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ABSTRACT 
Unsupervised classification called clustering is a process 

of organizing objects into groups whose members are 

similar in some way. Clustering of uncertain data objects 

is a challenge in spatial data bases.  In this paper we use 

Probability Density Functions (PDF) to represent these 

uncertain data objects, and apply Uncertain K-Means 

algorithm to generate the clusters.  This clustering 

algorithm uses the Expected Distance (ED) to compute 

the distance between objects and cluster representatives. 

To further improve the performance of UK-Means we 

propose a novel technique called Voronoi Diagrams from 

Computational Geometry to prune the number of 

computations of ED. This technique works efficiently but 

results pruning overheads. In order to reduce these in  

pruning overhead we introduce R*-tree indexing over 

these uncertain data objects, so that it reduces the 

computational cost and pruning overheads. Our novel 

approach of integrating UK-Means with voronoi 

diagrams and R* Tree applied over uncertain data 

objects generates imposing outcome when compared 

with the accessible methods.  

Keywords -  Clustering, Indexing, Spatial Databases, 

Uncertain data objects, Voronoi diagrams 

1. Introduction  
Unsupervised classification [11] is a clustering technique 

where no predefined classes exist. Clustering [11] is a 

collection of data objects. Grouping is a set of data objects 

into cluster is called cluster analysis. A superior clustering 

method produces high quality cluster with high intra-class 

similarity and lower inter-class similarity. Clustering 

applications are widely used in pattern recognization, spatial 

data analysis, Document classification, and Real world 

application like Marketing, City planning etc.  

     The primary goal of unsupervised classification is to 

minimize the sum of squared error by minimizing the 

distance between the data object and the cluster 

representative. Clustering when applied to a mobile node 

distributed sensor networks and wireless technology [5] 

forms a group network with a cluster representative and 

cluster members.  The cluster representative exchanges data 

and centroid information with the server etc. [14] in the 

form of batch mode for efficient telecommunication. 

     Short ranged signal has higher bandwidth and is  used for 

local communications in with the clusters. Long ranged 

communication with the cluster representative and members 

also needs high bandwidth which is feasible by batch 

transmission [5], [14].  Mobile nodes construct and report  

 

their locality by comparing the strength of radio signal 

within the mobile access point inside the large ranged 

communication, that may sometimes create noise, and such 

devices in mobile computing practically are called 

uncertain, whose locations are updated in the database 

sporadically.  In certain instance of time, the location is not 

known the latest update value is considered as the sampling 

time instance for uncertain data [2], [4], [17] by considering 

various geometrical constraints. 

     Each uncertain data attribute is a type, subject to its own 

independent probability distribution called attribute 

uncertainty. In correlated uncertainty, multiple attributes are 

described by joint probability distribution.  In tuple 

uncertainty, all the attributes of a tuple are subjected to this 

probability distribution [4]. 

     In this paper we consider the unsupervised learning of 

uncertain objects where locations are uncertain and, hence 

they are defined by Probability Density Functions (PDF). 

Since the conventional clustering methods works with point 

valued data, the uncertain data object has to be transferred 

into the same point valued data so that any conventional 

algorithm can be applied [13]. To handle clustering data 

objects we consider the object PDF rather than the 

conventional methods since they give better clustering. 

     We assume each object lies within the region and is 

bounded by finite bounding box. The PDF is zero outside 

the region. The uncertain data objects are first iterated 

through K-Means algorithm in a iterative procedure. The 

Euclidean distance is used to find the closeness between the 

cluster members and cluster representatives. The same 

uncertainty data objects are experimented using Uncertain 

K-Means [13], [15] instead of computing the Euclidean 

distance the Expected distance (ED) is used to compute the 

centroid between the cluster representative and cluster 

members. Expected distance involves the numerical 

integration using large number of sample points for each 

PDF, so that the computational cost is reduced. 

     In this paper we also introduce one of the computational 

geometry called voronoi diagram [16], [8], [9] so that it can 

prune some of the candidate clusters. This pruning technique 

is used to consider the spatial relationship [12] among the 

cluster representatives. We also prove voronoi diagrams 

based pruning is far efficient than the boundary box 

techniques. For efficiency in ED computing, we also apply 

pruning based on boundary box based technique over the 

objects to establish lower and upper boundary for ED. The 
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proposed voronoi diagram pruning technique prunes the ED 

and thus saves the computational cost and impacts the 

execution time.  

