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Abstract—The main objective of this paper is to 

implement the SPI communication used for the Fully 

Configurable Freely Scalable Digital Audio System. First 

we used Philipses 12C (Inter IC Communication), but it 

was too slow, and the number of the connected devices was 

limited. The speed of the communication between ICs is 

much faster than for the Full Duplex proper of the SPI 

communication. We use SPI protocol because it is 

frequently used when few I/O lines are available, but 

communication between two or more devices must be fast 

and easy to implement. Here we mainly focus on the 

advantages of SPI protocol when compared with I2C 

protocol which are mainly used for communication 

purpose. 
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I. INTRODUCTION 
Today at the low end of the communication protocols we 

find two world wide protocols: I2C, SPI both protocols are 

well suited for communications between integrated circuits for 

low/medium data transfer speed with on-board peripherals. 

The two protocols coexist in modern digital electronic systems, 

and they probably will continue to complete in the future, as 

they both I2C and SPI are actually quite complimentary for 

this kind of communication. SPI plays virtual role in way of 

communications.  

 

II.INTER INTIGRATED CIRCUIT (I2C) 
I²C (Inter-Integrated Circuit; generically referred to as "two-

wire interface") is a multi-master serial single-ended computer 

bus invented by Philips that is used to attach low-speed 

peripherals to a motherboard, embedded system, or cellphone 

or other electronics. I2C is a two-wire, bi-directional serial 

bus that provides a simple and efficient method of data 

exchange between devices. It is most suitable for applications 

requiring occasional communication over a short distance 

between many devices. The I2C standard is a true multi-

master bus including collision detection and arbitration that 

prevents data corruption if two or more masters attempt to 

control the bus simultaneously. 

 

 

A. Design 

I²C uses only two bidirectional open-drain lines, Serial Data 

Line (SDA) and Serial Clock (SCL), pulled up with resistors. 

Typical voltages used are +5 V or +3.3 V although systems 

with other voltages are permitted. The I²C reference design 

has a 7-bit address space with 16 reserved addresses, so a 

maximum of 112 nodes can communicate on the same bus. 

Common I²C bus speeds are the 100 Kbit/s standard mode and 

the 10 Kbit/s low-speed mode, but arbitrarily low clock 

frequencies are also allowed. Recent revisions of I²C can host 

more nodes and run at faster speeds (400 Kbit/s Fast mode, 1 

Mbit/s Fast mode plus or Fm+, and 3.4 Mbit/s High Speed 

mode). These speeds are more widely used on embedded 

systems than on PCs. There are also other features, such as 

16-bit addressing. 

Note that the bit rates quoted are for the transactions between 

master and slave without clock stretching or other hardware 

overhead. Protocol overheads include a slave address and 

perhaps a register address within the slave device as well as 

per-byte ACK/NACK bits. So the actual transfer rate of user 

data is lower than those peak bit rates alone would imply. 

 

Fig: 1. I2C has two lines in total 

The reference design, as mentioned above, is a bus with a 

clock (SCL) and data (SDA) lines with 7-bit addressing. The 

bus has two roles for nodes: master and slave: 

 Master node — node that issues the clock and 

addresses slaves 

 Slave node — node that receives the clock line and 

address. 

The bus is a multi-master bus which means any number of 

master nodes can be present. Additionally, master and slave 

http://en.wikipedia.org/wiki/Multi-master_bus
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Single-ended_signalling
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Philips
http://en.wikipedia.org/wiki/Motherboard
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Cellphone
http://en.wikipedia.org/wiki/Open_drain
http://en.wikipedia.org/wiki/Pull-up_resistor
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Reference_design
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Kbit/s
http://en.wikipedia.org/wiki/Mbit/s
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Multi-master_bus


M.Jyothi, L.Ravi Chandra, M.Sahithi, S.Daya Sagar Chowdary, K.Rajasekhar, K.Purnima / International 

