
Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

806 | P a g e

Unsupervised Classification of Uncertain Data Objects in Spatial

Databases Using Computational Geometry and Indexing Techniques

Kurada Ramachandra Rao*, PSE Purnima*, M Naga Sulochana*, B Durga Sri
**

*(Department. of Computer Applications, Shri Vishnu Engineering College for Women, Bhimavaram

** (Department of Computer Science and Engineering, Sri Sai Aditya Institute of Science and Technology, Surampalem

ABSTRACT
Unsupervised classification called clustering is a process

of organizing objects into groups whose members are

similar in some way. Clustering of uncertain data objects

is a challenge in spatial data bases. In this paper we use

Probability Density Functions (PDF) to represent these

uncertain data objects, and apply Uncertain K-Means

algorithm to generate the clusters. This clustering

algorithm uses the Expected Distance (ED) to compute

the distance between objects and cluster representatives.

To further improve the performance of UK-Means we

propose a novel technique called Voronoi Diagrams from

Computational Geometry to prune the number of

computations of ED. This technique works efficiently but

results pruning overheads. In order to reduce these in

pruning overhead we introduce R*-tree indexing over

these uncertain data objects, so that it reduces the

computational cost and pruning overheads. Our novel

approach of integrating UK-Means with voronoi

diagrams and R* Tree applied over uncertain data

objects generates imposing outcome when compared

with the accessible methods.

Keywords - Clustering, Indexing, Spatial Databases,

Uncertain data objects, Voronoi diagrams

1. Introduction
Unsupervised classification [11] is a clustering technique

where no predefined classes exist. Clustering [11] is a

collection of data objects. Grouping is a set of data objects

into cluster is called cluster analysis. A superior clustering

method produces high quality cluster with high intra-class

similarity and lower inter-class similarity. Clustering

applications are widely used in pattern recognization, spatial

data analysis, Document classification, and Real world

application like Marketing, City planning etc.

 The primary goal of unsupervised classification is to

minimize the sum of squared error by minimizing the

distance between the data object and the cluster

representative. Clustering when applied to a mobile node

distributed sensor networks and wireless technology [5]

forms a group network with a cluster representative and

cluster members. The cluster representative exchanges data

and centroid information with the server etc. [14] in the

form of batch mode for efficient telecommunication.

 Short ranged signal has higher bandwidth and is used for

local communications in with the clusters. Long ranged

communication with the cluster representative and members

also needs high bandwidth which is feasible by batch

transmission [5], [14]. Mobile nodes construct and report

their locality by comparing the strength of radio signal

within the mobile access point inside the large ranged

communication, that may sometimes create noise, and such

devices in mobile computing practically are called

uncertain, whose locations are updated in the database

sporadically. In certain instance of time, the location is not

known the latest update value is considered as the sampling

time instance for uncertain data [2], [4], [17] by considering

various geometrical constraints.

 Each uncertain data attribute is a type, subject to its own

independent probability distribution called attribute

uncertainty. In correlated uncertainty, multiple attributes are

described by joint probability distribution. In tuple

uncertainty, all the attributes of a tuple are subjected to this

probability distribution [4].

 In this paper we consider the unsupervised learning of

uncertain objects where locations are uncertain and, hence

they are defined by Probability Density Functions (PDF).

Since the conventional clustering methods works with point

valued data, the uncertain data object has to be transferred

into the same point valued data so that any conventional

algorithm can be applied [13]. To handle clustering data

objects we consider the object PDF rather than the

conventional methods since they give better clustering.

 We assume each object lies within the region and is

bounded by finite bounding box. The PDF is zero outside

the region. The uncertain data objects are first iterated

through K-Means algorithm in a iterative procedure. The

Euclidean distance is used to find the closeness between the

cluster members and cluster representatives. The same

uncertainty data objects are experimented using Uncertain

K-Means [13], [15] instead of computing the Euclidean

distance the Expected distance (ED) is used to compute the

centroid between the cluster representative and cluster

members. Expected distance involves the numerical

integration using large number of sample points for each

PDF, so that the computational cost is reduced.

 In this paper we also introduce one of the computational

geometry called voronoi diagram [16], [8], [9] so that it can

prune some of the candidate clusters. This pruning technique

is used to consider the spatial relationship [12] among the

cluster representatives. We also prove voronoi diagrams

based pruning is far efficient than the boundary box

techniques. For efficiency in ED computing, we also apply

pruning based on boundary box based technique over the

objects to establish lower and upper boundary for ED. The

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

807 | P a g e

proposed voronoi diagram pruning technique prunes the ED

and thus saves the computational cost and impacts the

execution time.

