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Abstract—The authors present an algorithm for order 

reduction of linear dynamic SISO systems using the 

combined advantages of the improved generalise Least 

squares method and error minimization by Particle 

Swarm Optimization technique (PSO). The 

denominator of the reduced order model is obtained by 

improved generalise least squares method and PSO is 

employed for determining numerator coefficients by 

minimizing the integral square error between the 

transient responses of original and reduced order 

models, pertaining to unit step input. The reduction 

procedure is simple, efficient and computer oriented. 

The algorithm is illustrated with the help of two 

numerical examples to highlight the advantages of the 

approach and the results are compared with the other 

existing techniques. 

Keywords:  Improved Least Squares, Integral square error, 

Order Reduction, Particle Swarm Optimization. 

I.INTRODUCTION 
Scientists and Engineers are confronted with the analysis, 

design and synthesis of real life problems. The first step in 

such studies is the development of a „mathematical model‟ 

which can be substitute for the real problem. The 

mathematical procedure of system modelling often leads to 

comprehensive description of a process in the form of high 

order differential equations which are difficult to use either 

for analysis (or) controller synthesis. It is hence useful and 

sometimes necessary to find the possibility of finding 

some equation of the same type but of lower order that 

may be considered to adequately reflect the dominant 

characteristics of the system under consideration. 

Numerous methods are available in the literature for order 

reduction of linear continuous systems in time domain as 

well as in frequency domain [1]-[7]. Basing on the 

simplicity and amicability, the frequency domain 

dependent methods have become more prominent. 

Transfer function reduction methods are one of the 

important groups in the frequency domain category. 

Inspite of the significant number of methods available, no 

approach always gives the best results for all systems. 

Almost all methods, however aim at accurate reduced 

models for a low computation cost. In addition it is desired  

 

to preserve the stability of the original model; i.e., given a 

stable high order model, the reduced order model should 

also be stable. 

     A popular approach, known as Pade approximation 

method for deriving reduced order models has been based 

on matching of the time moments of original and reduced 

order Systems [8-9]. This technique has a number of useful 

Properties, such as, computational simplicity, fitting of the 

Initial time moments and the steady state values of the 

output of original and reduced order systems being the 

same for input of the form  𝛼𝑖𝑡
𝑖 .This simple technique 

usually gives good results and is not computationally 

demanding. A well-known drawback of this method, 

however, is that an unstable reduced model might arise 

from a stable model. To remedy this situation, several 

variants of the method have been proposed. One such 

technique [10] suggests using a least-squares time moment 

fit to obtain a reduced transfer function denominator, and 

the numerator by exact time moment matching. Further, 

the method of model order reduction by least squares 

moment matching was generalised [12] by including the 

Markov parameters in the process to cope with a wider 

class of transfer functions. On the other hand, Aguirre [13] 

has argued that one of the chief advantages of the least 

squares Pade (LS-Pade) method is that additional 

information concerning the original system over the mid-

frequency range is included in the simplified model, and 

consequently better approximations are often obtained. 

       Numerous methods of order reduction are also 

available in the literature [14]-[17],based on the 

minimization of the integral square error, However a 

common feature in these methods [16]-[17] is that the 

values of the denominator coefficients of the reduced order 

model are chosen arbitrarily by some stability preserving 

methods and the numerator coefficients of the reduced 

order model are determined by minimizing of ISE. 

    Recently, Particle Swarm Optimization(PSO) Technique 

appeared as a Promising algorithm for handling the 

optimization problem. PSO is a population based 

stochastic optimization technique, inspired by social 

behaviour of bird flocking (or) fish schooling [18]. 

However unlike Genetic algorithm (GA), PSO has no 
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evolution operators such as crossover and mutation. One of 

the most promising advantage of PSO over GA is its 

algorithmic simplicity, as it uses a few parameters and 

easy to implement. In PSO the potential solutions, called 

particles flies through the search space with an adaptable 

velocity and  is dynamically modified according to its own 

flying experience and also to the flying experience of other 

particles. 