     Spatial indexing methods are used to process 

magnanimous spatial database [11], [12] for fast and 

effective results. These indexing methods directly effect the 

memory efficiency of spatial data [7] as well as the spatial 

retrieval performance. To reduce the disk space for spatial 

uncertain data we use R*-tree proposed by Gutman [10], 

which adopts the smallest bounding rectangular (MBR) to 

divide spatial entity by using ―the smallest area criterion‖, 

and construct dynamic index tree. R*- tree [1], [18] 

organizes the spatial index according to the data, at the same 

time, it is the balanced tree using MBR to express the 

objects, and the nature expansion highly based on B-tree in 

k-dimension. 

     Each node in R*-tree contains the uncertain object, 

which are represented as rectangular regions in space MBR. 

Here the Voronoi based pruning techniques are applied to 

the entire rectangular region visited on a single uncertain 

object. This shows the combination R*-tree and voronoi 

techniques significantly reduces the pruning overheads.  

     This paper is organized as follows. Section 2 reviews the 

Related work, the problem and the proposed solutions in 

Section 3. The detailed experimental setup and results are 

shown in Section 4, while Section V concludes the work and 

gives directions to future work. 

2. Related Work 

In recent years, uncertain data has become ubiquitous [5], it 

is often associated with uncertainty because of inaccurate 

measurement inaccuracy, sampling discrepancy, outdated 

data sources, or other errors. For example, in the scenario of 

moving objects (such as vehicles or people), it is impossible 

for the database to track the exact locations of all objects at 

all-time instants. Therefore, the location of each object is 

associated with uncertainty between updates [14]. 

     These various sources of uncertainty have to be 

considered in order to produce accurate query and mining 

results. We note that with uncertainty, data values are no 

longer atomic. To apply traditional data mining techniques, 

uncertain data has to be summarized into atomic values. 

Taking moving-object applications as an example again, the 

location of an object can be summarized either by its last 

recorded location or by an expected location.  

Unfortunately, discrepancy in the summarized recorded 

value and the actual values could seriously affect the quality 

of the mining results. In recent years, there is significant 

research interest in data uncertainty management.  

     Data uncertainty [2], [4] can be categorized into two 

types, namely existential uncertainty and value uncertainty. 

In the first type it is uncertain whether the object or data 

tuple exists or not. For example, a tuple in a spatial database 

could be associated with a probability value that indicates 

the confidence of its presence. In value uncertainty, a data 

item is modeled as a closed region which bounds its possible 

values, together with a probability density function of its 

value. This model can be used to quantify the imprecision of 

location and sensor data in a constantly-evolving 

environment.  In this paper we study the problem of 

clustering objects with tuple uncertainty [3], [15]. 

     UK-means algorithm a generalization of K-means 

algorithm is to handle objects where locations are uncertain. 

The location of each object is described by the probability 

density function (PDF).  The UK-means also computes the 

expected distance between each object and the cluster 

representative. For arbitrary PDF, calculation the ED 

between the object and a cluster representative is 

represented as an integration computation. We consider 

various pruning methods to avoid such expensive ED 

calculations. One of the pruning techniques proposed was 

Min-Max Bounding Box (MM-BB) distance pruning 

technique that reduces the computational cost.  

     The other technique uses the voronoi diagrams [8]. The 

voronoi diagram is one of the most fundamental and 

versatile data structure in computational geometry. The 

voronoi diagram divides a space into disjoint polygons 

where the nearest neighbor of any point inside a polygon is 

the generator of the polygon. The role of voronoi diagrams 

in the context of clustering is many folds. For certain 

applications, the relevant cluster structure among the objects 

is well reflected, in a direct manner, by the structure of the 

Voronoi diagram of the corresponding point sites [6]. For 

instance, dense subsets of sites give rise to Voronoi regions 

of small area (or volume). Regions of sites in a homogenous 

cluster will have similar shape. For clusters having a 

direction-sensitive density, the regions will exhibit an 

extreme width in the corresponding direction. Perhaps more 

important is the fact that numerous types of optimal 

clustering are induced by Voronoi diagrams. The clustering 

minimizing the sum of the squared distances of the clusters 

to their centers is easily found by constructing the voronoi 

diagram.  

     The R*-tree [1] the variant of R-tree is a state-of-the-art 

spatial index structure. It has already found its way into 

commercial systems like SQLite, MySql and Oracle. The 

most important improvement of the R*-tree over the original 

R-tree is that it utilizes forced reinsertion. That is, if a disk 

page overflows, some objects are removed from the page 

and reinserted into the index.  The R* tree uses the same 

algorithm of R-tree for both query and delete operations. 

