
Mr. Dinesh S. Gawande, Asst. Prof. Rajesh C. Dharmik, Ms. Chanda Panse / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.445-450

445 | P a g e

A Load Balancing in Grid Environment

Mr. Dinesh S. Gawande *, Asst. Prof. Rajesh C. Dharmik **, Ms. Chanda Panse ***
*(Department of Computer Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India.

** (Department of Information Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India.

*** (Department of Computer Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India.

ABSTRACT
Grid computing is being adopted in various areas from

academic, industry research to government use. Grids

are becoming platforms for high performance and

distributed computing. The computational grid is a new

parallel and distributed computing paradigm that

provides resources for large scientific computing

applications. Many researchers have been proposed

numerous scheduling and load balancing techniques for

locally distributed multiprocessor systems. However,

they suffer from significant deficiencies when extended

to a grid environment. Computational grids have the

potential for solving large-scale scientific computing

applications. The main techniques that are most suitable

to cope with the dynamic nature of the grid are the

effective utilization of grid resources and the distribution

of application load among multiple resources in a grid

environment. In this paper contain short literature study

on generic load balancing model, load balancing policies

and propose scheduling and load balancing approach

and process of grid implementation by using Gridsim

toolkit.

Keywords: Grid computing, load balancer, Response

Time

I. INTRODUCTION
The rapid development in computing resources has

enhanced the performance of computers and reduced their

costs. This availability of low cost powerful computers

coupled with the popularity of the Internet and high-speed

networks has led the computing environment to be mapped

from distributed to Grid environments. In fact, recent

researches on computing architectures are allowed the

emergence of a new computing paradigm known as Grid

computing. Grid is a type of distributed system which

supports the sharing and coordinated use of geographically

distributed and multi owner resources, independently from

their physical type and location, in dynamic virtual

organizations that share the same goal of solving large-scale

applications. In order to fulfill the user expectations in terms

of performance and efficiency, the Grid system needs

efficient load balancing algorithms for the distribution of

tasks. A load balancing algorithm attempts to improve the

response time of user’s submitted applications by ensuring

maximal utilization of available resources. The main goal is

to prevent, if possible, the condition where some processors

are overloaded with a set of tasks while others are lightly

loaded or even idle [2]. Although load balancing problem in

conventional distributed systems has been intensively

studied, new challenges in Grid computing still make it an

interesting topic and many research projects are under way.

This is due to the characteristics of Grid computing and the

complex nature of the problem itself. Load balancing

algorithms in classical distributed systems, which usually

run on homogeneous and dedicated resources, cannot work

well in the Grid architectures. Load balancing involves

assigning job to a resource proportional to its performance,

thereby minimizing the response time of a job. However,

there are wide varieties of issues that need to be considered

for a heterogeneous grid environment. For example,

processing capacities of the resources may differ and their

usable capacities may vary according to the load imposed

upon them. Further, in grid computing, as resources are

distributed in multiple domains in the Internet, not only the

computational nodes but also the underlying network

connecting them are heterogeneous. Therefore, in the grid

environment it is essential to consider the impact of various

dynamic characteristics on the design and analysis of

scheduling and load balancing algorithms. Due to uneven

job arrival patterns and unequal computing capacities, one

resource may be overloaded while others may be

underutilized. It is therefore desirable to dispatch jobs to idle

or lightly loaded resources to achieve better resource

utilization and reduce the mean job response time. The

strategy proposed here is to perform scheduling and

balancing the application load in the grid environment by

taking resource heterogeneity, communication delay and

network heterogeneity into consideration.

II. LITERATURE REVIWE
Previous related work [2] addresses the problem of

scheduling and load balancing in a grid architecture where

computational resources are dispersed in different

administrative domains or clusters which are connected to

Mr. Dinesh S. Gawande, Asst. Prof. Rajesh C. Dharmik, Ms. Chanda Panse / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.445-450