   In the present work, the authors present an algorithm for 

order reduction of Single Input Single Output (SISO) 

dynamic systems, which combines the advantages of the 

improved generalise Least squares method and error 

minimization by PSO. In this method the reduced 

denominator is obtained by the improved least squares 

method and the numerator of the reduced model is 

determined by minimizing the Integral Square Error 

between the transient responses of original and reduced 

model by PSO pertaining to a unit step input. The relative 

mapping errors between the original and reduced models 

are also determined and plotted with respect to time for 

both unit step and impulse inputs. The comparison 

between the proposed and the other well known existing 

order reduction techniques is also shown in the present 

work. In the following Sections the algorithm is described 

in detail and the same is used in solving two numerical 

examples.  

II DESCRIPTION OF ALGORITHM 
Let the transfer function of the original high order linear 

dynamic SISO system of order „n‟ be: 

 
 

𝐺𝑛 𝑠 =
𝑁 𝑠 

𝐷 𝑠 

=
𝑏0 + 𝑏1𝑠 + ⋯ + 𝑏𝑛−1𝑠

𝑛−1

𝑎0 + 𝑎1𝑠 + ⋯ + 𝑎𝑛−1𝑠
𝑛−1 + 𝑎𝑛𝑠

𝑛
    … (1) 

and  Let the corresponding  r
th 

order reduced model is 

synthesized as: 

𝑅𝑟 𝑠 =
𝑁𝑟 𝑠 

𝐷𝑟 𝑠 
=

𝑑0 + 𝑑1𝑠 + ⋯ + 𝑑𝑟−1𝑠
𝑟−1

𝑒0 + 𝑒1𝑠 + ⋯ + 𝑒𝑟−1𝑠
𝑟−1 + 𝑠𝑟

  … 2  

 

Further, the method consists of the following  steps. 
 

Step 1: Determination of the denominator coefficients 

of reduced order model using generalised least squares 

method:  

Expand 𝐺𝑛 𝑠  about s=0, to obtain the time moment 

proportional (𝐶𝑖) are given by 

𝐺𝑛 𝑠 =  𝐶𝑖𝑠
𝑖

∞

𝑖=0

                                                   ⋯ 3  

Evaluating Eq.(2) and(3) to retain „t‟ Time moments of the 

original model gives the following set of equations: 
 

 

 

 

 

 

 

 

 

 

 

 

𝑑0 = 𝑒0𝑐0 

𝑑1 = 𝑒1𝑐0 + 𝑒0𝑐1 

⋮       ⋮       ⋮                 

𝑑𝑟−1 = 𝑒𝑟−1𝑐0 + ⋯⋯ + 𝑒0𝑐𝑟−1 

−𝑐0 = 𝑒𝑟−1𝑐1 + ⋯⋯ + 𝑒1𝑐𝑟−1 + 𝑒0𝑐𝑟                  ⋯ (4) 

−𝑐1 = 𝑒𝑟−1𝑐2 + ⋯⋯ + 𝑒1𝑐𝑟 + 𝑒0𝑐𝑟+1 

⋮      ⋮       ⋮ 
−𝑐𝑡−𝑟−1 = 𝑒𝑟−1𝑐𝑡−𝑟 + ⋯⋯ + 𝑒1𝑐𝑡−2 + 𝑒0𝑐𝑡−1 
 

Similarly if  𝐺𝑛 𝑠  is expanded about 𝑠 = ∞, to obtain the 

markov parameters (𝑀𝑗 ) are given by: 

 

𝐺𝑛 𝑠 =  
𝑀𝑗

𝑠𝑗

∞

𝑖=1

                                                  ⋯ (5) 

Evaluating Eq.(2) and(5) to retain „m‟ Markov parameters 

of the original model gives the following set of equations: 

 