The goals are: to reduce the MBR area and to keep the shape 

of the MBR close to a square. The R*-tree algorithm selects 

objects whose distances to the center of the page's MBR are 

the largest.  R*-tree groups the underlying points hierarchy 

and records the MBR of each group for answering spatial 

queries.  In this paper we use R*-tree for indexing and 

improved split heuristic procedures [18]. 

3. PROPOSED WORK 

A set of objects O =  o1, … , on  is a m-dimensional space 

Rm with a distance function d ∶ Rm   × Rm   → R  giving 

the distance d x, y ≥ 0 between any points x, y ∈  Rm . is 

considered, associated with each object is a pdf fi : R
m → R, 

which gives the probability density of oiat each point 

x ∈  Rm . By definition of pdf, we have (for all i = 1,. . . ,n) 
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fi x ≥ 0  ∀  x ∈  Rm     and            fi x  dx = 1
x ∈Rm  

   Further, we assume that the probability density of oi is 

confined in a finite region Ai, so that fi x = 0 for all 

x  ∈ Rm  \ Ai. We define the expected distance between an 

object oi any point y ∈  Rm . 

: ED oi , y   d x, y 
x ∈ A i

 fi x  dx                               (1) 

     Now, given an integer constant k, the problem of 

clustering uncertain data is to find a set of cluster 

representative points C =  c1 , … , cn  C = {c1,…, cn}and a 

mapping h: {1, … , n}  → {1, … , k} so that the sum of squared 

expected distance is minimized. 

  [ED(oi , ch(i)]2

n

i=1

 

     To facilitate our discussion on boundary box based 

algorithms, we use MBRi to denote the minimum bounding 

rectangle of object oi. MBRi is the smallest box, with faces 

perpendicular to the principal axes of Rm, which encloses 

Ai. Note that Equation (1) still holds if we replace ―x  ∈  Ai‖ 

with ― x ∈  MBRi‖. This fact can be overworked for 

optimization when computing ED. 

    First the UK-Means algorithm is applied to the spatial 

data sets. To reduce the computational cost and to do 

pruning, we apply the Min-Max Bounding Box technique to 

the UK-Means, later the proposed voronoi based pruning 

technique is implemented in to uk-means and finally to 

reduce pruning overheads we integrate R*-tree indexing 

algorithm in to the uk-means. 

3.1 UK-Means 

Clustering algorithms are based on k-means, in which the 

goal is to minimize sum of square error (SSE). The basic 

idea behind the uncertain k-means algorithm is to minimize 

the expected sum of squared errors. UK-Means algorithm is 

a generalized k-means algorithm to handle objects whose 

locations are uncertain. The UK-Means algorithm could be 

characterized as the least robust of all the methods, shown as 

Algorithm 1 UK-Means.  Its insensitivity to variance within 

a distribution can be viewed as a major flaw, especially 

given that the distributions of the features in the cells are 

extremely variable.   

 

 

 

 

 

 

 

Algorithm 1 UK-Means 

Step 1: Choose k arbitrary point as cj (j = 1,…,k) 

Step 2:  repeat 

Step 3:     for all oi ∈ O 𝐝𝐨    // assign objects to cluster 

Step 4:         for all cj ∈ C 𝐝𝐨  

Step 5:               Compute ED(oi,cj) 

Step 6:          h(i) ← arg minj:cj  ∈C
{ED(oi , cj)} 

Step 7:  for all j = 1,…, k do  

                                     // readjust cluster representatives  

Step 8:          cj  ← centroid of   oi ∈ O  h i = j}  

Step 9:  until C and h become stable 

 

The basic drawback in this algorithm is that it computes ED 

for every object cluster pair in every cluster. So, given n 

objects, k clusters the UK-Means computes nk EDs in each 

iteration. The computation of an ED involves numerically 

integration a function that involve on object PDF. A PDF is 

represented probability distribution matrix, with each 

element representing a sample point in an MBR. To improve 

the performance of UK-Means, we need to reduce the time 

spent on ED. To avoid this ED we incorporate pruning into 

UK-Means. 

     We first apply the UK-Means algorithm to the spatial 

data sets [7]. To reduce the computational cost, we apply the 

MM-BB pruning technique in to the UK-Means, then we 

implement another effective pruning technique VCP to 

reduce pruning overheads we use indexing applied with R*-

tree algorithm. 