446 | P a g e

the grid scheduler by means of heterogeneous

communication bandwidths is considered. In this reference

[14], the problem of transferring files that are generated

during the execution of DAG workflows with

interdependent tasks is addressed. The ineffectiveness of

advanced file-transfer techniques in these cases is discussed,

and a heuristic is proposed for dealing with the scheduling

of interdependent and independent tasks that arrive on-line

to be processes by grid infrastructure. The Best File-

Transfer Time (BFTT) heuristic is proposed in this study as

a means to circumventing the problem of reducing the time

spent for transferring data files among different resources in

the grid, while still ensuring good performance and/or good

load balance among the resources. In addition, BFTT is

implemented in this work in conjunction with the OLB

algorithm, and a few tests for verifying its results are

performed and discussed. One of the main load balancing

methods mentioned in the reference [7] is dynamic

decentralized approach. This approach considers the run

time environment before distributing the jobs among the

nodes of the grid. The dynamic decentralized approach is

preferred because elements of the grid may vary in capacity

or number during runtime and also be heterogeneous in

nature giving rise to different loading conditions. In this

paper we compare the different load balancing algorithms

for the grid based on various metrics like communication

overhead, load balancing time, scalability, fault tolerance,

reliability and stability [13].The GridSim toolkit provides a

comprehensive facility for simulation of different classes of

heterogeneous resources, users, applications, resource

brokers, and schedulers. It can be used to simulate

application schedulers for single or multiple administrative

domains distributed computing systems such as clusters and

Grids. Application schedulers in the Grid environment,

called resource brokers, perform resource discovery,

selection, and aggregation of a diverse set of distributed

resources for an individual user. This means that each user

has his or her own private resource broker and hence it can

be targeted to optimize for the requirements and objectives

of its owner. In contrast, schedulers, managing resources

such as clusters in a single administrative domain, have

complete control over the policy used for allocation of

resources. This means that all users need to submit their jobs

to the central scheduler, which can be targeted to perform

global optimization such as higher system utilization and

overall user satisfaction depending on resource allocation

policy or optimize for high priority users.

III. LOAD BALANCING IN GRID

ENVIORNMENT

A. Load Balancing Approaches

Load balancing problem has been discussed in traditional

distributed systems literature for more than two decades.

Various algorithms, policies have been classified [15].

 Load Balancing AlgorithmsAlgorithms can be

classified into two categories: static or dynamic.

(a) Static Load Balancing Algorithm

Figure 1: Static Load Balancing

Static load balancing algorithms allocate the tasks of a

parallel program to workstations based on either the load at

the time nodes are allocated to some task, or based on an

average load of our workstation cluster. The decisions

related to load balance are made at compile time when

resource requirements are estimated. The advantage in this

sort of algorithm is the simplicity in terms of both

implementation as well as overhead, since there is no need

to constantly monitor the workstations for performance

statistics. However, static algorithms only work well when

there is not much variation in the load on the workstations.

Clearly, static load balancing algorithms aren’t well suited

to a Grid environment, where loads may vary significantly

at various times.

(b) Dynamic Load Balancing Algorithm

Figure 2: Dynamic Load Balancing

Dynamic load balancing algorithms make changes to the

distribution of work among workstations at run-time; they

use current or recent load information when making

distribution decisions. Multicomputers with dynamic load

balancing allocate/reallocate resources at runtime based on

no a priori task information, which may determine when and

whose tasks can be migrated. As a result, dynamic load

balancing algorithms can provide a significant improvement

in performance over static algorithms.

Mr. Dinesh S. Gawande, Asst. Prof. Rajesh C. Dharmik, Ms. Chanda Panse / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.445-450

447 | P a g e

B. Load Balancing Policies

Load balancing algorithms can be defined by their

implementation of the following policies [5]:

• Information policy: specifies what workload information

to be collected, when it is to be collected and from where.

• Triggering policy: determines the appropriate period to

start a load balancing operation.

• Resource type policy: classifies a resource as server or

receiver of tasks according to its availability status.

• Location policy: uses the results of the resource type

policy to find a suitable partner for a server or receiver.

• Selection policy: defines the tasks that should be migrated

from overloaded resources (source) to most idle resources

(receiver).

The main objective of load balancing methods is to speed up

the execution of applications on resources whose workload

varies at run time in unpredictable way. Hence, it is

significant to define metrics to measure the resource

workload. Every dynamic load balancing method must

estimate the timely workload information of each resource.

This is key information in a load balancing system where

responses are given to following questions:

• How to measure resource workload?

• What criteria are retaining to define this workload?