 𝑑𝑟−1 = 𝑀1 

 𝑑𝑟−2 = 𝑀1𝑒𝑟−1 + 𝑀2 

⋮            ⋮                ⋮ 
𝑑0 = 𝑀1𝑒1 + 𝑀2𝑒2 + ⋯ + 𝑀𝑟                                  ⋯ (6) 

𝑀1𝑒0 + 𝑀2𝑒1 + ⋯ + 𝑀𝑟𝑒𝑟−1 = −𝑀𝑟+1 

 ⋮                 ⋮                 ⋮ 
𝑀𝑚−𝑟𝑒0 + 𝑀𝑚−𝑟−1𝑒1 + ⋯ + 𝑀𝑚−1𝑒𝑟−1 = −𝑀𝑚  

Step 2: Elimination of 𝑑𝑗  (j=0,1,......r-1) in Eq.(4) by 

substituting Eq.(6) gives the reduced denominator 

coefficients  as the solution of: 

 
⋯ (7) 

(or) Pe = q in matrix vector form 

Eq. (7) is equivalent to equating all the significant time 

moments (𝐶𝑖) and  markov parameters (𝑀𝑗 )  

where 𝑖 = 0,1, ⋯ , 𝑡 − 1 𝑎𝑛𝑑 𝑗 = 1,2, ⋯ , 𝑚. 
 

Step 3: Calculation of „e‟ from this non square system of 

equation(7) can only done in the least square sense, i.e.: 
 

  𝑒 =  𝑃𝑇  𝑃  −1 𝑃𝑇  𝑞                                               ⋯ (8) 
 

Step 4: Finally the r
th 

order reduced denominator is 

obtained as:      𝐷𝑟 𝑠 = 𝑒0 + 𝑒1𝑠 + ⋯ + 𝑒𝑟−1𝑠
𝑟−1 + 𝑠𝑟  

 

Step 5: Determination of the numerator coefficients of 

the reduced order model by PSO technique: 

   The PSO method is population based search algorithm 

where each individual solution [coefficients of reduced 

numerator] is referred to as one particle and Each particle 

flies through the bounded search space with an adaptable 

velocity that is dynamically modified according to its own 

flying experience and also the flying experience of the 

other particles. In PSO, each particle strives to improve 

itself by imitating traits from their successful peers. 

Further each particle has a memory and hence it is capable 

of remembering the best position in the search space ever 
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visited by it. The position corresponding to the best 

fitness[ISE] of a particle is known as p_best(personal best) 

and overall best of all particles in the population is called 

g_best(global best).  
 

    In a d-dimensional search space, the best particles 

updates its velocity and positions with following 

equations: 
 

𝑣𝑗 ,𝑔
𝑡+1 = 𝑊 ∗ 𝑣𝑗 ,𝑔

𝑡 + 𝑐1∗𝛾1   ∗  𝑝𝑏𝑒𝑠𝑡𝑗 ,𝑔 − 𝑋𝑗 ,𝑔
𝑡   

                     + 𝑐2∗𝛾2   ∗  𝑔𝑏𝑒𝑠𝑡𝑔 − 𝑋𝑗 ,𝑔
𝑡                

𝑋𝑗 ,𝑔
𝑡+1 = 𝑋𝑗 ,𝑔

𝑡 + 𝑣𝑗 ,𝑔
𝑡+1                                                           ⋯ (9) 

 

𝑤𝑖𝑡ℎ 𝑗 = 1,2, ⋯ , 𝑛    𝑎𝑛𝑑  𝑔 = 1,2, ⋯ , 𝑑; 
Where  

n = no. Of particles in the swarm 

d = Vector dimension of the particle 𝑋𝑗  and its velocity 𝑣𝑗 . 

t = number of iteration. 

W = inertia weight factor 

𝑊 = 𝑊𝑚𝑎𝑥 −  𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛  ∗
𝐾−1

𝑁−1
 ; 

Where „K‟ is the current iteration and „N‟ is the maximum 

iteration. 