3.2 Min Max Bounding Box (MM-BB) Pruning  

One of the pruning techniques we propose was to include 

MM-BB pruning in UK-Means, so that the computation cost 

of integration in ED will be reduced. In MM-BB MinMax 

pruning approach, for an object oi and a cluster 

representative cj, certain points in MBRi are geometrically 

determined. The distance from those points to cj are 

computed to establish bounds on ED. Formally, we define 

 

MinD(oi , cj) =  minx∈MBR i
d(x, cj) 

MaxD(oi , cj) =  maxx∈MBR i
d(x, cj) 

MinMaxD(oi) =  mincj∈C{MaxD(oi , cj)} 

 

     It is apparent that MinD(oi , cj) ≤ ED(oi , cj)  ≤ 

MaxD(oi , cj). Then if MinD(oi , cj) >  𝑀𝑎𝑥𝐷(oi , cq) for 

some cluster representative cp and cq, we can deduce that 

ED(oi , cp)  >  𝐸𝐷(oi , cq) without computing the exact 

values of the EDs. So, object oi will not be assigned to 

cluster p since there is another cluster q that gives a smaller 

expected distance from object oi. We can thus prune away 

cluster p without bothering to compute ED(oi , cj).  As an 

optimization, we can prune away cluster p if MinD(oi , cp) >

 𝑀𝑎𝑥𝐷(oi).  

 

     Now we include this MM-BB pruning technique shown 

as Algorithm 2 into the Algorithm 1by replacing the steps 5 

and 6. The pruning condition MinD(oi,cj) > MinMaxD(oi) 

reduces many clusters, depending on data distribution. It 
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avoids many ED computations over MinD and MaxD which 

are expensive. 

 

     We remarks that computing MinD and MaxD requires us 

to consider only a few points on the perimeter of an object’s 

MBR, instead of all points in its pdf. 

 

 

Algorithm 2 Min-Max Bounding Box (MM-BB) Pruning 

Step 1  : Choose k arbitrary point as cj (j=1,…,k) 

Step 2  : repeat 

Step 3  : for all oi ∈ O 𝐝𝐨   // assign objects to cluster 

Step 4  : for all cj ∈ C 𝐝𝐨  

Step 5  : Compute MinD(oi,cj) and MaxD(oi,cj) 

Step 6  : Compute MinMaxD(oi) 

Step 7  : For all cj ∈ C do 

Step 8  : if MinD(oi,cj) > MinMaxD(oi) then 

Step 9  : Remove cj from Qi 

Step 10: if | Qi| = 1 then    // only one candidate remains  

Step 11: Compute ED(oi,cj)  

Step 12: h(i) ← arg minj:cj  ∈Q i
{ED(oi , cj)} 

 

3.3 Voronoi Cell Pruning (VCP) 

The Min-Max based pruning significantly improves the 

performance of uk-means and efficiently evaluates the 

bound of ED and avoids many ED computations. The flaw 

in Min-Max boundary box was the technique does not 

consider any geometric structure of R
m

 or spatial 

relationship among the cluster representative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Voronoi-Cell Pruning (VCP) 

The Voronoi diagram is a fundamental structure in 

computational geometry and arises naturally in many 

applications including clustering. In this paper we use 

voronoi diagram [8] to build the spatial relationship between 

the cluster member and the cluster representative, and to 

achieve a very effective pruning. We compare the Min-Max 

bounding box pruning with voronoi pruning and we prove 

that voronoi diagram pruning is much stronger than the Min-

Max bounding box technique. 

 

     Consider a set of points C={𝑐1, … , 𝑐𝑘}, the voronoi 

diagram divides the space R
m
 into k cells 𝑉(𝑐𝑗 ) with the 

following property: 

: 𝑑 𝑥, 𝑐𝑝 <  𝑑 𝑥, 𝑐𝑞  ∀ 𝑥 ∈  𝑉 𝑐𝑝 , 𝑐𝑞 ≠ 𝑐𝑝 .                   (2) 

 

     The boundary of a cell 𝑉(𝑐𝑝) and its adjacent cell 𝑉(𝑐𝑞) 

consists of point on the perpendicular bisector, denoted 

𝑐𝑝 |𝑐𝑞  between the points cp and cq. 

 

     In all the iterations, we construct the voronoi diagrams 

from the k cluster representative points 𝐶 =  𝑐1 , … , 𝑐𝑘 . The 

voronoi diagram is used to derive the VCP. For each object 

oi , we check if MBRi lies completely inside any voronoi cell 

𝑉(𝑐𝑞). If so, then object oi is assigned to cluster cj. This is 

because if follows from Equations (1) and (2) that: 

 

ED(𝑜𝑖 ,𝑐𝑗 ) < ED(𝑜𝑖 ,𝑐𝑞 ) ∀ 𝑐𝑞 ∈ 𝐶 {𝑐𝑗 }. 

