction

or in the middle of a byte. It is "good behaviour" for a chip

that, in this case, it disregards the information sent and

resumes the "listening state", waiting for a new start

condition.

ii. Transmitting a byte to a slave

Once the START condition has been sent, a byte can be

transmitted by the MASTER to the SLAVE. This first byte

after a start condition will identify the slave on the bus

(address) and will select the mode of operation. The meaning

of all following bytes depends on the slave.

Fig: 4.SDA and SCL timing diagram

iii. Receiving a byte from a slave

Once the slave has been addressed and the slave has

acknowledged this, a byte can be received from the slave if

the R/W bit in the address was set to READ (set to '1'). The

protocol syntax is the same as in transmitting a byte to a slave,

except that now the master is not allowed to touch the SDA

line. Prior to sending the 8 clock pulses needed to clock in a

byte on the SCL line, the master releases the SDA line. The

slave will now take control of this line. The line will then go

high if it wants to transmit a '1' or, if the slave wants to send a

'0', remain low.

Fig: 5. Rising and falling edge of the SDA and SCL

In total, this sequence has to be performed 8 times to

complete the data byte. Bytes are always transmitted MSB

first.

Fig: 6.Read operation of SDA and SCL

The meaning of all bytes being read depends on the slave.

There is no such thing as a "universal status register". You

need to consult the data sheet of the slave being addressed to

know the meaning of each bit in any byte transmitted.

iv. Getting Acknowledgement from a Slave

When an address or data byte has been transmitted onto the

bus, then this must be ACKNOWLEDGED by the slave(s). In

case of an address: If the address matches its own, then only

that slave will respond to the address with an ACK. In case of

a byte transmitted to an already addressed slave, then that

slave will respond with an ACK as well. The slave that is

going to give an ACK pulls the SDA line low immediately

after reception of the 8th bit transmitted, or, in case of an

address byte, immediately after evaluation of its address. In

practical applications this will not be noticeable. This means

that as soon as the master pulls SCL low to complete the

transmission of the bit (1), SDA will be pulled low by the

slave (2). The master now issues a clock pulse on the SCL line

(3). The slave will release the SDA line upon completion of

this clock pulse (4).

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

878 | P a g e

Fig: 7. Clock polarities with SDA and SCL

II.SPI Communication

The Serial Peripheral Interface Bus or SPI bus is a

synchronous serial data link standard named by Motorola that

operates in full duplex mode. Devices communicate in

master/slave mode where the master device initiates the data

frame. Multiple slave devices are allowed with individual

slave select (chip select) lines. Sometimes SPI is called a

"four-wire" serial bus, contrasting with three-, two-, and one-

wire serial buses. SPI is a general-purpose synchronous serial

interface. During an SPI transfer, transmit and receive data is

simultaneously shifted out and in serially. A serial clock line

synchronizes the shifting and sampling of the information on

two serial data lines. Motorola created the SPI port in the mid

1980’s to use in their microcontroller product families. The

SPI is mainly used to allow a microcontroller to communicate

with peripheral devices such as E2PROMs. SPI devices

communicate using a master-slave relationship. Due to its lack

of built-in device addressing, SPI requires more effort and

more hardware resources than I2C when more than one slave

is involved. But SPI tends to be simpler and more efficient

than I2C in point-to-point (single master, single slave)

applications for the very same reason; the lack of device

addressing means less overhead.

 SPI is a serial bus standard established by Motorola and

supported in silicon products from various manufacturers. SPI

interfaces are available on popular communication processors

and microcontrollers. It is a synchronous serial data link that

operates in full duplex (signals carrying data go in both

directions simultaneously). Devices communicate using a

master/slave relationship, in which the master initiates the

data frame. When the master generates a clock and selects a

slave device, data may be transferred in either or both

directions simultaneously. In fact, as far as SPI is concerned,

data are always transferred in both directions. It is up to the

master and slave devices to know whether a received byte is

meaningful or not. So a device must discard the received byte

in a "transmit only" frame or generate a dummy byte for a

"receive only" frame. SPI specifies four signals: clock

(SCK1); master data output, slave data input (SI1); master

data input, slave data output (SO1); and chip select (CS).

Figure 1 shows these signals in a single-slave configuration.

SCK1 is generated by the master and input to all slaves. SI1

carries data from master to slave. SO1 carries data from slave

back to master. A slave device is selected when the master

asserts its CS signal.