 Spatial indexing methods are used to process

magnanimous spatial database [11], [12] for fast and

effective results. These indexing methods directly effect the

memory efficiency of spatial data [7] as well as the spatial

retrieval performance. To reduce the disk space for spatial

uncertain data we use R*-tree proposed by Gutman [10],

which adopts the smallest bounding rectangular (MBR) to

divide spatial entity by using ―the smallest area criterion‖,

and construct dynamic index tree. R*- tree [1], [18]

organizes the spatial index according to the data, at the same

time, it is the balanced tree using MBR to express the

objects, and the nature expansion highly based on B-tree in

k-dimension.

 Each node in R*-tree contains the uncertain object,

which are represented as rectangular regions in space MBR.

Here the Voronoi based pruning techniques are applied to

the entire rectangular region visited on a single uncertain

object. This shows the combination R*-tree and voronoi

techniques significantly reduces the pruning overheads.

 This paper is organized as follows. Section 2 reviews the

Related work, the problem and the proposed solutions in

Section 3. The detailed experimental setup and results are

shown in Section 4, while Section V concludes the work and

gives directions to future work.

2. Related Work

In recent years, uncertain data has become ubiquitous [5], it

is often associated with uncertainty because of inaccurate

measurement inaccuracy, sampling discrepancy, outdated

data sources, or other errors. For example, in the scenario of

moving objects (such as vehicles or people), it is impossible

for the database to track the exact locations of all objects at

all-time instants. Therefore, the location of each object is

associated with uncertainty between updates [14].

 These various sources of uncertainty have to be

considered in order to produce accurate query and mining

results. We note that with uncertainty, data values are no

longer atomic. To apply traditional data mining techniques,

uncertain data has to be summarized into atomic values.

Taking moving-object applications as an example again, the

location of an object can be summarized either by its last

recorded location or by an expected location.

Unfortunately, discrepancy in the summarized recorded

value and the actual values could seriously affect the quality

of the mining results. In recent years, there is significant

research interest in data uncertainty management.

 Data uncertainty [2], [4] can be categorized into two

types, namely existential uncertainty and value uncertainty.

In the first type it is uncertain whether the object or data

tuple exists or not. For example, a tuple in a spatial database

could be associated with a probability value that indicates

the confidence of its presence. In value uncertainty, a data

item is modeled as a closed region which bounds its possible

values, together with a probability density function of its

value. This model can be used to quantify the imprecision of

location and sensor data in a constantly-evolving

environment. In this paper we study the problem of

clustering objects with tuple uncertainty [3], [15].

 UK-means algorithm a generalization of K-means

algorithm is to handle objects where locations are uncertain.

The location of each object is described by the probability

density function (PDF). The UK-means also computes the

expected distance between each object and the cluster

representative. For arbitrary PDF, calculation the ED

between the object and a cluster representative is

represented as an integration computation. We consider

various pruning methods to avoid such expensive ED

calculations. One of the pruning techniques proposed was

Min-Max Bounding Box (MM-BB) distance pruning

technique that reduces the computational cost.

 The other technique uses the voronoi diagrams [8]. The

voronoi diagram is one of the most fundamental and

versatile data structure in computational geometry. The

voronoi diagram divides a space into disjoint polygons

where the nearest neighbor of any point inside a polygon is

the generator of the polygon. The role of voronoi diagrams

in the context of clustering is many folds. For certain

applications, the relevant cluster structure among the objects

is well reflected, in a direct manner, by the structure of the

Voronoi diagram of the corresponding point sites [6]. For

instance, dense subsets of sites give rise to Voronoi regions

of small area (or volume). Regions of sites in a homogenous

cluster will have similar shape. For clusters having a

direction-sensitive density, the regions will exhibit an

extreme width in the corresponding direction. Perhaps more

important is the fact that numerous types of optimal

clustering are induced by Voronoi diagrams. The clustering

minimizing the sum of the squared distances of the clusters

to their centers is easily found by constructing the voronoi

diagram.

 The R*-tree [1] the variant of R-tree is a state-of-the-art

spatial index structure. It has already found its way into

commercial systems like SQLite, MySql and Oracle. The

most important improvement of the R*-tree over the original

R-tree is that it utilizes forced reinsertion. That is, if a disk

page overflows, some objects are removed from the page

and reinserted into the index. The R* tree uses the same

algorithm of R-tree for both query and delete operations.

The goals are: to reduce the MBR area and to keep the shape

of the MBR close to a square. The R*-tree algorithm selects

objects whose distances to the center of the page's MBR are

the largest. R*-tree groups the underlying points hierarchy

and records the MBR of each group for answering spatial

queries. In this paper we use R*-tree for indexing and

improved split heuristic procedures [18].