Journal of Engineering Research and Applications (IJERA)    ISSN: 2248-9622    

www.ijera.com            Vol. 2, Issue 2, Mar-Apr 2012, pp.875-883 

876 | P a g e  

roles may be changed between messages (after a STOP is 

sent). There are four potential modes of operation for a given 

bus device, although most devices only use a single role and 

its two modes: 

 master transmit — master node is sending data to a 

slave 

 master receive — master node is receiving data from 

a slave 

 slave transmit — slave node is sending data to the 

master 

 slave receive — slave node is receiving data from the 

master 

The master is initially in master transmit mode by sending a 

start bit followed by the 7-bit address of the slave it wishes to 

communicate with, which is finally followed by a single bit 

representing whether it wishes to write(0) to or read(1) from 

the slave. If the slave exists on the bus then it will respond 

with an ACK bit (active low for acknowledged) for that 

address. The master then continues in either transmit or 

receive mode (according to the read/write bit it sent), and the 

slave continues in its complementary mode (receive or 

transmit, respectively). The address and the data bytes are sent 

most significant bit first. The start bit is indicated by a high-

to-low transition of SDA with SCL high; the stop bit is 

indicated by a low-to-high transition of SDA with SCL high. 

If the master wishes to write to the slave then it repeatedly 

sends a byte with the slave sending an ACK bit. (In this 

situation, the master is in master transmit mode and the slave 

is in slave receive mode.) If the master wishes to read from 

the slave then it repeatedly receives a byte from the slave, the 

master sending an ACK bit after every byte but the last one. 

(In this situation, the master is in master receive mode and the 

slave is in slave transmit mode.) The master then ends 

transmission with a stop bit, or it may send another START 

bit if it wishes to retain control of the bus for another transfer 

(a "combined message"). 

B. Message protocols 

      I²C defines three basic types of messages, each of which 

begins with a START and ends with a STOP: 

 Single message where a master writes data to a slave; 

 Single message where a master reads data from a 

slave; 

 Combined messages, where a master issues at least 

two reads and/or writes to one or more slaves. 

In a combined message, each read or write begins with a 

START and the slave address. After the first START, these 

are also called repeated START bits; repeated START bits are 

not preceded by STOP bits, which is how slaves know the 

next transfer is part of the same message. Any given slave will 

only respond to particular messages, as defined by its product 

documentation. Pure I²C systems support arbitrary message 

structures. SMBus is restricted to nine of those structures, 

such as read word N and write word N, involving a single 

slave. PMBus extends SMBus with a Group protocol, 

allowing multiple such SMBus transactions to be sent in one 

combined message. The terminating STOP indicates when 

those grouped actions should take effect. For example, one 

PMBus operation might reconfigure three power supplies 

(using three different I2C slave addresses), and their new 

configurations would take effect at the same time: when they 

receive that STOP. With only a few exceptions, neither I²C 

nor SMBus define message semantics, such as the meaning of 

data bytes in messages. Message semantics are otherwise 

product-specific. Those exceptions include messages 

addressed to the I²C general call address (0x00) or to the 

SMBus Alert Response Address; and messages involved in 

the SMBus Address Resolution Protocol (ARP) for dynamic 

address allocation and management. In practice, most slaves 

adopt request/response control models, where one or more 

bytes following a write command are treated as a command or 

address. Those bytes determine how subsequent written bytes 

are treated and/or how the slave responds on subsequent reads. 

Most SMBus operations involve single byte commands. 

C. I2C Protocol 

       The I2C bus physically consists of 2 active wires and a 

ground connection. The active wires, called SDA and SCL, 

are both bidirectional. SDA is the Serial Data line, and SCL is 

the Serial Clock line. Every device hooked up to the bus has 

its own unique address, no matter whether it is an MCU, LCD 

driver, memory, or ASIC. Each of these chips can act as a 

receiver and/or transmitter, depending on the functionality. 