Fig: 8. Single master, single slave SPI implementation

Four logic signals are necessary to connect 2 or more

devices with SPI:

- SCLK- Serial Clock (output from master)

- MOSI / SIMO - Master Out Slave In (output from master).

- MISO / SOMI - Master In Slave Out (output from slave)

- SS - Slave Select (active low, output from master). The SPI

bus can operate with a single master device and with one or

more slave devices. If a single slave device is used, the SS pin

may be fixed to logic low if the slave permits it. Some slaves

require the falling edge (high to low transition) of the chip

select to initiate an action such as the Maxim MAX1242 ADC,

which starts conversion on said transition. With multiple slave

devices, an independent SS signal is required from the master

for each slave device. Most slave devices have tri-state

outputs so their MISO signal becomes high impedance

("disconnected") when the device is not selected. Devices

without tri-state outputs can't share SPI bus segments with

other devices; only one such slave could talk to the master,

and only its chip select could be activated.

Fig. 9. Single master, multiple slave SPI implementations

Form the above diagram, we can justify that, data can be

passed from one master to multiple slaves depends on

activation of slave selection signal. Full duplex

communication is in existence till now. The master generates

slave select signals using general-purpose discrete

input/output pins or other logic. This consists of old-fashioned

http://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Motorola
http://en.wikipedia.org/wiki/Full_duplex
http://en.wikipedia.org/wiki/Master-slave_%28technology%29
http://en.wikipedia.org/wiki/Data_frame
http://en.wikipedia.org/wiki/Data_frame
http://en.wikipedia.org/wiki/Data_frame
http://en.wikipedia.org/wiki/Slave_select
http://en.wikipedia.org/wiki/Chip_select
file:///E:\project\spi\spi%20doc\Serial_Peripheral_Interface_Bus.htm%233-wire_serial_buses
http://en.wikipedia.org/wiki/I2C
http://en.wikipedia.org/wiki/1-Wire
http://en.wikipedia.org/wiki/1-Wire
http://en.wikipedia.org/wiki/Logic_level
http://en.wikipedia.org/wiki/Falling_edge
http://en.wikipedia.org/wiki/Maxim_Integrated_Products
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Tri-state_output
http://en.wikipedia.org/wiki/Tri-state_output
http://en.wikipedia.org/wiki/High_impedance

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

879 | P a g e

bit banging and can be pretty sensitive. You have to time it

relative to the other signals and ensure, for example, that you

don't toggle a select line in the middle of a frame. While SPI

doesn't describe a specific way to implement multi-master

systems, some SPI devices support additional signals that

make such implementations possible. However, it's

complicated and usually unnecessary, so it's not often done.

A pair of parameters called clock polarity (CPOL) and clock

phase (CPHA) determines the edges of the clock signal on

which the data are driven and sampled. Each of the two

parameters has two possible states, which allows for four

possible combinations, all of which are incompatible with one

another. So a master/slave pair must use the same parameter

pair values to communicate. If multiple slaves are used that

are fixed in different configurations, the master will have to

reconfigure itself each time it needs to communicate with a

different slave. SPI does not have an acknowledgement

mechanism to confirm receipt of data. In fact, without a

communication protocol, the SPI master has no knowledge of

whether a slave even exists. SPI also offers no flow control. If

you need hardware flow control, you might need to do

something outside of SPI. Slaves can be thought of as

input/output devices of the master. SPI does not specify a

particular higher-level protocol for master-slave dialog. In

some applications, a higher-level protocol is not needed and

only raw data are exchanged. An example of this is an

interface to a simple codec. In other applications, a higher-

level protocol, such as a command-response protocol, may be

necessary. Note that the master must initiate the frames for

both its command and the slave's response.

 If there is only one slave device then the SS pin on

the slave device can be fixed to logic low state. If there is 2 or

more slave devices in the system, then an independent SS

signal is required from the master device for each slave

device. When the master device wants to start a

communication it has to set the clocks, that is less than or

equal to the slave device's maximum frequency (most

commonly from 1 to a few MHz). SPI communication is a full

duplex communication, the master device sends a byte to the

desired slave device in the meantime it receives a byte from

the slave device. Transmissions may involve any number of

clock cycles. When there are no more data to be transmitted,

the master device stops toggling its clock. Normally, it then

deselects the slave device. Every slave device on the bus that

hasn't been activated using its Slave Select line must disregard

the input clock and MOSI signals, and may not drive MISO.