3. PROPOSED WORK

A set of objects O = o1, … , on is a m-dimensional space

Rm with a distance function d ∶ Rm × Rm → R giving

the distance d x, y ≥ 0 between any points x, y ∈ Rm . is

considered, associated with each object is a pdf fi : R
m → R,

which gives the probability density of oiat each point

x ∈ Rm . By definition of pdf, we have (for all i = 1,. . . ,n)

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

808 | P a g e

fi x ≥ 0 ∀ x ∈ Rm and fi x dx = 1
x ∈Rm

 Further, we assume that the probability density of oi is

confined in a finite region Ai, so that fi x = 0 for all

x ∈ Rm \ Ai. We define the expected distance between an

object oi any point y ∈ Rm .

: ED oi , y d x, y
x ∈ A i

 fi x dx (1)

 Now, given an integer constant k, the problem of

clustering uncertain data is to find a set of cluster

representative points C = c1 , … , cn C = {c1,…, cn}and a

mapping h: {1, … , n} → {1, … , k} so that the sum of squared

expected distance is minimized.

 [ED(oi , ch(i)]2

n

i=1

 To facilitate our discussion on boundary box based

algorithms, we use MBRi to denote the minimum bounding

rectangle of object oi. MBRi is the smallest box, with faces

perpendicular to the principal axes of Rm, which encloses

Ai. Note that Equation (1) still holds if we replace ―x ∈ Ai‖

with ― x ∈ MBRi‖. This fact can be overworked for

optimization when computing ED.

 First the UK-Means algorithm is applied to the spatial

data sets. To reduce the computational cost and to do

pruning, we apply the Min-Max Bounding Box technique to

the UK-Means, later the proposed voronoi based pruning

technique is implemented in to uk-means and finally to

reduce pruning overheads we integrate R*-tree indexing

algorithm in to the uk-means.

3.1 UK-Means

Clustering algorithms are based on k-means, in which the

goal is to minimize sum of square error (SSE). The basic

idea behind the uncertain k-means algorithm is to minimize

the expected sum of squared errors. UK-Means algorithm is

a generalized k-means algorithm to handle objects whose

locations are uncertain. The UK-Means algorithm could be

characterized as the least robust of all the methods, shown as

Algorithm 1 UK-Means. Its insensitivity to variance within

a distribution can be viewed as a major flaw, especially

given that the distributions of the features in the cells are

extremely variable.

Algorithm 1 UK-Means

Step 1: Choose k arbitrary point as cj (j = 1,…,k)

Step 2: repeat

Step 3: for all oi ∈ O 𝐝𝐨 // assign objects to cluster

Step 4: for all cj ∈ C 𝐝𝐨

Step 5: Compute ED(oi,cj)

Step 6: h(i) ← arg minj:cj ∈C
{ED(oi , cj)}

Step 7: for all j = 1,…, k do

 // readjust cluster representatives

Step 8: cj ← centroid of oi ∈ O h i = j}

Step 9: until C and h become stable

The basic drawback in this algorithm is that it computes ED

for every object cluster pair in every cluster. So, given n

objects, k clusters the UK-Means computes nk EDs in each

iteration. The computation of an ED involves numerically

integration a function that involve on object PDF. A PDF is

represented probability distribution matrix, with each

element representing a sample point in an MBR. To improve

the performance of UK-Means, we need to reduce the time

spent on ED. To avoid this ED we incorporate pruning into

UK-Means.

 We first apply the UK-Means algorithm to the spatial

data sets [7]. To reduce the computational cost, we apply the

MM-BB pruning technique in to the UK-Means, then we

implement another effective pruning technique VCP to

reduce pruning overheads we use indexing applied with R*-

tree algorithm.

3.2 Min Max Bounding Box (MM-BB) Pruning

One of the pruning techniques we propose was to include

MM-BB pruning in UK-Means, so that the computation cost

of integration in ED will be reduced. In MM-BB MinMax

pruning approach, for an object oi and a cluster

representative cj, certain points in MBRi are geometrically

determined. The distance from those points to cj are

computed to establish bounds on ED. Formally, we define

MinD(oi , cj) = minx∈MBR i
d(x, cj)

MaxD(oi , cj) = maxx∈MBR i
d(x, cj)

MinMaxD(oi) = mincj∈C{MaxD(oi , cj)}

 It is apparent that MinD(oi , cj) ≤ ED(oi , cj) ≤

MaxD(oi , cj). Then if MinD(oi , cj) > 𝑀𝑎𝑥𝐷(oi , cq) for

some cluster representative cp and cq, we can deduce that

ED(oi , cp) > 𝐸𝐷(oi , cq) without computing the exact

values of the EDs. So, object oi will not be assigned to

cluster p since there is another cluster q that gives a smaller

expected distance from object oi. We can thus prune away

cluster p without bothering to compute ED(oi , cj). As an

optimization, we can prune away cluster p if MinD(oi , cp) >

 𝑀𝑎𝑥𝐷(oi).