Obviously, an LCD driver is only a receiver, while a memory 

or I/O chip can be both transmitter and receiver. The I2C bus 

is a multi-master bus. This means that more than one IC 

capable of initiating a data transfer can be connected to it. The 

I2C protocol specification states that the IC that initiates a 

data transfer on the bus is considered the Bus Master, which 

generally is a microcontroller. Consequently, at that time, all 

the other ICs are regarded to be Bus Slaves. First, the MCU 

will issue a START condition. This acts as an 'Attention' 

signal to all of the connected devices. All ICs on the bus will 

listen to the bus for incoming data. Then the MCU sends the 

ADDRESS of the device it wants to access, along with an 

indication whether the access is a Read or Write operation 

(Write in our example). Having received the address, all IC's 

will compare it with their own address. If it doesn't match, 

they simply wait until the bus is released by the stop condition 

(see below). If the address matches, however, the chip will 

produce a response called the ACKNOWLEDGEMENT 

signal. Once the MCU receives the acknowledgement, it can 

start transmitting or receiving DATA. In our case, the MCU 

will transmit data. When all is done, the MCU will issue the 

STOP condition. This is a signal that the bus has been released 
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and that the connected ICs may expect another transmission to 

start any moment. 

 

Fig: 2. I2C Communication 

D. I2C Configuration 

i. The Start and Stop Configuration 

 
Fig: 3. Start and stop with SDA and SCL 

 

� A single message can contain multiple Start conditions. The 

use of this so-called "repeated start" is common in I2C. 

� A Stop condition ALWAYS denotes the END of a 

transmission. Even if it is issued in the middle of a transaction 

or in the middle of a byte. It is "good behaviour" for a chip 

that, in this case, it disregards the information sent and 

resumes the "listening state", waiting for a new start 

condition. 

 

ii. Transmitting a byte to a slave 

Once the START condition has been sent, a byte can be 

transmitted by the MASTER to the SLAVE. This first byte 

after a start condition will identify the slave on the bus 

(address) and will select the mode of operation. The meaning 

of all following bytes depends on the slave. 

 

 
Fig: 4.SDA and SCL timing diagram 

 

iii. Receiving a byte from a slave 

Once the slave has been addressed and the slave has 

acknowledged this, a byte can be received from the slave if 

the R/W bit in the address was set to READ (set to '1'). The 

protocol syntax is the same as in transmitting a byte to a slave, 

except that now the master is not allowed to touch the SDA 

line. Prior to sending the 8 clock pulses needed to clock in a 

byte on the SCL line, the master releases the SDA line. The 

slave will now take control of this line. The line will then go 

high if it wants to transmit a '1' or, if the slave wants to send a 

'0', remain low. 

 
Fig: 5. Rising and falling edge of the SDA and SCL 

 

In total, this sequence has to be performed 8 times to 

complete the data byte. Bytes are always transmitted MSB 

first. 

 

 
Fig: 6.Read operation of SDA and SCL 

 

The meaning of all bytes being read depends on the slave. 

There is no such thing as a "universal status register". You 

need to consult the data sheet of the slave being addressed to 

know the meaning of each bit in any byte transmitted. 

 

iv. Getting Acknowledgement from a Slave 

When an address or data byte has been transmitted onto the 

bus, then this must be ACKNOWLEDGED by the slave(s). In 

case of an address: If the address matches its own, then only 

that slave will respond to the address with an ACK. In case of 

a byte transmitted to an already addressed slave, then that 

slave will respond with an ACK as well. The slave that is 

going to give an ACK pulls the SDA line low immediately 

after reception of the 8th bit transmitted, or, in case of an 

address byte, immediately after evaluation of its address. In 

practical applications this will not be noticeable. This means 

that as soon as the master pulls SCL low to complete the 

transmission of the bit (1), SDA will be pulled low by the 

slave (2). The master now issues a clock pulse on the SCL line 

(3). The slave will release the SDA line upon completion of 

this clock pulse (4). 
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Fig: 7. Clock polarities with SDA and SCL 