𝐶1, 𝐶2 = Cognitive and social acceleration factors 

respectively. 

𝛾1    , 𝛾2   = Random numbers uniformly distributed in 

the range (0,1). 

The 𝑗𝑡ℎ  
particle in the swarm is represented by a                

d-dimensional vector 𝑋𝑗 =  𝑋𝑗1 , 𝑋𝑗2 , ⋯ , 𝑋𝑗𝑑   and its 

velocity is denoted by another d-dimensional vector  

𝑣𝑗 =  𝑣𝑗1 , 𝑣𝑗2 , ⋯ , 𝑣𝑗𝑑  . The best previous visited position 

of the 𝑗𝑡ℎ  
particle is represented by 𝑝𝑏𝑒𝑠𝑡𝑗 =

 𝑝𝑏𝑒𝑠𝑡𝑗1 , 𝑝𝑏𝑒𝑠𝑡𝑗2 , ⋯ , 𝑝𝑏𝑒𝑠𝑡𝑗𝑑  .The best particle among 

all of the particles in the swarm is represented 

by 𝑔𝑏𝑒𝑠𝑡𝑔 = (𝑔𝑏𝑒𝑠𝑡1 , 𝑔𝑏𝑒𝑠𝑡2 , ⋯ , 𝑔𝑏𝑒𝑠𝑡𝑑). 

 

     In PSO each particle moves in a search space with a 

velocity according to its owns previous best solution 

(𝑝𝑏𝑒𝑠𝑡𝑗 ,𝑔) and its groups previous best solution ( 𝑔𝑏𝑒𝑠𝑡𝑔). 

The velocity update in the particle swarm consists of three 

parts; namely momentum, cognitive and social parts. The 

balance among these parts determines the performance of a 

PSO algorithm[19]. The parameter 

 𝐶1 𝑎𝑛𝑑 𝐶2 determine the relative pull of pbest and gbest 

and parameters 𝛾1    , 𝛾2    help in stochastically varying 

these pulls. The position and velocity  updates of a particle 

in PSO for a two dimensional parameter space shown in 

fig 1. 

 

 

Fig.1.Description of velocity and position updates in particle 

swarm optimization for a two dimensional parameter space 
 

In the present study, PSO is employed to minimize the 

objective function „E‟ which is the integral square error in 

between the transient response of original and reduced 

model is given by: 

𝐸 =   𝑦 𝑡 − 𝑦𝑟(𝑡) 2 . 𝑑𝑡                                
∞

0

⋯ (10) 

Where 𝑦 𝑡  and 𝑦𝑟(𝑡) are the unit step responses of 

original  𝐺𝑛(𝑠)  and reduced  𝐺𝑟(𝑠)  order systems, and 

the parameters to be determined are the numerator 

coefficients of the reduced order model as given in Eq.(2). 

To eliminate any steady state error in the approximation, 

the condition is: 

𝑑0 =
𝑏0

𝑎0

𝑐0                                                                                       ⋯ (11) 

In Table I , the specified parameters of the PSO algorithm 

used in the present study are given. The computational 

flow chart of the proposed algorithm is shown in Figure.2. 

TABLE I 

              PARAMETERS USED FOR PSO ALGORITHM 

Parameters Value 

Swarm Size 20 

Max. Iteration 50 

𝐶1, 𝐶2 2.0,2.0 

𝑊𝑚𝑎𝑥 , 𝑊𝑚𝑖𝑛  0.9,0.4 

 
 

 
Fig. 2 Flow chart of PSO algorithm 

 

III. RELATIVE MAPPING ERRORS 
   The relative mapping errors of the original model 

relative to its Reduced model are expressed by means of 

the relative integral square error criterion, which are given 

by [20] : 
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𝐼 =   𝐻 𝑡 − 𝐻𝑟(𝑡) 2. 𝑑𝑡
∞

0

 𝐻2(𝑡)
∞

0

. 𝑑𝑡          ⋯ (12) 

 

𝐽

=   𝐺 𝑡 − 𝐺𝑟(𝑡) 2. 𝑑𝑡
∞

0

  𝐺 𝑡 − 𝐺(∞) 2
∞

0

. 𝑑𝑡  ⋯ (13)   

 

Where, 𝐻 𝑡  and 𝐺 𝑡   are the impulse and step responses 

of original system, respectively, and 𝐻𝑟(𝑡) and 𝐺𝑟(𝑡) are 

that of their approximants. 