 Now we include this MM-BB pruning technique shown

as Algorithm 2 into the Algorithm 1by replacing the steps 5

and 6. The pruning condition MinD(oi,cj) > MinMaxD(oi)

reduces many clusters, depending on data distribution. It

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

809 | P a g e

avoids many ED computations over MinD and MaxD which

are expensive.

 We remarks that computing MinD and MaxD requires us

to consider only a few points on the perimeter of an object’s

MBR, instead of all points in its pdf.

Algorithm 2 Min-Max Bounding Box (MM-BB) Pruning

Step 1 : Choose k arbitrary point as cj (j=1,…,k)

Step 2 : repeat

Step 3 : for all oi ∈ O 𝐝𝐨 // assign objects to cluster

Step 4 : for all cj ∈ C 𝐝𝐨

Step 5 : Compute MinD(oi,cj) and MaxD(oi,cj)

Step 6 : Compute MinMaxD(oi)

Step 7 : For all cj ∈ C do

Step 8 : if MinD(oi,cj) > MinMaxD(oi) then

Step 9 : Remove cj from Qi

Step 10: if | Qi| = 1 then // only one candidate remains

Step 11: Compute ED(oi,cj)

Step 12: h(i) ← arg minj:cj ∈Q i
{ED(oi , cj)}

3.3 Voronoi Cell Pruning (VCP)

The Min-Max based pruning significantly improves the

performance of uk-means and efficiently evaluates the

bound of ED and avoids many ED computations. The flaw

in Min-Max boundary box was the technique does not

consider any geometric structure of R
m

 or spatial

relationship among the cluster representative.

Fig. 1 Voronoi-Cell Pruning (VCP)

The Voronoi diagram is a fundamental structure in

computational geometry and arises naturally in many

applications including clustering. In this paper we use

voronoi diagram [8] to build the spatial relationship between

the cluster member and the cluster representative, and to

achieve a very effective pruning. We compare the Min-Max

bounding box pruning with voronoi pruning and we prove

that voronoi diagram pruning is much stronger than the Min-

Max bounding box technique.

 Consider a set of points C={𝑐1, … , 𝑐𝑘}, the voronoi

diagram divides the space R
m
 into k cells 𝑉(𝑐𝑗) with the

following property:

: 𝑑 𝑥, 𝑐𝑝 < 𝑑 𝑥, 𝑐𝑞 ∀ 𝑥 ∈ 𝑉 𝑐𝑝 , 𝑐𝑞 ≠ 𝑐𝑝 . (2)

 The boundary of a cell 𝑉(𝑐𝑝) and its adjacent cell 𝑉(𝑐𝑞)

consists of point on the perpendicular bisector, denoted

𝑐𝑝 |𝑐𝑞 between the points cp and cq.

 In all the iterations, we construct the voronoi diagrams

from the k cluster representative points 𝐶 = 𝑐1 , … , 𝑐𝑘 . The

voronoi diagram is used to derive the VCP. For each object

oi , we check if MBRi lies completely inside any voronoi cell

𝑉(𝑐𝑞). If so, then object oi is assigned to cluster cj. This is

because if follows from Equations (1) and (2) that:

ED(𝑜𝑖 ,𝑐𝑗) < ED(𝑜𝑖 ,𝑐𝑞) ∀ 𝑐𝑞 ∈ 𝐶 {𝑐𝑗 }.

 In this case, no ED is computed. All cluster except 𝑐𝑗 are

pruned. An example for voronoi cell pruning is shown in

Fig. 1, in which 𝑉(𝑐𝑗) is adjacent to 𝑉(𝑐1), 𝑉(𝑐2), 𝑉(𝑐3).

Since MBRi lies completely in 𝑉(𝑐𝑗), all points belonging to

𝑜𝑖 lie closer to 𝑐𝑗 than any other 𝑐𝑞 . It follows that

ED(𝑜𝑖 ,𝑐𝑗) is strictly smaller than ED(𝑜𝑖 ,𝑐𝑞) for all 𝑐𝑞 ≠ 𝑐𝑗 .

The pseudo code for VCP is shown in Algorithm 3. This

code is embedded into Algorithm 1.

3.4 Indexing the uncertain objects

The two pruning technique proposed in this paper MM-BB,

VCP aims to reduce the computational cost of ED, so that

the execution time of uk-means improves. The results of

algorithms are placed in section IV, where we observe about

75% of ED calculations is pruned and the computational

cost is minimized by the pruning technique. Further to

reduce the execution time pruning overheads we apply

indexing over the uncertain objects.

 Voronoi diagram based pruning technique takes the

advantage of spatial distribution of cluster representative of

the uncertain objects. The batch communications is used and

nearby objects are grouped, we obtain MBR for each group.

In order to save the computational time, groupings are done

and arranged in a hierarchal order forming a super group

and subgroups. The proposed technique uses top down

approach to minimize the volume of MBR and we use R*-

tree indexing for grouping the objects.