 

II.SPI Communication 

The Serial Peripheral Interface Bus or SPI bus is a 

synchronous serial data link standard named by Motorola that 

operates in full duplex mode. Devices communicate in 

master/slave mode where the master device initiates the data 

frame. Multiple slave devices are allowed with individual 

slave select (chip select) lines. Sometimes SPI is called a 

"four-wire" serial bus, contrasting with three-, two-, and one-

wire serial buses. SPI is a general-purpose synchronous serial 

interface. During an SPI transfer, transmit and receive data is 

simultaneously shifted out and in serially. A serial clock line 

synchronizes the shifting and sampling of the information on 

two serial data lines. Motorola created the SPI port in the mid 

1980’s to use in their microcontroller product families. The 

SPI is mainly used to allow a microcontroller to communicate 

with peripheral devices such as E2PROMs. SPI devices 

communicate using a master-slave relationship. Due to its lack 

of built-in device addressing, SPI requires more effort and 

more hardware resources than I2C when more than one slave 

is involved. But SPI tends to be simpler and more efficient 

than I2C in point-to-point (single master, single slave) 

applications for the very same reason; the lack of device 

addressing means less overhead. 

        SPI is a serial bus standard established by Motorola and 

supported in silicon products from various manufacturers. SPI 

interfaces are available on popular communication processors 

and microcontrollers. It is a synchronous serial data link that 

operates in full duplex (signals carrying data go in both 

directions simultaneously). Devices communicate using a 

master/slave relationship, in which the master initiates the 

data frame. When the master generates a clock and selects a 

slave device, data may be transferred in either or both 

directions simultaneously. In fact, as far as SPI is concerned, 

data are always transferred in both directions. It is up to the 

master and slave devices to know whether a received byte is 

meaningful or not. So a device must discard the received byte 

in a "transmit only" frame or generate a dummy byte for a 

"receive only" frame. SPI specifies four signals: clock 

(SCK1); master data output, slave data input (SI1); master 

data input, slave data output (SO1); and chip select (CS). 

Figure 1 shows these signals in a single-slave configuration. 

SCK1 is generated by the master and input to all slaves. SI1 

carries data from master to slave. SO1 carries data from slave 

back to master. A slave device is selected when the master 

asserts its CS signal. 

 
Fig: 8. Single master, single slave SPI implementation 

 

Four logic signals are necessary to connect 2 or more 

devices with SPI: 

- SCLK- Serial Clock (output from master) 

- MOSI / SIMO - Master Out Slave In (output from master). 

- MISO / SOMI - Master In Slave Out (output from slave) 

- SS - Slave Select (active low, output from master). The SPI 

bus can operate with a single master device and with one or 

more slave devices. If a single slave device is used, the SS pin 

may be fixed to logic low if the slave permits it. Some slaves 

require the falling edge (high to low transition) of the chip 

select to initiate an action such as the Maxim MAX1242 ADC, 

which starts conversion on said transition. With multiple slave 

devices, an independent SS signal is required from the master 

for each slave device. Most slave devices have tri-state 

outputs so their MISO signal becomes high impedance 

("disconnected") when the device is not selected. Devices 

without tri-state outputs can't share SPI bus segments with 

other devices; only one such slave could talk to the master, 

and only its chip select could be activated. 

 
Fig. 9. Single master, multiple slave SPI implementations 

Form the above diagram, we can justify that, data can be 

passed from one master to multiple slaves depends on 

activation of slave selection signal. Full duplex 

communication is in existence till now. The master generates 

slave select signals using general-purpose discrete 

input/output pins or other logic. This consists of old-fashioned 
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bit banging and can be pretty sensitive. You have to time it 

relative to the other signals and ensure, for example, that you 

don't toggle a select line in the middle of a frame. While SPI 

doesn't describe a specific way to implement multi-master 

systems, some SPI devices support additional signals that 

make such implementations possible. However, it's 

complicated and usually unnecessary, so it's not often done. 