The master device selects only one slave at a time.

A. Data and Control Lines of the SPI

The SPI requires two control lines (CS and SCK) and two data

lines (SI and SO).

With CS (Chip-Select) the corresponding peripheral device is

selected. This pin is mostly active-low. In the unselected state

the SO lines are hi-Z and therefore inactive. The master

decides with which peripheral device it wants to

communicate. The clock line SCLK is brought to the device

whether it is selected or not. The clock serves as

synchronization of the data communication. The majority of

SPI devices provide these four lines. Sometimes it happens

that SDI and SDO are multiplexed, for example in the

temperature sensor LM74 from National Semiconductor or

that one of these lines is missing. A peripheral device which

must or cannot be configured, requires no input line, only a

data output. As soon as it gets selected it starts sending data.

In some ADCs therefore the SDI line is missing (e.g.

MCCP3001 from Microchip). There are also devices that have

no data output. For example LCD controllers (e.g. COP472-3

from National Semiconductor), which can be configured, but

cannot send data or status messages.

In addition to setting the clock frequency, the master must

also configure the clock polarity and phase with respect to the

data. Free scale’s SPI Block Guide names these two options as

CPOL and CPHA respectively, and most vendors have

adopted that convention.

The timing diagram is shown to the right. The timing is

further described below and applies to both the master and the

slave device.

-At CPOL=0 the base value of the clock is zero.

For CPHA=0, data are captured on the clock's rising edge

(low to high transition) and data are propagated on a falling

edge (high to low clock transition). For CPHA=1, data are

captured on the clock's falling edge and data are propagated

on a rising edge.

-At CPOL=1 the base value of the clock is one (inversion of

CPOL=0)

For CPHA=0, data are captured on clock's falling edge and

data are propagated on a rising edge. For CPHA=1, data are

captured on clock's rising edge and data are propagated on a

falling edge. That is, CPHA=0 means sample on the leading

(first) clock edge, while CPHA=1 means sample on the

trailing (second) clock edge, regardless of whether that clock

edge is rising or falling. Note that with CPHA=0, the data

must be stable for a half cycle before the first clock cycle. For

all CPOL and CPHA modes, the initial clock value must be

stable before the chip select line goes active. Also, note that

"data is read" in this document more typically means "data

may be read". The MOSI and MISO signals are usually stable

(at their reception points) for the half cycle until the next

clock transition. SPI master and slave devices may well

sample data at different points in that half cycle. This adds

more flexibility to the communication channel between the

master and slave.

http://en.wikipedia.org/wiki/Digital_timing_diagram
http://en.wikipedia.org/wiki/Rising_edge
http://en.wikipedia.org/wiki/Falling_edge
http://en.wikipedia.org/wiki/Falling_edge
http://en.wikipedia.org/wiki/Falling_edge

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

880 | P a g e

Fig.10. Clock dependencies from CPHA and CPOL

Table: 1.CPOL and CPHA setup table

Some devices even have minor variances from the

CPOL/CPHA modes described above. Sending data from

slave to master may use the opposite clock edge as master to

slave. Devices often require extra clock idle time before the

first clock or after the last one, or between a command and its

response. Some devices have two clocks, one to "capture" or

"display" data, and another to clock it into the device. Many of

these "capture clocks" run from the chip select line.

 Some devices require an additional flow control

signal from slave to master, indicating when data are ready.

This leads to a "five wire" protocol instead of the usual four.

Such a "ready" or "enable" signal is often active-low, and

needs to be enabled at key points such as after commands or

between words. Without such a signal, data transfer rates may

need to be slowed down significantly, or protocols may need

to have "dummy bytes" inserted, to accommodate the worst

case for the slave response time. Examples include initiating

an ADC conversion, addressing the right page of flash

memory, and processing enough of a command that device

firmware can load the first word of the response. (Many SPI

masters don't support that signal directly, and instead rely on

fixed delays.)

Many SPI chips only support messages that are multiples of 8

bits. Such chips cannot interoperate with the JTAG or SGPIO

protocols, or any other protocol that requires messages that are

not multiples of 8 bits.