 The R*-tree which is a variant of R-tree [1] is a self

balancing tree like B+tree. In both trees, the actual data

either resides in the leaf nodes or is directly pointed to by

the leaf nodes. The purpose of the intermediate nodes is to

hold keys that partition and refine the node domain as one

travels from the root node to the leaf nodes. This is

Algorithm 3 Voronoi Cell Pruning (VCP)

Step 1: Compute the Voronoi diagram for C={𝑐1, … , 𝑐𝑘}

Step 2: For all 𝑐𝑗 ∈ 𝐶 do

Step 3: if MBRi ⊆ 𝑉(𝑐𝑗) then

Step 4: 𝑄𝑘 ← {𝑐𝑗 }

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

810 | P a g e

especially well suited for spatial data because the data

representing n-dimensional objects is often quite large. If

this data were stored throughout the tree, as it is in a normal

B+-tree, the nodes would only be capable of holding a few

records and hence, driving the height of the tree

unnecessarily high and decreasing performance of several

operations. Locating the data, or pointers directly to the

data, in the leaf nodes allows one to store more intermediate

node records in fewer nodes, making the resulting tree

height considerably lower.

 Node insertion, deletion and splitting in B+-trees and R-

trees and its variations are similar in basic concept. In the

R* tree storage utilization heuristic is used and the forced-

reinsert technique has been developed to implement this

heuristic. The underlying consideration is that higher storage

utilization will generally reduce the query cost as the height

of the tree will be kept low.

 The R*-tree is a hierarchical data structure. Each node

corresponds to the smallest d-dimensional rectangle that

encloses its child nodes. The leaf nodes contain pointers to

the actual data in the database. Note that rectangles

corresponding to different nodes may overlap. This means

that a spatial query may often require several nodes to be

visited before ascertaining the presence or absence of a

particular rectangle.

Fig. 2 The file structure for the R*-tree with fan-out as 3

 In building an R*-tree, new rectangles are added to the

leaf nodes. The appropriate leaf node is determined by

traversing the R-tree starting at the root and at each step

choosing the sub tree whose corresponding covering

rectangle would have to be enlarged the least. Once the leaf

node is determined, a check will be made to see whether the

insertion will cause the node to overflow. If yes, then it must

be split and the M+1records must be distributed in two

nodes (where M is the order of the R*-tree). Splits are then

propagated up the tree. Fig. 2 is a graphical representation of

R*-tree used over the uncertain data objects with a fan out

of 3 to each node.

 Each tree node, containing multiple entries, is stored in a

disk block. Based on the size of a disk block, the number of

entries in a node is computed. The height of the tree is a

function of the total number of objects being stored, as well

as the fanout factors of the internal and leaf nodes. Each leaf

node corresponds to a group of uncertain objects.

Each entry in the node maps to an uncertain object. The

following information is stored in each entry:

 The MBR of the uncertain object.

 The centroid of the uncertain object.

 A pointer to the PDF data of the object.

 The PDF data are stored outside the tree to facilitate

memory utilization. Each internal node of the tree

corresponds to a super-group, which is a group of groups.

Each entry in an internal node points to a child group. Each

entry contains the following information:

 The MBR of the child group.

 Number of objects under the sub tree at this child.

 The centroid of the objects under the sub tree at this

child.

 A pointer to the node corresponding to the child

 Storing the number of objects under the sub tree at a

child node and the corresponding centroid location allows

efficient readjustment of cluster representatives at the end of

every iteration of UK-means. The R*-tree focuses its efforts

on improving the accuracy of the data structure

representation of spatial data by minimizing the following

parameters when inserting and splitting nodes:

 Area: This is the total area required to bind a set of

objects minus the area covered by the objects. In other

words, the area is the ``dead'' space in the bounding

directory rectangles. Minimizing this produces a more

compact tree which generally narrows the node domain that

must be examined for each search operation.

 Overlap: This is the area of intersection among data

objects in the same node. Minimizing the overlap also

minimizes the number of ``branches'' in the tree that must be

visited for a search.

 Margin: This is the sum of each bounding rectangle

sides. Minimization of the margin value forces the splits

toward producing more square bounding rectangles. More

square bounding rectangles in turn pack better and improve

the R*-tree quality and hence search operations.

 The R*-tree also utilizes a forced reinsertion process in

an attempt to alleviate the need for a node split and to

improve the quality of the data organization. Forced

reinsertion means that a set number of records in the full

node are deleted from the node and reinserted in the tree.

Reinsertion is invoked the first time a node overflows at the

given tree level during the process of inserting the original

record. This means at most, one node over flows at each

level (excluding the root level) will be resolved using

reinsertion, all other overflow in the reinsertion process will

be handled by splits.