A pair of parameters called clock polarity (CPOL) and clock 

phase (CPHA) determines the edges of the clock signal on 

which the data are driven and sampled. Each of the two 

parameters has two possible states, which allows for four 

possible combinations, all of which are incompatible with one 

another. So a master/slave pair must use the same parameter 

pair values to communicate. If multiple slaves are used that 

are fixed in different configurations, the master will have to 

reconfigure itself each time it needs to communicate with a 

different slave. SPI does not have an acknowledgement 

mechanism to confirm receipt of data. In fact, without a 

communication protocol, the SPI master has no knowledge of 

whether a slave even exists. SPI also offers no flow control. If 

you need hardware flow control, you might need to do 

something outside of SPI. Slaves can be thought of as 

input/output devices of the master. SPI does not specify a 

particular higher-level protocol for master-slave dialog. In 

some applications, a higher-level protocol is not needed and 

only raw data are exchanged. An example of this is an 

interface to a simple codec. In other applications, a higher-

level protocol, such as a command-response protocol, may be 

necessary. Note that the master must initiate the frames for 

both its command and the slave's response. 

                  If there is only one slave device then the SS pin on 

the slave device can be fixed to logic low state. If there is 2 or 

more slave devices in the system, then an independent SS 

signal is required from the master device for each slave 

device. When the master device wants to start a 

communication it has to set the clocks, that is less than or 

equal to the slave device's maximum frequency (most 

commonly from 1 to a few MHz). SPI communication is a full 

duplex communication, the master device sends a byte to the 

desired slave device in the meantime it receives a byte from 

the slave device. Transmissions may involve any number of 

clock cycles. When there are no more data to be transmitted, 

the master device stops toggling its clock. Normally, it then 

deselects the slave device. Every slave device on the bus that 

hasn't been activated using its Slave Select line must disregard 

the input clock and MOSI signals, and may not drive MISO. 

The master device selects only one slave at a time. 

 

A. Data and Control Lines of the SPI 

The SPI requires two control lines (CS and SCK) and two data 

lines (SI and SO). 

With CS (Chip-Select) the corresponding peripheral device is 

selected. This pin is mostly active-low. In the unselected state 

the SO lines are hi-Z and therefore inactive. The master 

decides with which peripheral device it wants to 

communicate. The clock line SCLK is brought to the device 

whether it is selected or not. The clock serves as 

synchronization of the data communication. The majority of 

SPI devices provide these four lines. Sometimes it happens 

that SDI and SDO are multiplexed, for example in the 

temperature sensor LM74 from National Semiconductor or 

that one of these lines is missing. A peripheral device which 

must or cannot be configured, requires no input line, only a 

data output. As soon as it gets selected it starts sending data. 

In some ADCs therefore the SDI line is missing (e.g. 

MCCP3001 from Microchip). There are also devices that have 

no data output. For example LCD controllers (e.g. COP472-3 

from National Semiconductor), which can be configured, but 

cannot send data or status messages. 

 

In addition to setting the clock frequency, the master must 

also configure the clock polarity and phase with respect to the 

data. Free scale’s SPI Block Guide names these two options as 

CPOL and CPHA respectively, and most vendors have 

adopted that convention. 

The timing diagram is shown to the right. The timing is 

further described below and applies to both the master and the 

slave device. 

-At CPOL=0 the base value of the clock is zero. 

For CPHA=0, data are captured on the clock's rising edge 

(low to high transition) and data are propagated on a falling 

edge (high to low clock transition). For CPHA=1, data are 

captured on the clock's falling edge and data are propagated 

on a rising edge. 