           In this paper, both the relative mapping errors „I‟ 

and „J‟ are calculated and plotted with respect to time for 

the proposed reduction algorithm. These relative mapping 

errors are also compared in the tabular form for the 

proposed reduction algorithm and the other well-known 

existing order reduction techniques. 
 

IV. NUMERICAL EXAMPLES 
Two numerical examples are chosen from the literature to 

show the flexibility and effectiveness of the proposed 

reduction algorithm than other existing methods, and the 

response of the original and reduced models are compared. 

 Example-1: Consider an eighth-order system[15] 

described by the transfer function as: 

 

𝐺8 𝑠 =

18𝑠7 + 514𝑠6 + 5982𝑠5 + 36380𝑠4

+122664𝑠3 + 222088𝑠2 + 185760𝑠 + 40320
𝑠8 + 36𝑠7 + 546𝑠6 + 4536𝑠5 + 22449𝑠4

+67284𝑠3 + 118124𝑠2 + 109584𝑠 + 40320

  

 ⋯ (14) 

If a second order reduced model 𝑅2(𝑠) is desired, then the 

steps to be followed are as under: 

Step-1: Expand 𝐺8(𝑠) about s=0, gives the time moment 

proportional‟s (𝐶𝑖)  where i=0,1,2,....which are shown 

below 
 

𝐺8 𝑠 = 1 + 1.889286𝑠 − 2.556337𝑠2 + 2.786301𝑠3 

    −2.890797𝑠4 + 2.943704𝑠5 + ⋯                 ⋯ (15) 
 

Similarly, Expand 𝐺8(𝑠) about s= ∞ gives the markov 

parameters(𝑀𝑗 ) where j= 1,2,3....... which are shown below 
 

𝐺8 𝑠 = 18𝑠−1 − 134𝑠−2 + 978𝑠−3 − 7312𝑠−4 

               +55650𝑠−5 ⋯                                           ⋯ (16) 
 

Step-2: Taking t=3 time moment proportional‟s and m=1 

markov parameters of  𝐺8 𝑠  in Eq.(7) gives the reduced 

denominator coefficients as the solution of : 

 
𝐶2 𝐶1

𝐶1 𝐶0
  

𝑒0

𝑒1
 =  

−𝐶0

𝑀1
                                          ⋯ (17) 

 

i.e.      
−2.556337 1.889286
1.889286 1

  
𝑒0

𝑒1
 =  

−1
18

    ⋯ (18) 
 

Step-3:The reduced denominator coefficients from Eq.(18)  

are obtained using  Eq.(8):Therefore,  
 

 𝐷𝑟 𝑠 = 𝑠2 + 7.203178𝑠 + 5.714764 
 

Step-4: By using PSO to minimize the objective function 

‟E‟, as described earlier, we have  
 

𝑁𝑟 𝑠 = 17.889124𝑠 + 5.714764 . 

Therefore, finally 𝑅2 𝑠  is given as: 

 

𝑅2 𝑠 =
17.889124𝑠 + 5.714764 

𝑠2 + 7.203178𝑠 + 5.714764
            ⋯ (19) 

The proposed method produces quite different reduced 

models gives the results as shown in Table II, where „t‟ 

time moments and „m‟ markov parameters are used to 

calculate the denominators and the numerators are 

determined by minimizing the integral square error using 

PSO technique. 