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

811 | P a g e

 To build an R*-tree from a database of uncertain objects,

we use a bulk-load algorithm based on the Sort-Tile-

Recursive algorithm [10], [18]. It builds an R-tree from

bottom up (as opposed to repeated insertion from the top

and has the advantages of building a more fully filled tree,

with smaller MBRs for the internal nodes, and a shorter

construction time. Fig. 4 is the illustration how a MBR of 24

uncertain objects using the sort-tile recursive algorithms,

with a fan out factor of leaf node as 3.

Fig. 3 R*-tree with a Sort-Tile recursive procedure

3.5 Group Based Pruning

Multilevel grouping of cluster objects is taken place in the

R*-tree node. In order to increase the performance of

pruning algorithm the pruning is applied in batch. We

recursively traverse the tree from the root node to the leaf

node by examining each entry in the node. Each entry e

represents a group of uncertain objects. The MBR of e is

available in R*-tree. Using this MBR we apply the pruning

technique MM-BB, VCP and RMM-VCP to prune the

cluster centers.

 The pruning is done on the cluster representative cp if

there is for sure another cluster representative 𝑐𝑞 ≠ 𝑐𝑝 such

that all points in the MBR are closer to cq than to cp. This

property holds to all the subgroups and uncertain objects in

the sub tree, which serves a lot of repeated computations and

saves a lot of repeated computations.

 In case only a single cluster representative cr is left then

all descendants of e must be assigned to cr. In this case, we

can further optimize by bulk-assigning cr to the whole sub

tree. There is no need to process each uncertain object under

the sub tree individually. If this kind of sub tree pruning

happens at higher levels of the R*-tree, a lot of processing

can be saved. We now include this R*-tree algorithm in the

Algorithm 1 with the recursive functions

ProcessNonleafNode (r,c) and ProcessLeafNode(r,c), where

r is the R*-tree’s root node and c is the set of all clusters.

The modified code in UK-means with Min-Max, Voronoi

Cell and R*-tree functions give raise to the new pruning

technique called RMM-VCP. One of the recursive

procedure in RMM-VCP, ProcessNonleafNode(r,c) is

shown as Algorithm 4.

 The handling of leaf node is similar and hence not

repeated. The procedure ProcessLeafNode differs from

ProcessNonleafNode in which the recursive part (steps 7 -

11) is replaced by ED calculations and assigning the closest

cluster to the uncertain object.

Algorithm 4 ProcessNonleafNode(r,c)

Inputs : n- R*-tree internal node,

 Q- a set of candidate clusters

Step 1 : for all child entry e of n do

Step 2 : Apply pruning techniques MM-BB & VCP

 to Q using e’s MBR

Step 3 : if |Q| =1 then // only one cluster remains

Step 4 : for all uncertain objects oi under subtree

 rooted at n do

Step 5 : ℎ 𝑖 ← 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑐𝑗 ∈ 𝑄

Step 6 : else

Step 7 : 𝑚 ← 𝑒′𝑠 R*-tree node

Step 8 : if m is leaf node then

Step 9 : call ProcessLeafNode(m,Q)

Step 10: else

Step 11 call ProcessNonleafNode(m, Q) // recursively

3.6 Hybrid Algorithms

In this paper we applied the pruning techniques MM-BB,

VCP over the spatial databases and, for indexing in groups

we used the R*-trees. The UK-Means is embedded with the

MM-BB pruning which raises the computational cost. We

use a novel approach to combine with the VCP. Candidate

clusters are first pruned by the VCP. If MM-BB is applied

to an internal node N such that it reduces the set of

candidate cluster representatives Q to a smaller set Q`, the

reduced set Q` can be passed along to the child nodes of N

where MM-BB is re-applied. This approach reduces the

computational cost but raises pruning overheads. In order to

reduce these overheads we apply the R*-tree indexing. The

pruning achieved by MM-BB at different levels along a path

of the R*-tree is thus acquisitive. The results are presented

as tables and graphs for all the integrated techniques in

Section IV.

4. Results
We used a PC with a CPU of Intel(R) core i3, 2.93GHz and

4GB RAM to implement the proposed algorithms using

JDK1.6.0 on Windows 7 platform. For the computations of

VCP we used the qhull programs. We considered the cluster

shift operations in all the algorithms over the uncertain data

objects in spatial databases.

4.1 Data Sets

We have used the spatial dataset from

http://kdd.ics.uci.edu/databases/covertype/covertype.html.

Forest CoverType is a benchmark problem in the UCI KDD

Archive. This problem relates to the actual forest cover type

for given observation that was determined from US Forest

Service (USFS) Region to Resource Information System

(RIS). Forest CoverType includes 581,012 samples

represented in point valued data with 7 cover type, each

sample has 54 attributes including 10 remotely sensed data

and 44 cartographic data. We transform this data set into

many uncertain data sets by replacing each data point with

an MBR and also generate the PDF. We experimented our

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

812 | P a g e

algorithms with only 10 percent of the available data object

as a training set.