-At CPOL=1 the base value of the clock is one (inversion of 

CPOL=0)  

For CPHA=0, data are captured on clock's falling edge and 

data are propagated on a rising edge. For CPHA=1, data are 

captured on clock's rising edge and data are propagated on a 

falling edge. That is, CPHA=0 means sample on the leading 

(first) clock edge, while CPHA=1 means sample on the 

trailing (second) clock edge, regardless of whether that clock 

edge is rising or falling. Note that with CPHA=0, the data 

must be stable for a half cycle before the first clock cycle. For 

all CPOL and CPHA modes, the initial clock value must be 

stable before the chip select line goes active. Also, note that 

"data is read" in this document more typically means "data 

may be read". The MOSI and MISO signals are usually stable 

(at their reception points) for the half cycle until the next 

clock transition. SPI master and slave devices may well 

sample data at different points in that half cycle. This adds 

more flexibility to the communication channel between the 

master and slave. 
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Fig.10. Clock dependencies from CPHA and CPOL 

 
Table: 1.CPOL and CPHA setup table 

Some devices even have minor variances from the 

CPOL/CPHA modes described above. Sending data from 

slave to master may use the opposite clock edge as master to 

slave. Devices often require extra clock idle time before the 

first clock or after the last one, or between a command and its 

response. Some devices have two clocks, one to "capture" or 

"display" data, and another to clock it into the device. Many of 

these "capture clocks" run from the chip select line. 

                 Some devices require an additional flow control 

signal from slave to master, indicating when data are ready. 

This leads to a "five wire" protocol instead of the usual four. 

Such a "ready" or "enable" signal is often active-low, and 

needs to be enabled at key points such as after commands or 

between words. Without such a signal, data transfer rates may 

need to be slowed down significantly, or protocols may need 

to have "dummy bytes" inserted, to accommodate the worst 

case for the slave response time. Examples include initiating 

an ADC conversion, addressing the right page of flash 

memory, and processing enough of a command that device 

firmware can load the first word of the response. (Many SPI 

masters don't support that signal directly, and instead rely on 

fixed delays.) 

Many SPI chips only support messages that are multiples of 8 

bits. Such chips cannot interoperate with the JTAG or SGPIO 

protocols, or any other protocol that requires messages that are 

not multiples of 8 bits. 

B.SPI Configuration 

Because there is no official specification, what exactly SPI is 

and what not, it is necessary to consult the data sheets of the 

Components one wants to use. Important are the permitted 

clock frequencies and the type of valid transitions. There are 

no general rules for transitions where data should be latched. 

Although not specified by Motorola, in practice four modes 

are used. These four modes are the combinations of CPOL 

and CPHA. In table 2, the four modes are listed. 

 
Table2: SPI Modes 

If the phase of the clock is zero, i.e. CPHA = 0, data is latched 

at the rising edge of the clock with CPOL = 0, and at the 

falling edge of the clock with CPOL = 1. If CPHA = 1, the 

polarities are reversed. CPOL = 0 means falling edge, CPOL 

= 1 rising edge. The micro controllers from Motorola allow 

the polarity and the phase of the clock to be adjusted. A 

positive polarity results in latching data at the rising edge of 

the clock. However data is put on the data line already at the 

falling edge in order to stabilize. Most peripherals which can 

only be slaves, work with this configuration. If it should 

become necessary to use the other polarity, transitions are 

reversed. 

 

III.SPI vs. I2C 

 Although both SPI and I2C provide good support for 

communication with slow peripheral devices that are accessed 

intermittently, each of the way of communication have its own 

advantages towards each other. SPI is better suited than I2C 

for applications that are naturally thought of as data streams 

(as opposed to reading and writing addressed locations in a 

slave device). An example of a "stream" application is data 

communication between microprocessors or digital signal 

processors. Another is data transfer from analog-to-digital 

converters. SPI can also achieve significantly higher data rates 

than I2C which is limited to 400KHz in most cases. SPI-

compatible interfaces often range into the tens of megahertz. 