• How to avoid the negative effects of resources

dynamicity on the workload

• How to take into account the resources heterogeneity in

order to obtain an instantaneous average workload

representative of the system? Several load indices have been

proposed in the literature, like CPU queue length, average

CPU queue length, CPU utilization, etc. The success of a

load balancing algorithm depends from stability of the

number of messages (small overhead), support environment,

low cost update of the workload, and short mean response

time which is a significant measurement for a user. It is also

essential to measure the communication cost induced by a

load balancing operation.

C. Scheduling and Load Balancing

Grid computing enables sharing, selection and aggregation

of large collections of geographically and organizationally

distributed heterogeneous resources for solving large-scale

data and compute intensive problems. Resources are

dynamic in nature so the Load of resources varies with

change in configuration of Grid and it makes Load

Balancing more important in case of Grid environment. In

grid environments, the shared resources are dynamic in

nature, which in turn affects application performance.

Workload and resource management are two essential

functions provided at the service level of the Grid software

infrastructure. To improve the global throughput of these

environments, effective and efficient load balancing

algorithms are fundamentally important. The focus of our

study is to consider factors which can be used as

characteristics for decision making to initiate Load

Balancing. Load Balancing is one of the most important

factors which can affect the performance of the grid

application. The main objective is to propose an efficient

Load Balancing Algorithm for Grid environment. Main

difference between existing Load Balancing algorithm and

proposed Load Balancing is in implementation of three

policies: Information Policy, Triggering Policy and

Selection Policy. For implementation of Information Policy

all existing Load Balancing algorithm use periodic

approach, which is time consuming. The proposed approach

uses activity based approach for implementing Information

policy. For Triggering Load Balancing proposed algorithm

uses two parameters which decide Load Index. On the basis

of Load Index Load Balancer decide to activate Load

Balancing process. For implementation of Selection Policy

Proposed algorithm uses Job length as a parameter, which

can be used more reliably to make decision about selection

of job for migration from heavily loaded node to lightly

loaded node. The choice of a load balancing algorithm for a

Grid environment is not always an easy task. Some load

balancing strategies work well for applications with large

parallel jobs, while others work well for short, quick jobs.

Some strategies are focused towards handling data-heavy

tasks, while others are more suited to parallel tasks that are

computation heavy. While many different load balancing

algorithms have been proposed, there are four basic steps

that nearly all algorithms have in common:

• Monitoring workstation performance (load monitoring)

•Exchanging this information between workstations

(synchronization)

• Calculating new distributions and making the work

movement decision (rebalancing criteria)

• Actual data movement (job migration)

Efficient Load Balancing algorithm makes Grid Middleware

efficient and which will ultimately leads to fast execution of

application in Grid environment. In this paper, an attempt

has been made to formulate a decentralized, sender-initiated

load balancing algorithm for Grid environments which is

based on different parameters. One of the important

characteristics of this algorithm is to estimate system

parameters such as queue length and CPU utilization of each

participating nodes and to perform job migration if required.

The propose Load balancing should take place when the

load situation has changed. There are some particular

activities which change the load configuration in Grid

environment. The activities can be categorized as following:

• Arrival of any new job and queuing of that job to any

particular node.

• Completion of execution of any job.

• Arrival of any new resource

• Withdrawal of any existing resource.

Whenever any of these four activities happens activity is

communicated to master node then load information is

collected and load balancing condition is checked. If load

balancing condition is fulfilled then actual load balancing

Mr. Dinesh S. Gawande, Asst. Prof. Rajesh C. Dharmik, Ms. Chanda Panse / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.445-450

448 | P a g e

activity is performed. Here actual load distribution is

performed at a centralized controller or manager node. The

central controller polls each workstation and collects state

information consisting of a node’s current load as well as

the number of jobs in the node’s queue. The polling is done

on basis of occurrence of some defined activity. In the

proposed algorithm information is collected only if there is a

change in configuration of Grid. This information is used to

perform load balancing. First of all it initializes different

parameters. Whenever any of four activities which are

required to start information policy of load balancing

occurs, it starts collecting load balancing information. Once

information has been gathered then it is decided that load

balancing is required or not. For this purpose application

uses CPU utilization and queue length parameters. With

help of these parameters we decide which resource is

heavily loaded and which resource is lightly loaded. After

selection of resource the application selects job out of n-jobs

running on that resource. This selection is based upon on

CPU consumption of different jobs. Least CPU consumed

job will be selected for migration. When job is selected,

application checks for available lightly loaded resource. If

lightly loaded resource is available then migrate selected job

from heavily loaded resource to lightly loaded resource. If

no lightly loaded resource is available then add selected job

to pending job list. This job will be executed later when

some lightly loaded resource will be available.