TABLE I : Parameters used in algorithms

Parameter Description Initial value

N No. of uncertain objects 20000

K No. of clusters 50

L Max. side length of MBR 2

S No. of samples per object 128

D No. of dimensions 2

B Block size of R*-tree node 512

For each data set, a set of n MBRs are generated in m-

dimensional space [0,100]
 m

. Each MBR’s side length is

generated randomly and is bounded by variable l. The MBR

is divided into s grid cells, each corresponding to a PDF

sample point. Each sample point is associated with

randomly generated probability value, normalized so that

the sum of probabilities of the MBR is equal to 1. These

probabilities values give a discredited representation of the

PDF fi of the corresponding object. For all the algorithms

we use the same dataset with variable c as random points to

serve as the initial cluster centers. The dataset and initial

cluster representative will be fed as inputs to the algorithms.

The parameters used for all the experiments are listed in

Table I.

4.2 Result of Algorithms

We executed all the algorithms using the parameters listed

in Table I over the spatial data set. The results are

summarized in Table II.

TABLE II : Results of algorithms over the Spatial Data

Set

Algorithms

(with cluster shift)
tI (ms) NED

MM-BB 2861 0.74

VCP 2291 0.51

RMM-VCP 1010 0.62

The value tI is defined as the total execution time taken

divided by the number of iterations executed. The value NED

is defined as the total number of ED calculations divided by

the number of initialized objects by the number of iterations.

It is evident from Table II that the proposed algorithm in the

paper yields significant results. The VCP saves 20% of the

execution time.

The RMM-VCP algorithm with an integrated approach of

using R*-tree indexing with MM-BB and VCP saves the

execution time by more than 50%. Pruning effectiveness of

the algorithms can be examined by the smaller value in the

NED column, this is because in each iteration uk-means

computes for each object all k expected distances from the

object to the k cluster representatives.

Fig. 4 Breakdown of ED and Pruning in Execution Time

An important observation is that the R*-tree does not affect

the pruning effectiveness, but lowers the execution time.

The execution time is involves both the time spent in ED

calculations and pruning. The time spent in pruning

involves a lot number of ED computations for MM-BB and

checking against Voronoi cell boundaries for VCP. The

numbers of such calculations are shown as Ncand, the average

number of candidate object cluster pairs per iteration per

object, which are shown in Fig 4.

4.3 Effect of Number of Objects

We used Fig. 5 to show effectiveness of the execution time

in each iteration (tI) over the uncertain objects (n). It can be

seen that the execution time per iteration grows linearly with

the number of uncertain objects. This is because as long as

the pruning effectiveness and the effect of R*-tree boosting

remains stable, the total number of ED computations and the

pruning overheads will be proportional to the number of

uncertain objects being handled.

Fig.5 Effect of No. of objects on Execution Time per

Iteration

Fig.6 Cluster formations using pruning techniques

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

813 | P a g e

4.4 Effect of number of clusters

In Fig. 6 we consider the number of clusters k are varied

from 1 to 100, from the graph we observe NED increases

with k. This is because in a larger number of clusters, cluster

representatives are generally increased in number. Hence

more ED will have to be computed to determine the cluster

assignment. Fig. 6 shows that all the pruning techniques are

very effective for a wide range of values of k in formation of

clusters.

4.5 Effect of R*-tree Block size

Finally we test the effect of the block size of R*-tree nodes

in the integrated algorithm. The block size effects the height

of the R*-tree built, its compactness, the granularity of the

groups and also the size of the MBR of each group. The

results are shown in Fig. 7 and Fig. 8. The algorithms in Fig.

7 MM-BB and VCP do not employ R*-tree, and hence they

do not effected by variations in block size of R*-tree. The

other important observation was that execution time

increases slightly with the block size in RMM-VCP

algorithm. From the Fig. 8 we notice that with smaller

blocks, the number of nodes in the R*-tree increases, and so

does the height of the R*-tree. This has a positive effect on

pruning cost reduction because a deeper R*-tree allow more

opportunities for batching the pruning computations, which

can be applied to a larger number of nodes at more diverse

granularities.

Fig.7 Effect of Block size of R*-tree on Execution time

per Iteration

Fig.8 Effect of Height of R*-tree on Execution time per

Iteration

5. Conclusion
In this paper we have analyzed about locations of uncertain

objects by the PDF and clustering them. We used the UK-

means algorithm with ED computations instead of other

distance measures, since the number of samples used in

representing the object PDF’s are large. To improve the

computational cost and apply pruning effectiveness on

uncertain spatial data objects we used the MM-BB

technique in UK-means. The drawback analyzed was they

do not consider spatial relationship between the cluster

members and cluster representatives. To further reduce the

computational cost and improve pruning effectiveness we

use the VCP. This algorithm gives a better result by

reducing 97% of ED calculations, thus the execution time

can be significantly reduced.