 

 

     In this case, no ED is computed. All cluster except 𝑐𝑗  are 

pruned. An example for voronoi cell pruning is shown in 

Fig. 1, in which  𝑉(𝑐𝑗 ) is adjacent to 𝑉(𝑐1), 𝑉(𝑐2), 𝑉(𝑐3). 

Since MBRi lies completely in 𝑉(𝑐𝑗 ), all points belonging to 

𝑜𝑖  lie closer to 𝑐𝑗 than any other 𝑐𝑞 . It follows that 

ED(𝑜𝑖 ,𝑐𝑗 ) is strictly smaller than ED(𝑜𝑖 ,𝑐𝑞 ) for all 𝑐𝑞 ≠ 𝑐𝑗 . 

The pseudo code for VCP is shown in Algorithm 3. This 

code is embedded into Algorithm 1. 

 

3.4 Indexing the uncertain objects 

The two pruning technique proposed in this paper MM-BB, 

VCP aims to reduce the computational cost of ED, so that 

the execution time of uk-means improves. The results of 

algorithms are placed in section IV, where we observe about 

75% of ED calculations is pruned and the computational 

cost is minimized by the pruning technique. Further to 

reduce the execution time pruning overheads we apply 

indexing over the uncertain objects. 

     Voronoi diagram based pruning technique takes the 

advantage of spatial distribution of cluster representative of 

the uncertain objects. The batch communications is used and 

nearby objects are grouped, we obtain MBR for each group. 

In order to save the computational time, groupings are done 

and arranged in a hierarchal order forming a super group 

and subgroups. The proposed technique uses top down 

approach to minimize the volume of MBR and we use R*-

tree indexing for grouping the objects. 

     The R*-tree which is a variant of R-tree [1] is a self 

balancing tree like B+tree.   In both trees, the actual data 

either resides in the leaf nodes or is directly pointed to by 

the leaf nodes. The purpose of the intermediate nodes is to 

hold keys that partition and refine the node domain as one 

travels from the root node to the leaf nodes. This is 

Algorithm 3  Voronoi Cell Pruning (VCP) 

Step 1: Compute the Voronoi diagram for C={𝑐1, … , 𝑐𝑘} 

Step 2: For all 𝑐𝑗 ∈ 𝐶 do 

Step 3:        if  MBRi ⊆  𝑉(𝑐𝑗 )  then  

Step 4:             𝑄𝑘 ← {𝑐𝑗 }  
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especially well suited for spatial data because the data 

representing n-dimensional objects is often quite large. If 

this data were stored throughout the tree, as it is in a normal 

B+-tree, the nodes would only be capable of holding a few 

records and hence, driving the height of the tree 

unnecessarily high and decreasing performance of several 

operations. Locating the data, or pointers directly to the 

data, in the leaf nodes allows one to store more intermediate 

node records in fewer nodes, making the resulting tree 

height considerably lower. 

     Node insertion, deletion and splitting in B+-trees and R-

trees and its variations are similar in basic concept.  In the 

R* tree storage utilization heuristic is used and the forced-

reinsert technique has been developed to implement this 

heuristic. The underlying consideration is that higher storage 

utilization will generally reduce the query cost as the height 

of the tree will be kept low.  

     The R*-tree is a hierarchical data structure.  Each node 

corresponds to the smallest d-dimensional rectangle that 

encloses its child nodes. The leaf nodes contain pointers to 

the actual data in the database. Note that rectangles 

corresponding to different nodes may overlap. This means 

that a spatial query may often require several nodes to be 

visited before ascertaining the presence or absence of a 

particular rectangle.  

 

 

 

 

 

 

Fig. 2 The file structure for the R*-tree with fan-out as 3 

     In building an R*-tree, new rectangles are added to the 

leaf nodes. The appropriate leaf node is determined by 

traversing the R-tree starting at the root and at each step 

choosing the sub tree whose corresponding covering 

rectangle would have to be enlarged the least. Once the leaf 

node is determined, a check will be made to see whether the 

insertion will cause the node to overflow. If yes, then it must 

be split and the M+1records must be distributed in two 

nodes (where M is the order of the R*-tree). Splits are then 

propagated up the tree. Fig. 2 is a graphical representation of 

R*-tree used over the uncertain data objects with a fan out 

of 3 to each node.  