IV. EXPERIMENTAL ENVIONMENT

A. GridSim Simulation ToolKit

The simulation was carried out on the excellent grid

simulation toolkit GridSim ToolKit 5.0 [13] which allows

modeling and simulation of entities in grid computing

systems-users, applications, resources, and resource load

balancers for design and evaluation of load balancing

algorithms. A heterogeneous grid environment by using

various resource specifications was built. It proposes the

method of creating a user job and different types of

heterogeneous resources. The resources differ in their

operating system type, CPU speed, RAM memory, MIPS

rating.

B. Methodology

The GridSim [11] toolkit provides a comprehensive facility

for simulation of different classes of heterogeneous

resources, users, applications, resource brokers, and

schedulers. For that first the toolkit is installed on the

computer. Then Gridsim package is imported to simulate

Gridsim environment. The users can be created in Gridsim

and there can be more than one user at a time using the grid.

Below are the steps to be followed in JAVA code to create a

Grid Resource.

• Create an object of type MachineList to store one or more

Machines

MachineList mList = new MachineList();

• A Machine contains one or more PEs/ CPUs. So we create

an object of type PEList to store this PEs before creating a

Machine.

PEList peList1 = new PEList();

• Create PEs and add these into the object of PEList created

in step 2. We have to specify the unique ID of the PE as first

parameter and its MIPS (Millions of Instruction per Second)

rating as second parameter.

peList1.add(new PE(0, 377));

• Create a Machine with its unique ID and the PEList

asscociated with it.

mList.add(new Machine(0, peList1));

• Repeat the steps from step 2 to step 4 to create additional

number of machines.

• Create a Resource Characteristics object which will store

the properties of a Grid Resource.

ResourceCharacteristics resConfig = new

ResourceCharacteristics(arch ,osm List,

ResourceCharacteristics.TIME_SHARED,

time_zone, cost);

 Figure: 3 Grid Resource creation in Gridsim

In the final step we create an object of Grid Resource

specifying its name, communication speed, peak load, off

peak load, holiday load and list of holidays along with the

Resource Characteristics object which was created in the

step 6. Resource creation is shown in Fig. 3

The steps to create Grid User(s) in GridSim are

straightforward, but each User must have a unique ID. The

steps to create a Grid User are as follows:

1. Create an object of type ResourceUserList.

ResourceUserList userList = new ResourceUserList();

2. Add to this list Grid users specifying a unique ID, first

user has to have ID equal to 0.

Just keep on adding Grid users to this list if we wish to

create to more of them.

userList.add(0);

Mr. Dinesh S. Gawande, Asst. Prof. Rajesh C. Dharmik, Ms. Chanda Panse / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.445-450

449 | P a g e

In the terminology of GridSim, a job which can run

sequentially and independently on a Grid Resource is called

a Gridlet. After the creation of Grid Resource we create

Gridlets in the GridSim which can then be submitted to the

latter. We need to specify the length of Gridlet, its output

file size, its input file size, its unique ID for simulation.

Gridlet creation can be done in two modes first is the

manual option and second is with the use GridSim Random

functions to take care of the sstatistical needs of highly

unpredictable Grid environment simulation. The steps to

create Gridlet(s) in manual modes are:

1. Create an object of type GridletList

GridletList list = new GridletList();

2. Create an object of type Gridlet specifying its unique id,

length, input file, output file size in types integer, double,

long integer and long integer respectively.

Gridlet gridlet1 = new Gridlet(id, length, file_size,

output_size);

3. Add the object created in step 2 to the Gridlet list created

in step 1.

list.add(gridlet1);

4. To create more Gridlets repeat from step 1.

Figure 4: Gridlet and user creation in Gridsim

V. CONCLUSION
This paper propose method used for load estimation and

load distribution effectively. The focus of paper is to

consider factors which can be used as characteristics for

decision making to initiate Load Balancing. The load

balancing algorithm for the grid can be made more robust by

scheduling all jobs irrespective of any constraints so as to

balance the load perfectly. The grid resource, gridlet and

grid users are created by using Gridsim toolkit. After

performing load balancing the efficiency of algorithm is

calculated in terms of resource utilization, throughput and

response time of system in further work.