B.SPI Configuration

Because there is no official specification, what exactly SPI is

and what not, it is necessary to consult the data sheets of the

Components one wants to use. Important are the permitted

clock frequencies and the type of valid transitions. There are

no general rules for transitions where data should be latched.

Although not specified by Motorola, in practice four modes

are used. These four modes are the combinations of CPOL

and CPHA. In table 2, the four modes are listed.

Table2: SPI Modes

If the phase of the clock is zero, i.e. CPHA = 0, data is latched

at the rising edge of the clock with CPOL = 0, and at the

falling edge of the clock with CPOL = 1. If CPHA = 1, the

polarities are reversed. CPOL = 0 means falling edge, CPOL

= 1 rising edge. The micro controllers from Motorola allow

the polarity and the phase of the clock to be adjusted. A

positive polarity results in latching data at the rising edge of

the clock. However data is put on the data line already at the

falling edge in order to stabilize. Most peripherals which can

only be slaves, work with this configuration. If it should

become necessary to use the other polarity, transitions are

reversed.

III.SPI vs. I2C

 Although both SPI and I2C provide good support for

communication with slow peripheral devices that are accessed

intermittently, each of the way of communication have its own

advantages towards each other. SPI is better suited than I2C

for applications that are naturally thought of as data streams

(as opposed to reading and writing addressed locations in a

slave device). An example of a "stream" application is data

communication between microprocessors or digital signal

processors. Another is data transfer from analog-to-digital

converters. SPI can also achieve significantly higher data rates

than I2C which is limited to 400KHz in most cases. SPI-

compatible interfaces often range into the tens of megahertz.

SPI really gains efficiency in applications that take advantage

of its duplex capability, such as the communication between a

http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/SGPIO

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

881 | P a g e

"codec" (coder-decoder) and a digital signal processor, which

consists of simultaneously sending samples in and out.

Due to SPI lack of built-in device addressing, it requires more

effort and more hardware resources than I2C when more than

one slave is involved. The disadvantage here lies that it is a

three-wire interface and if you are having more than 1 device,

then you have to provide each device with separate Chip

Select pins (CS). But SPI tends to be simpler and more

efficient than I2C in point-to-point (single master, single

slave) applications for the very same reason; the lack of

device addressing means less overhead. On the other hand,

I2C requires only two wires to implement and has a unique

address so that a master/slave relationship can be maintained

compare to SPI which needed three wires to implement the

addressing mode. I2C also offers better support for

communication with on-board devices that are accessed on an

occasional basis. I2C's competitive advantage over other low-

speed short-distance communication schemes is that its cost

and complexity don't scale up with the number of devices on

the bus because of the generic nature of the bus interface.

Besides, the complexity of the supporting I2C software

components can be significantly higher than that of several

competing schemes such as SPI in a very simple

configuration. With its built-in addressing scheme and

straightforward means to transfer strings of bytes, I2C is an

elegant, minimalist solution for modest, "inside the box"

communication needs. I2C is also a true multi-master bus

because it has collision detection and arbitration to prevent

data corruption if two or more masters simultaneously initiate

data transfer. Furthermore, I2C also preserve data integrity by

filtering rejects spikes on the bus data line.

IV.COMPARISON BETWEEN I2C AND SPI
We are compared the SPI and I2C protocols. Here the SPI

protocol is much faster than I2C. The area and power was

reduced compare to I2C protocol. XPower and Datasheet may

have some Quiescent Current differences. This is due to the

fact that the quiescent numbers in XPower are based on

measurements of real designs with active functional elements

reflecting real world design scenarios.

Power summary: I(mA) P(mW)

Total estimated power consumption: 48

Vccint 2.50V: 17 42

Vcco33 3.30V: 2 7

Clocks: 12 30

Inputs: 2 5

Logic: 0 0

Outputs:

Vcco33 0 0

Signals: 0 0

Quiescent Vccint 2.50V: 3 7

Quiescent Vcco33 3.30V: 2 7

Thermal summary:

Estimated junction temperature: 26C

Ambient temp: 25C

Case temp: 26C

Theta J-A range: 27 - 30C/W

Decoupling Network

Summary:

Cap Range

(uF)

Capacitor

Recommendations:

Total for Vccint 12

 470.0-1000.0 1

 0.470- 2.200 1

0.0470-

0.2200
2

0.0100-

0.0470
3

0.0010-

0.0047
5

 Invalid Program

Mode

Total for Vcco33 8

 470.0-1000.0 1

0.0470-

0.2200
1

0.0100-

0.0470
2

0.0010-

0.0047
4

I2C

XPower and Datasheet may have some Quiescent Current

differences. This is due to the fact that the quiescent numbers

in XPower are based on measurements of real designs with

active functional elements reflecting real world design

scenarios.