     Each tree node, containing multiple entries, is stored in a 

disk block. Based on the size of a disk block, the number of 

entries in a node is computed. The height of the tree is a 

function of the total number of objects being stored, as well 

as the fanout factors of the internal and leaf nodes. Each leaf 

node corresponds to a group of uncertain objects.  

Each entry in the node maps to an uncertain object. The 

following information is stored in each entry: 

 The MBR of the uncertain object. 

 The centroid of the uncertain object. 

 A pointer to the PDF data of the object. 

 

     The PDF data are stored outside the tree to facilitate 

memory utilization. Each internal node of the tree 

corresponds to a super-group, which is a group of groups.  

Each entry in an internal node points to a child group. Each 

entry contains the following information: 

 The MBR of the child group. 

 Number of objects under the sub tree at this child. 

 The centroid of the objects under the sub tree at this 

child.  

 A pointer to the node corresponding to the child 

 

     Storing the number of objects under the sub tree at a 

child node and the corresponding centroid location allows 

efficient readjustment of cluster representatives at the end of 

every iteration of UK-means. The R*-tree focuses its efforts 

on improving the accuracy of the data structure 

representation of spatial data by minimizing the following 

parameters when inserting and splitting nodes: 

     Area: This is the total area required to bind a set of 

objects minus the area covered by the objects. In other 

words, the area is the ``dead'' space in the bounding 

directory rectangles. Minimizing this produces a more 

compact tree which generally narrows the node domain that 

must be examined for each search operation. 

     Overlap: This is the area of intersection among data 

objects in the same node. Minimizing the overlap also 

minimizes the number of ``branches'' in the tree that must be 

visited for a search.  

     Margin: This is the sum of each bounding rectangle 

sides. Minimization of the margin value forces the splits 

toward producing more square bounding rectangles. More 

square bounding rectangles in turn pack better and improve 

the R*-tree quality and hence search operations.  

     The R*-tree also utilizes a forced reinsertion process in 

an attempt to alleviate the need for a node split and to 

improve the quality of the data organization. Forced 

reinsertion means that a set number of records in the full 

node are deleted from the node and reinserted in the tree. 

Reinsertion is invoked the first time a node overflows at the 

given tree level during the process of inserting the original 

record. This means at most, one node over flows at each 

level (excluding the root level) will be resolved using 

reinsertion, all other overflow in the reinsertion process will 

be handled by splits.   
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     To build an R*-tree from a database of uncertain objects, 

we use a bulk-load algorithm based on the Sort-Tile-

Recursive algorithm [10], [18].  It builds an R-tree from 

bottom up (as opposed to repeated insertion from the top 

and has the advantages of building a more fully filled tree, 

with smaller MBRs for the internal nodes, and a shorter 

construction time. Fig. 4 is the illustration how a MBR of 24 

uncertain objects using the sort-tile recursive algorithms, 

with a fan out factor of leaf node as 3. 

Fig. 3  R*-tree with a Sort-Tile recursive procedure 

3.5 Group Based Pruning 

Multilevel grouping of cluster objects is taken place in the 

R*-tree node. In order to increase the performance of 

pruning algorithm the pruning is applied in batch. We 

recursively traverse the tree from the root node to the leaf 

node by examining each entry in the node. Each entry e 

represents a group of uncertain objects. The MBR of e is 

available in R*-tree. Using this MBR we apply the pruning 

technique MM-BB, VCP and RMM-VCP to prune the 

cluster centers.  

     The pruning is done on the cluster representative cp if 

there is for sure another cluster representative 𝑐𝑞 ≠ 𝑐𝑝  such 

that all points in the MBR are closer to cq than to cp. This 

property holds to all the subgroups and uncertain objects in 

the sub tree, which serves a lot of repeated computations and 

saves a lot of repeated computations. 

     In case only a single cluster representative cr is left then 

all descendants of e must be assigned to cr. In this case, we 

can further optimize by bulk-assigning cr to the whole sub 

tree. There is no need to process each uncertain object under 

the sub tree individually. If this kind of sub tree pruning 

happens at higher levels of the R*-tree, a lot of processing 

can be saved. We now include this R*-tree algorithm in the 

Algorithm 1 with the recursive functions 

ProcessNonleafNode (r,c) and ProcessLeafNode(r,c), where 

r  is the R*-tree’s root node and c is the set of all clusters. 

The modified code in UK-means with Min-Max, Voronoi 

Cell and R*-tree functions give raise to the new pruning 

technique called RMM-VCP. One of the recursive 

procedure in RMM-VCP, ProcessNonleafNode(r,c) is 

shown as Algorithm 4. 