TABLE II 

COMPARISON OF SECOND ORDER MODELS BY 

PROPOSED 

t m 𝒅𝟎 𝒅𝟏 𝒆𝟎 𝒆𝟏 I J 

4 0 4.820 15.00 4.820 5.993 0.0145 0.0026 

3 1 5.714 17.88 5.714 7.203 0.0011 0.0015 

2 2 5.427 18.56 5.427 7.745 0.0013 0.0028 

5 0 4.632 14.41 4.632 5.750 0.0214 0.0042 

4 1 5.747 17.72 5.747 7.093 0.0014 0.00209 

 

A comparison of the proposed algorithm with the other 

well known existing order reduction techniques for a 

second-order reduced model is given in Table III. Figure 

4(a)-(c) Presents diagrams of step, impulse and frequency 

responses of 𝐺8 𝑠  and 𝑅2 𝑠 , respectively. 

 

TABLE III 

COMPARISON OF REDUCED ORDER MODELS 

Method of 

Reduction 

Reduced Models I  J  

Proposed 

method 

(t=3 

andm=1) 
 

 
17.8891s + 5.7147

s2 + 7.203178s + 5.7147
 

 

 

0.00119     

 

0.00157 

 

PSO [15] 

 

 
16.8517𝑠 + 5.1379

𝑠2 + 6.8976𝑠 + 5.1379
 

 

 

0.00178 

 

0.00070 

PSO and 

Eigen 

Spectrum[

17] 

 

 
22.836𝑠 + 8

𝑆2 + 9𝑠 + 8
 

 

 

0.04630 

 

 

0.02508 

Pole 

Clustering 

and Pade 

[5] 

 

 
16.51145𝑠 + 5.45971 

𝑠2 + 6.19642𝑠 + 5.45971
 

 

 

0.00834 

 

0.00959 

 

Mukherjee 

et al.[21] 

 

 
11.3909𝑠 + 4.4357

𝑠2 + 4.2122𝑠 + 4.4357
 

 

0.08993 

 

0.03881 

 

 

Pal[22] 

 
151776 .576𝑠+40320

65520𝑠2+75600 𝑠+40320
  

 

 

 

0.72967     

 

 

1.12609 

 

Chen et 

al[25] 

 

 
0.72046𝑠 + 0.36669

𝑠2 + 0.02768𝑠 + 0.36669
 

 

1.03179 

 

4.91813 
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   Fig. 4(a) Comparison of step responses of 𝐺8 𝑠  & 𝑅2 𝑠  

 

 Fig.4(b) Comparison of Impulse responses of 𝐺8 𝑠  &𝑅2 𝑠  

 

 
Fig. 4(c) Comparison of Bode Plots of 𝐺8 𝑠  and 𝑅2 𝑠  

   

Example-2: Consider an Eighth order system transfer 

function   taken from [23]:  

𝐺8
′  𝑠 =              

           

35𝑠7 + 1086𝑠6 + 13285𝑠5 + 82402𝑠4

+278376𝑠3 + 511812𝑠2 + 482964𝑠
+194480

𝑠8 + 21𝑠7 + 220𝑠6 + 1558𝑠5 + 7669𝑠4

+24469𝑠3 + 46350𝑠2 + 45952𝑠 + 17760

⋯ (20) 

 

By Using the proposed algorithm gives the result as shown 

below,  where  t=0 time moment proportional‟s and m=12 

markov parameters of  𝐺8
′ (𝑠) are used in Eq.(7) and 

Reduced denominator  coefficients from Eq.(8)  are 

obtained as : 
 

 𝐷𝑟 𝑠 = 𝑠2 + 1.947888𝑠 + 35.92345 ⋯ (21) 
 

 By using PSO to minimize the objective function ‟E‟, as 

described earlier, we have 
 

 𝑁𝑟 𝑠 = 40.389042𝑠 + 393.378021      ⋯ (22) . 
 