REFERENCES

[1]. Belabbas Yagoubi and Yahya Slimani, “Dynamic

Load Balancing Strategy for Grid Computing”

Proceedings of World Academy of Science,

Engineering and Technology Volume 13 May 2006

ISSN 1307-6884.

[2] Malarvizhi Nandagopal1 and Rhymend V

Uthariaraj2 “Hierarchical Status Information

Exchange Scheduling and Load Balancing For

Computational Grid Environments” IJCSNS

International Journal of Computer Science and

Network Security, VOL.10 No.2, February 2010.

[3]. S.Rips “Load Balancing Support for Grid-enabled

Applications” NIC Series, Vol. 33, ISBN 3-00-

017352-8, pp. 97-104, 2006.

[4]. Po-Cheng Chen,Cheng-I Lin,Sheng-Wei

Huang,Jyh- Biau Chang, Ce-Kuen Shieh,Tyng-Yeu

Liang, “A Performance Study of Virtual Machine

Migration vs Thread Migration for Grid Systems”.

[5]. S Kalaiselvi Supercomputer Education and

Research Centre (SERC), Indian Institute of

Science, Bangalore V Rajaraman Jawaharlal Nehru

Centre for Advanced Scientific Research, Indian

Institute of Science Campus, Bangalore “A Survey

of Check-Pointing Algorithms for Parallel and

Distributed Computers” vol. 25,Part 5,October

2000,pp.489±510.

[6] A. Abed, G. Oz, A. Kostin, Competition-Based

Load Balancing for Distributed Systems,

Proceedings of the Seventh IEEE International

Symposium on Computer Networks (ISCN' 06),pp

230 – 235.

[7] D. Acker, S. Kulkarni, “A Dynamic Load

Dispersion Algorithm for Load-Balancing in a

Heterogeneous Grid System” Sarnoff Symposium

IEEE, May 2007, pp 1- 5.

[8] Dobber, M., Koole, G., Mei, R.: Dynamic load

balancing experiments in a Grid. In: Proceedings

of IEEE International Symposium on Cluster

Computing and the Grid, Cardiff, 2005.

[9] Kai Lu, Riky Subrata and Albert Y. Zomaya, “An

Efficient Load Balancing Algorithm for

Heterogeneous Grid Systems Considering

Desirability of Grid Sites”, IEEE International

Performance, Computing, and Communications

Conference, 2006. IPCCC 2006. Vol 25Page(s):9

pp. – 320.

[10] Kimura, K., Ichiyosi, N.: Probabilistic analysis of

the optimal efficiency of the multi-level dynamic

Mr. Dinesh S. Gawande, Asst. Prof. Rajesh C. Dharmik, Ms. Chanda Panse / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 2, Mar-Apr 2012, pp.445-450

450 | P a g e

load balancing schemes. In: Proceedings of the 6th

Distributed Memory Computing Conference,

Portland, (1991)

[11] Kameda, H., Li, J., Kim, C., Zhang, Y.: Optimal

Load Balancing in Distributed Computer Systems.

Springer, London (1997).

[12]. Shahzad Malik, “Dynamic Load Balancing in a

Network of Workstations”, 95.515F Research

Report, November 29, 2000.

[13] Rajkumar Buyya1,∗ ,† and Manzur Murshed2

“GridSim: a toolkit for the modeling and

simulation of distributed resource management and

scheduling for Grid computing” CONCURRENCY

AND COMPUTATION: PRACTICE AND

EXPERIENCE Concurrency Computat.: Pract.

Exper. 2002; 14:1175–1220 (DOI:

10.1002/cpe.710)

[14] Elaine C. Machtans1,2; Liria M. Sato2; Airton

Deppman3”Improvement on Scheduling

Dependent Tasks for Grid Applications” 2009

International Conference on Computational

Science and Engineering.

[15] Javier Bustos Jimenez, Robin Hood: An Active

Objects Load Balancing Mechanism for Intranet.