     The handling of leaf node is similar and hence not 

repeated. The procedure ProcessLeafNode differs from 

ProcessNonleafNode in which the recursive part (steps 7 -

11) is replaced by ED calculations and assigning the closest 

cluster to the uncertain object. 

Algorithm 4 ProcessNonleafNode(r,c)  

Inputs  : n- R*-tree internal node,  

              Q- a set of candidate clusters 

Step 1  : for all child entry e of n do 

Step 2  :       Apply pruning techniques MM-BB & VCP  

                       to Q using e’s MBR 

Step 3  : if |Q| =1 then  // only one cluster remains 

Step 4  :      for all uncertain objects oi under subtree  

                                                                     rooted at n do  

Step 5  :         ℎ 𝑖 ← 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 ∈ 𝑄 

Step 6  : else  

Step 7  :         𝑚 ← 𝑒′𝑠 R*-tree node 

Step 8  : if m is leaf node then 

Step 9  :         call ProcessLeafNode(m,Q) 

Step 10: else 

Step 11   call ProcessNonleafNode(m, Q) // recursively 

 

3.6 Hybrid Algorithms 

In this paper we applied the pruning techniques MM-BB, 

VCP over the spatial databases and, for indexing in groups 

we used the R*-trees.  The UK-Means is embedded with the 

MM-BB pruning which raises the computational cost. We 

use a novel approach to combine with the VCP.  Candidate 

clusters are first pruned by the VCP.  If MM-BB is applied 

to an internal node N such that it reduces the set of 

candidate cluster representatives Q to a smaller set Q`, the 

reduced set Q` can be passed along to the child nodes of N 

where MM-BB is re-applied. This approach reduces the 

computational cost but raises pruning overheads. In order to 

reduce these overheads we apply the R*-tree indexing. The 

pruning achieved by MM-BB at different levels along a path 

of the R*-tree is thus acquisitive. The results are presented 

as tables and graphs for all the integrated techniques in 

Section IV.  

4. Results 
We used a PC with a CPU of Intel(R) core i3, 2.93GHz and 

4GB RAM to implement the proposed algorithms using 

JDK1.6.0 on Windows 7 platform. For the computations of 

VCP we used the qhull programs. We considered the cluster 

shift operations in all the algorithms over the uncertain data 

objects in spatial databases. 

4.1 Data Sets 

We have used the spatial dataset from 

http://kdd.ics.uci.edu/databases/covertype/covertype.html.  

Forest CoverType is a benchmark problem in the UCI KDD 

Archive. This problem relates to the actual forest cover type 

for given observation that was determined from US Forest 

Service (USFS) Region to Resource Information System 

(RIS). Forest CoverType includes 581,012 samples 

represented in point valued data with 7 cover type, each 

sample has 54 attributes including 10 remotely sensed data 

and 44 cartographic data. We transform this data set into 

many uncertain data sets by replacing each data point with 

an MBR and also generate the PDF.  We experimented our 
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algorithms with only 10 percent of the available data object 

as a training set.  

TABLE I : Parameters used in algorithms 

Parameter Description Initial value 

N No. of uncertain objects 20000 

K No. of clusters 50 

L Max. side length of MBR 2 

S No. of samples per object 128 

D No. of dimensions 2 

B Block size of R*-tree node 512 

 

For each data set, a set of n MBRs are generated in m-

dimensional space [0,100]
 m

.  Each MBR’s side length is 

generated randomly and is bounded by variable l. The MBR 

is divided into s grid cells, each corresponding to a PDF 

sample point. Each sample point is associated with 

randomly generated probability value, normalized so that 

the sum of probabilities of the MBR is equal to 1. These 

probabilities values give a discredited representation of the 

PDF fi of the corresponding object. For all the algorithms 

we use the same dataset with variable c as random points to 

serve as the initial cluster centers. The dataset and initial 

cluster representative will be fed as inputs to the algorithms. 

The parameters used for all the experiments are listed in 

Table I. 

4.2 Result of Algorithms 

We executed all the algorithms using the parameters listed 

in Table I over the spatial data set. The results are 

summarized in Table II. 

TABLE II : Results of algorithms over the Spatial Data 

Set 

Algorithms                             

(with cluster shift) 
tI (ms) NED 

MM-BB 2861 0.74 

VCP 2291 0.51 

RMM-VCP 1010 0.62 

The value tI is defined as the total execution time taken 

divided by the number of iterations executed. The value NED 

is defined as the total number of ED calculations divided by 

the number of initialized objects by the number of iterations. 