Therefore, finally 𝑅2
′ (𝑠)  is given as: 

 

𝑅2
′  𝑠 =

40.389042𝑠 + 393.378021

𝑠2 + 1.947888𝑠 + 35.923454 
           ⋯ (23) 

 

The Second order reduced models generated by the 

proposed method to Eq. (20) gives the results as shown in 

Table IV, where ‘t’ time moments and „m‟ markov 

parameters are used to calculate the denominators and the 

numerators  by minimizing the integral square error using 

PSO technique. 
 

TABLE IV 

COMPARISON OF SECOND ORDER MODELS BY 

PROPOSED 

t m 𝒅𝟎 𝒅𝟏 𝒆𝟎 𝒆𝟏 I J 

1 3 401.2 29.83 36.63 1.43 0.028 0.057 

2 3 394.3 32.73 36.00 1.5 0.019 0.047 

3 3 374.1 40.58 34.16 1.67 0.012 0.039 

0 10 400.4 42.84 36.56 2.21 0.023 0.049 

0 12 393.3 40.38 35.92 1.94 0.006 0.0031 

0 13 404.8 36.09 36.97 1.86 0.005 0.034 
 

A comparison of the proposed algorithm with the other 

well known existing order reduction techniques for a 

second-order reduced model is given in Table V. Figure 

4(d)-(f) Presents diagrams of step, impulse and frequency 

responses of 𝐺8
′  𝑠  and, 𝑅2

′  𝑠  respectively. 
 

TABLE V 

COMPARISON OF REDUCED ORDER MODELS 

Method of 

Reduction 

 

Reduced Models:𝑹𝟐
′ (𝒔) 

 

I 

 

J 

Proposed 

Algorithm 

(t=0&m=1

2) 

 
40.389042s + 393.378021

s2 + 1.947888s + 35.923454
 
0.0066 0.0318 

S.N.Siv

ananda

m et al 

[23] 

 
35𝑠 + 401.21

𝑠2 + 1.436𝑠 + 36.63
 

 

0.0311 

 

0.0640 

C.S.Hsieh 

et al[3] 

 
1.6666𝑠 + 61.271473

0.047619𝑠2 + 𝑠 + 5.595338
 

 

 

0.5594 

 

0.8629 

R.Prasad 

et al[6] 

 
8.690832𝑠 + 4.498007

𝑠2 + 0.836381𝑠 + 0.41076
 

 

0.9327 

 

2.9583 
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Y.Shamas 

[24] 

 
13.09095𝑠 + 5.271465

𝑠2 + 1.245549𝑠 + 0.481393
 

 

 

0.8841 

 

2.3253 

 Fig. 4(d) Comparison of step responses of 𝐺8
′ (𝑠) &𝑅2

′ (𝑠) 
 

       
Fig. 4(e) Comparison of Impulse responses of 𝐺8

′ (𝑠) & 𝑅2
′ (𝑠) 

 

 
   Fig. 4(f) Comparison of Bode Plots of 𝐺8

′ (𝑠) & 𝑅2
′ (𝑠) 

 

V. CONCLUSIONS 
The authors proposed a mixed algorithm for reducing the 

order of linear dynamic SISO systems. In this algorithm, 

the concept of order reduction by a generalised least-

squares method has been improved and employed to 

determine the coefficients of reduced denominator while 

the coefficients of the reduced numerator are obtained by 

minimizing the integral square error between the transient 

responses of original and reduced models using PSO 

technique pertaining to unit step input. The matching of 

the unit step and impulse responses is assured reasonably 

well in the algorithm. The algorithm is simple, rugged and 

computer oriented. 

      The relative step and impulse mapping errors between 

the original and reduced order models are also determined 

and plotted with respect to time. A comparison of these 

mapping errors for the proposed reduction algorithm and 

the other well known existing order reduction techniques is 

also given in Tables III and V, from which it is clear that 

the proposed algorithm compares well with the other 

techniques of model order reduction. 
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