Power summary: I(mA) P(mW)

Total estimated power consumption: 68

Vccint 2.50V: 15 38

Vcco33 3.30V: 2 7

Inputs: 0 1

Logic: 11 27

Outputs:

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

882 | P a g e

Vcco33 0 0

Signals: 1 4

Quiescent Vccint 2.50V: 3 7

Quiescent Vcco33 3.30V: 2 7

Thermal summary:

Estimated junction temperature: 26C

Ambient temp: 25C

Case temp: 26C

Theta J-A range: 27 - 30C/W

Decoupling Network

Summary:

Cap Range

(uF)

Capacitor Recommendations:

Total for Vccint 12

 470.0-1000.0 1

 0.470- 2.200 1

 0.0470-0.2200 2

 0.0100-0.0470 3

 0.0010-0.0047 5

Total for Vcco33 8

 470.0-1000.0 1

 0.0470-0.2200 1

 0.0100-0.0470 2

 0.0010-0.0047 4

IV. SIMULATION RESULTS
The SPI and I2C communication described above is designed

using VHDL and simulated. The simulation results here

shown are about the SPI protocol and I2C protocol which is

designed with high speed, power and area reduction. The SPI

is much faster than the I2C protocol. The SPI is a full duplex

protocol and it has a high speed protocol compare to I2C.

Fig: 11. Simulation results of I2C

Fig.12. Simulation Results of SPI

 Here Fig 11 and 12 shows the results of SPI and I2C

communication protocol. Here compare the two protocols the

SPI is much faster compare to I2C. The two are having their

own importance in this design.

V.CONCLUSION

FINALLY IN THIS PAPER WE COMPARE SPI AND I2C

PROTOCOL .WE DESIGN HIGH SPEED, POWER AND AREA

REDUCTION. THE SPEED OF THE COMMUNICATION BETWEEN

ICS IS MUCH FASTER THAN FOR THE FULL DUPLEX PROPER OF

THE SPI COMMUNICATION. WE USE SPI PROTOCOL BECAUSE IT

M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883

883 | P a g e

IS FREQUENTLY USED WHEN FEW I/O LINES ARE AVAILABLE,

BUT COMMUNICATION BETWEEN TWO OR MORE DEVICES MUST

BE FAST AND EASY TO IMPLEMENT. HERE WE MAINLY FOCUS

ON THE ADVANTAGES OF SPI PROTOCOL WHEN COMPARED

WITH I2C PROTOCOL WHICH ARE MAINLY USED FOR

COMMUNICATION PURPOSE. FURTHERMORE THESE PROTOCOLS

CAN BE APPLICABLE FOR DIFFERENT APPLICATIONS LIKE SOC,

CPU AND DSP PROCESSORS.

VI.REFERENCES
[1] Motorola, "MC68HC II manual”.

[2] Texas Instruments, "MSP430xlxx family users guide”.

[3] Texas Instruments website, www.ti.com.

[4] Peter Kaszas, Akos Szekacs, Tibor Szakall.

[5] "Audio system controlling protocol (ASCP) with

AES3,” unpublished.

[6] Philips's website, www.philips.com.

[7] D.J. Wheeler, R. Needham, TEA, a Tiny

Encryption Algorithm, in the proceedings of FSE 1994,

Lecture Notes in Computer Science,

 Vol 1008, pp 363-366, Leuven, Belgium,

 December 1994, singer- verlag.

[8] M. Matsui, Linear Cryptanalysis Method for

DES Cipher, in the proceedings of Eurocrypt

1993, Lecture Notes in Computer Science, vol

765, pp 386-397, Lofthus, Norway,

May 1993, Springer-Verlag.

 [9] J. Daemen, V. Rijmen, the Design of Rijndael,

Springer-Verlag, 2001.

[10] FIPS 197, \Advanced Encryption Standard,"

 Federal Information Processing Stan- dard,

NIST, U.S. ept. of Commerce, November 26,

2001.

http://www.ti.com/