It is evident from Table II that the proposed algorithm in the 

paper yields significant results. The VCP saves 20% of the 

execution time. 

The RMM-VCP algorithm with an integrated approach of 

using R*-tree indexing with MM-BB and VCP saves the 

execution time by more than 50%.  Pruning effectiveness of 

the algorithms can be examined by the smaller value in the 

NED column, this is because in each iteration uk-means 

computes for each object all k expected distances from the 

object to the k cluster representatives.  

 

 

 

 

Fig. 4 Breakdown of ED and Pruning in Execution Time 

An important observation is that the R*-tree does not affect 

the pruning effectiveness, but lowers the execution time. 

The execution time is involves both the time spent in ED 

calculations and pruning.  The time spent in pruning 

involves a lot number of ED computations for MM-BB and 

checking against Voronoi cell boundaries for VCP.  The 

numbers of such calculations are shown as Ncand, the average 

number of candidate object cluster pairs per iteration per 

object, which are shown in Fig 4. 

4.3 Effect of Number of Objects 

We used Fig. 5 to show effectiveness of the execution time 

in each iteration (tI) over the uncertain objects (n).  It can be 

seen that the execution time per iteration grows linearly with 

the number of uncertain objects. This is because as long as 

the pruning effectiveness and the effect of R*-tree boosting 

remains stable, the total number of ED computations and the 

pruning overheads will be proportional to the number of 

uncertain  objects being handled. 

Fig.5 Effect of No. of objects on Execution Time per 

Iteration 

Fig.6 Cluster formations using pruning techniques 
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4.4 Effect of number of clusters 

In Fig. 6 we consider the number of clusters k are varied 

from 1 to 100, from the graph we observe NED increases 

with k. This is because in a larger number of clusters, cluster 

representatives are generally increased in number. Hence 

more ED will have to be computed to determine the cluster 

assignment. Fig. 6 shows that all the pruning techniques are 

very effective for a wide range of values of k in formation of 

clusters. 

4.5 Effect of R*-tree Block size 

Finally we test the effect of the block size of R*-tree nodes 

in the integrated algorithm. The block size effects the height 

of the R*-tree built, its compactness, the granularity of the 

groups and also the size of the MBR of each group. The 

results are shown in Fig. 7 and Fig. 8. The algorithms in Fig. 

7 MM-BB and VCP do not employ R*-tree, and hence they 

do not effected by variations in block size of R*-tree. The 

other important observation was that execution time 

increases slightly with the block size in RMM-VCP 

algorithm.  From the Fig. 8 we notice that with smaller 

blocks, the number of nodes in the R*-tree increases, and so 

does the height of the R*-tree. This has a positive effect on 

pruning cost reduction because a deeper R*-tree allow more 

opportunities for batching the pruning computations, which 

can be applied to a larger number of nodes at more diverse 

granularities. 

Fig.7 Effect of Block size of R*-tree on Execution time 

per Iteration 

 
Fig.8 Effect of Height of R*-tree on Execution time per 

Iteration 

5. Conclusion 
In this paper we have analyzed about locations of uncertain 

objects by the PDF and clustering them. We used the UK-

means algorithm with ED computations instead of other 

distance measures, since the number of samples used in 

representing the object PDF’s are large. To improve the 

computational cost and apply pruning effectiveness on 

uncertain spatial data objects we used the MM-BB 

technique in UK-means. The drawback analyzed was they 

do not consider spatial relationship between the cluster 

members and cluster representatives. To further reduce the 

computational cost and improve pruning effectiveness we 

use the VCP. This algorithm gives a better result by 

reducing 97% of ED calculations, thus the execution time 

can be significantly reduced. 

     For an optimal reduction in computational cost and 

perform spatial grouping, minimize pruning overheads on 

uncertain objects we used the R*-tree indexing which is a 

variant of R-tree. This indexing technique is incorporated 

with the MM-BB and VCP generates a new technique 

RMM-VCP for impressive pruning effectiveness. It is also 

proven in the previous section that this combination works 

well by outperforming the other approaches. Therefore we 

conclude that our innovative techniques based on 

computational geometry, indexing is reasonability 

competent.  

     The future scope and enhancements and scope of this 

paper was to experiment the spatial data set with the density 

based clustering algorithms instead of partitioned based 

clustering algorithms, indexed with the other spatial data 

partitioning tree’s like the x-tree, m-tree, Hilbert R-tree and 

Priority R-trees. 
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