SPI really gains efficiency in applications that take advantage 

of its duplex capability, such as the communication between a 

http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/SGPIO
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"codec" (coder-decoder) and a digital signal processor, which 

consists of simultaneously sending samples in and out. 

Due to SPI lack of built-in device addressing, it requires more 

effort and more hardware resources than I2C when more than 

one slave is involved. The disadvantage here lies that it is a 

three-wire interface and if you are having more than 1 device, 

then you have to provide each device with separate Chip 

Select pins (CS). But SPI tends to be simpler and more 

efficient than I2C in point-to-point (single master, single 

slave) applications for the very same reason; the lack of 

device addressing means less overhead. On the other hand, 

I2C requires only two wires to implement and has a unique 

address so that a master/slave relationship can be maintained 

compare to SPI which needed three wires to implement the 

addressing mode. I2C also offers better support for 

communication with on-board devices that are accessed on an 

occasional basis. I2C's competitive advantage over other low-

speed short-distance communication schemes is that its cost 

and complexity don't scale up with the number of devices on 

the bus because of the generic nature of the bus interface. 

Besides, the complexity of the supporting I2C software 

components can be significantly higher than that of several 

competing schemes such as SPI in a very simple 

configuration. With its built-in addressing scheme and 

straightforward means to transfer strings of bytes, I2C is an 

elegant, minimalist solution for modest, "inside the box" 

communication needs. I2C is also a true multi-master bus 

because it has collision detection and arbitration to prevent 

data corruption if two or more masters simultaneously initiate 

data transfer. Furthermore, I2C also preserve data integrity by 

filtering rejects spikes on the bus data line. 

IV.COMPARISON BETWEEN I2C AND SPI 
We are compared the SPI and I2C protocols. Here the SPI 

protocol is much faster than I2C. The area and power was 

reduced compare to I2C protocol. XPower and Datasheet may 

have some Quiescent Current differences. This is due to the 

fact that the quiescent numbers in XPower are based on 

measurements of real designs with active functional elements 

reflecting real world design scenarios. 

 

Power summary: I(mA)  P(mW) 

Total estimated power consumption:   48 

      

Vccint 2.50V: 17 42 

Vcco33 3.30V: 2 7 

      

Clocks: 12 30 

Inputs: 2 5 

Logic: 0 0 

Outputs:     

Vcco33 0 0 

Signals: 0 0 

      

Quiescent Vccint 2.50V: 3 7 

Quiescent Vcco33 3.30V: 2 7 

 

Thermal summary:   

Estimated junction temperature: 26C 

Ambient temp: 25C 

Case temp: 26C 

Theta J-A range: 27 - 30C/W 

 

Decoupling Network 

Summary: 

Cap Range 

(uF) 
#  

Capacitor 

Recommendations: 
    

Total for Vccint   12 

  470.0-1000.0 1 

  0.470- 2.200 1 

  
0.0470-

0.2200 
2 

  
0.0100-

0.0470 
3 

  
0.0010-

0.0047 
5 

    
 Invalid Program 

Mode  

Total for Vcco33   8 

  470.0-1000.0 1 

  
0.0470-

0.2200 
1 

  
0.0100-

0.0470 
2 

  
0.0010-

0.0047 
4 

 

I2C 

XPower and Datasheet may have some Quiescent Current 

differences. This is due to the fact that the quiescent numbers 

in XPower are based on measurements of real designs with 

active functional elements reflecting real world design 

scenarios. 