 For an optimal reduction in computational cost and

perform spatial grouping, minimize pruning overheads on

uncertain objects we used the R*-tree indexing which is a

variant of R-tree. This indexing technique is incorporated

with the MM-BB and VCP generates a new technique

RMM-VCP for impressive pruning effectiveness. It is also

proven in the previous section that this combination works

well by outperforming the other approaches. Therefore we

conclude that our innovative techniques based on

computational geometry, indexing is reasonability

competent.

 The future scope and enhancements and scope of this

paper was to experiment the spatial data set with the density

based clustering algorithms instead of partitioned based

clustering algorithms, indexed with the other spatial data

partitioning tree’s like the x-tree, m-tree, Hilbert R-tree and

Priority R-trees.

REFERENCES
[1] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.,

1990, The R*- tree: an efficient and robust access

method for points and rectangles. In: ACM-

SIGMOND, pp. 322-331.

[2] C. C. Aggarwal and P. S. Yu, ―A Framework for

Clustering Uncertain Data Streams,‖ in ICDE

Conference, 2008.

[3] C.C. Aggarwal, P. S. Yu. ―A Survey of Uncertain

Data Algorithms and Applications,‖ in IEEE

Transactions on Knowledge and Data Engineering,

2009.

[4] Chau, M., Cheng, R., and Kao, B.: Uncertain Data

Mining: A New Research Direction. In Proc.

Workshop on the Sciences of the Artificial, Hualien,

Taiwan (2005).

[5] D. P. foser and C. S. Jensen. Capturing the

uncertainty of moving-object representations. In

Proceedings of the 6
th

 Data Engineering, 2008.

[6] D. T. Lee and F. P. Preparata, "Location of a point in

a planar subdivision and its applications," SIAMJ.

Comput., vol. 6, pp. 594-606, Sept. 1977.

[7] Ester, M., Kriegel, H.-P., Sander, J., Algorithms and

applications for spatial data mining, in H. J. Miller

and J. Han (eds.) Geographic Data Mining and

Kurada Ramachandra Rao, PSE Purnima, M Naga Sulochana, B Durga Sri/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.806-814

814 | P a g e

Knowledge Discovery, London: Taylor and Francis,

160-187, 2001.

[8] F. Aurenhammer, ―Voronoi diagrams—a survey of a

fundamental geometric data structure,‖ ACM

Computing Surveys, vol. 23, no. 3, pp. 345–405,

1991.

[9] F. K. H. A. Dehne and H. Noltemeier, ―Voronoi trees

and clustering problems.‖ Inf. Syst., vol. 12, no. 2,

pp. 171–175, 1987.

[10] Guttman, A., 1984. R-trees: a dynamic index

structure for spatial searching. In: Proceedings of the

1984 ACM-SIGMOND Conference on Management

of Data, pp. 47-57.

[11] Jaiwei Han, Micheline Kamber, Book Title ―Data

Mining Concept and Techniques‖, Morgan Kaufmann

(An Imprint of ELSEVIER) Publication, ISBN: 1-

55860-489-8, 2003.

[12] Krzysztof Koperski, Jiawei Han, ―Discovery of

Spatial Association Rules in Geographic Information

Databases‖, (1995), Proc. 4
th

 Int. Symp. Advances in

Spatial Databases, SSD .

[13] M. Chau, R. Cheng, B. Kao, and J. Ng. Uncertain

data mining: An example in clustering location data.

In PAKDD, pages 199–204, Singapore, 9–12 Apr.

2006.

[14] S. Bandyopadhyay and E. J. Coyle, ―An energy

efficient hierarchical clustering algorithm for wireless

sensor networks,‖ in The 22nd Annual Joint

Conference of the IEEE Computer and

Communications Societies (INFOCOM), San

Francisco, U.S.A., 30th Mar.–3rd Apr. 2003.

[15] S. D. Lee, B. Kao, and R. Cheng, ―Reducing UK-

means to K-means,‖ in The 1st Workshop on Data

Mining of Uncertain Data (DUNE), in conjunction

with the 7th IEEE International Conference on Data

Mining (ICDM), Omaha, NE, USA, 28 Oct. 2007.

[16] S. Har-Peled. Geometric approximation algorithms.

http://valis.cs.uiuc.edu/~sariel/teach/notes/aprx/book.

pdf, 2007.

[17] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, S.

Hambrusch. ―Indexing Uncertain Categorical Data‖,

in ICDE Conference, 2007.

[18] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The

R+-Tree: A Dynamic Index for Multi- Dimensional

Objects. Proceedings of VLDB, pp. 507–518 (1987).