Power summary: I(mA)  P(mW) 

Total estimated power consumption:   68 

      

Vccint 2.50V: 15 38 

Vcco33 3.30V: 2 7 

      

Inputs: 0 1 

Logic: 11 27 

Outputs:     
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Vcco33 0 0 

Signals: 1 4 

      

Quiescent Vccint 2.50V: 3 7 

Quiescent Vcco33 3.30V: 2 7 

 

Thermal summary:   

Estimated junction temperature: 26C 

Ambient temp: 25C 

Case temp: 26C 

Theta J-A range: 27 - 30C/W 

Decoupling Network 

Summary: 

Cap Range 

(uF) 
#  

Capacitor Recommendations:     

Total for Vccint   12 

  470.0-1000.0 1 

  0.470- 2.200 1 

  0.0470-0.2200 2 

  0.0100-0.0470 3 

  0.0010-0.0047 5 

      

Total for Vcco33   8 

  470.0-1000.0 1 

  0.0470-0.2200 1 

  0.0100-0.0470 2 

  0.0010-0.0047 4 

      

 

IV. SIMULATION RESULTS 
The SPI and I2C communication described above is designed 

using VHDL and simulated. The simulation results here 

shown are about the SPI protocol and I2C protocol which is 

designed with high speed, power and area reduction. The SPI 

is much faster than the I2C protocol. The SPI is a full duplex 

protocol and it has a high speed protocol compare to I2C. 

 

 
Fig: 11. Simulation results of I2C 

 
Fig.12. Simulation Results of SPI 

 

 
   Here Fig 11 and 12 shows the results of SPI and I2C 

communication protocol. Here compare the two protocols the 

SPI is much faster compare to I2C. The two are having their 

own importance in this design. 

 

V.CONCLUSION 

FINALLY IN THIS PAPER WE COMPARE SPI AND I2C 

PROTOCOL .WE DESIGN HIGH SPEED, POWER AND AREA 

REDUCTION. THE SPEED OF THE COMMUNICATION BETWEEN 

ICS IS MUCH FASTER THAN FOR THE FULL DUPLEX PROPER OF 

THE SPI COMMUNICATION. WE USE SPI PROTOCOL BECAUSE IT 
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IS FREQUENTLY USED WHEN FEW I/O LINES ARE AVAILABLE, 

BUT COMMUNICATION BETWEEN TWO OR MORE DEVICES MUST 

BE FAST AND EASY TO IMPLEMENT. HERE WE MAINLY FOCUS 

ON THE ADVANTAGES OF SPI PROTOCOL WHEN COMPARED 

WITH I2C PROTOCOL WHICH ARE MAINLY USED FOR 

COMMUNICATION PURPOSE. FURTHERMORE THESE PROTOCOLS 

CAN BE APPLICABLE FOR DIFFERENT APPLICATIONS LIKE SOC, 

CPU AND DSP PROCESSORS. 

VI.REFERENCES 
[1] Motorola, "MC68HC II manual”. 

[2] Texas Instruments, "MSP430xlxx family users guide”. 

[3] Texas Instruments website, www.ti.com. 

[4]     Peter Kaszas, Akos Szekacs, Tibor Szakall.  

[5] "Audio system controlling protocol (ASCP) with               

AES3,” unpublished. 

[6]      Philips's website, www.philips.com.  

[7] D.J. Wheeler, R. Needham, TEA, a Tiny                                                 

Encryption Algorithm, in the proceedings of FSE 1994, 

Lecture Notes  in Computer Science, 

         Vol 1008, pp 363-366, Leuven, Belgium,  

        December 1994, singer- verlag. 

 

[8]    M. Matsui, Linear Cryptanalysis Method for 

DES Cipher, in the proceedings of Eurocrypt 

1993, Lecture Notes in Computer Science, vol 

765, pp 386-397, Lofthus, Norway,            

May 1993, Springer-Verlag. 

 [9]     J. Daemen, V. Rijmen, the Design of Rijndael, 

Springer-Verlag, 2001. 

[10]   FIPS 197, \Advanced Encryption Standard,"  

            Federal Information   Processing Stan- dard, 

NIST, U.S. ept. of   Commerce, November 26, 

2001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ti.com/

