FPGA IMPLEMENTATION OF A VEDIC CONVOLUTION ALGORITHM

Asmita Haveliya

M.Tech. (Pursuing), Dept. Of Electronics, ASET Amity University Lucknow, India

ABSTRACT

In digital signal processing convolution is a fundamental computation that is ubiquitous in many application areas. In order to compute convolution of long sequence, Overlap-Add method (OLA) and Overlap-Save method (OLS) methods are employed. In this paper, block convolution process is proposed using a multiplier architecture based on vertical and crosswise algorithm of Ancient Indian Vedic Mathematics and embedding it in OLA method for reducing calculations. And as the vedic multiplier is been used it is named as Vedic convolution algorithm. The coding is done in VHDL (Very High Speed Integrated Circuits Hardware Description Language) for the FPGA, as it is being increasingly used for variety of computationally intensive applications.Simulation and synthesis is done using Xilinx.

Keywords - Convolution; Overlap-Add (OLA); Overlap-Save (OLS); Vedic Maths; VHDI.

I. INTRODUCTION

In this paper, Urdhva-Tiryakbhyam Sutra [7] is first applied to the binary number system and is used to develop digital multiplier architecture. This Sutra also shows the effectiveness of reducing the N×N multiplier [18] structure into an efficient 4×4 multiplier structures. This work presents a systematic design methodology for fast and area efficient digital multiplier based on Vedic mathematics [6]. The basic work proposed in this paper is been explained using the block diagram in Fig 1.

In this paper, the block convolution [21] algorithm is implemented in VHDL (Very High Speed Integrated Circuited Hardware Description Language) [3] and the FPGA synthesis and logic simulation are done using Xilinx ISE design suite 12.1

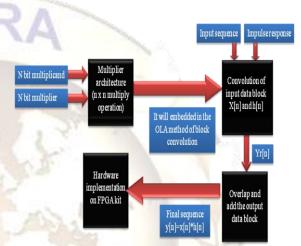


FIGURE 1: Block diagram of the process followed.

II. CONVOLUTION

Convolution [12] is the mathematical process that relates the output, y(t), of a linear, time-invariant system [4] to its input, x(t), and impulse response, h(t).

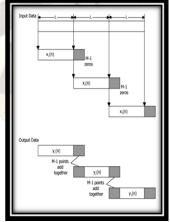


FIGURE 2: Overlap add method.

The overlap-add method [13] (OLA) is an efficient way to evaluate the discrete convolution between a very long signal x[n] with a finite impulse response

h[n].The Fig.1 shows the concept of overlap add [11] method by Zero-pad length-*L* blocks by M-1 samples. Add successive blocks, overlapped by M-1 samples, so that the tails sum to produce the complete linear convolution.

III. URDHVA-TIRYAGBHYAM SUTRA

Urdhva-Tiryagbhyam [19] is the general formula applicable to all cases of multiplication and also in the division of a large number by another large number. It means vertically and crosswise. We discuss multiplication of two, three digit numbers with this method by placing the carried over digits under the first row and proceed.

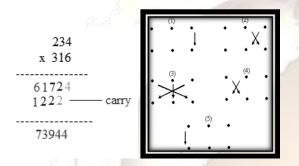


FIGURE 3: General rule for a 3 digit by 3 digit multiplication.

Steps:

i) 4 X 6 = 24: 2, the carried over digit is placed below the second digit.

ii) $(3 \times 6) + (4 \times 1) = 18 + 4 = 22$; 2, the carried over digit is placed below third digit.

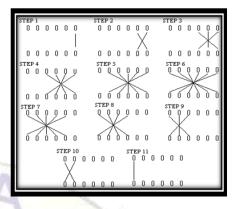
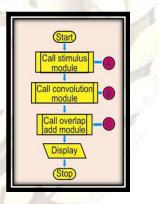
iii) (2 X 6) + (3 X 1) + (4 X 3) = 12 + 3 + 12 = 27; 2, the carried over digit is placed below fourth digit.

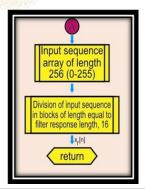
iv) (2 X 1) + (3 X 3) = 2 + 9 = 11; 1, the carried over digit is placed below fifth digit.

v) (2X3) =6.

vi) Respective digits are added.

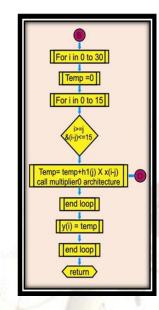
The basic rule for the multiplication of two numbers of 6 digits is shown using the line drawing as follows. Similarly for any number of digits this multiplication technique of ancient Indian Vedic mathematics [6] can be used.

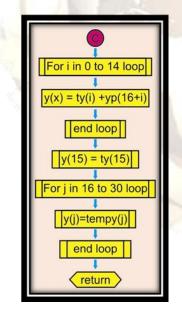

FIGURE 4: General rule for a 6 digit by 6 digit multiplication.

IV. METHEDOLOGY FOLLOWED

In this proposed paper we have made a convolution with x(n) and h(n) both having 256 samples. And as we are performing block convolution using overlap add method this sample is divided into 16 input data block for OLA method, each having 16 elements. The methedology followed in this proposed work is explained using the flow diagrams below.



This flow "A" is the stimulus module which is dividing the input sequence of length 256 into 16 input blocks of length 16.



679 | Page

This flow "B" is the convolution module which is performing the convolution of individual block with 16 elements.

The flow "C" is overlap add module which helps in providing efficient area and speed of the proposed architechture as it reduces the complexity of the calculation.

This flow "D" is the main block which reduces the calculation complexity to a very wide extent. This block is Vedic multiplier which is used wherever multiplication is to be done.

V. FPGA

The introduction of field programmable gate arrays (FPGA), has made it feasible to provide hardware for application specific computation design. The changes in designs in FPGA's [20] can be accomplished within a few hours, and thus result in significant savings in cost and design cycle. FPGAs offer speed comparable to dedicated and fixed hardware systems for parallel algorithm. The vedic convolution algorothm proposed in this paper is been simulated and synthesised using the xilinx design suite 12.1 with the device family as Vertex 6 (low power).the summary of the device description of the vertex FPGA used is explained in the table below

TABLE I.	SUMMARY OF FPGA FEATURES
----------	--------------------------

Device Family	Vertex 6
Device	XC6VLX75TL
Package	FF484
Speed Grade	-3L

The features of the vertex 6 FPGA used in this proposed work with Xilinx Design Suite 12.1, as described the Xilinx are listed in the table below.

TABLE II.	SUMMARY OF VERTEX 6 FEATURES
TADLE II.	SOMMART OF VERTEX OTEXTORES

1. 1. /

Features	Virtex-6
Logic Cells	760,000
BlockRAM	38Mb
DSP Slices	2,016
DSP Performance (symmetric FIR)	2,419GMACS
Transceiver Count	72
Transceiver Speed	11.18Gb/s
Total Transceiver Bandwidth (full duplex)	536Gb/s
Memory Interface (DDR3)	1,066Mb/s
PCI Express® Interface	Gen2x8

Agile Mixed Signal (AMS)/XADC	Yes
Configuration AES	Yes
I/O Pins	1,200
I/O Voltage	1.2V, 1.5V, 1.8V,
	2.5V
EasyPath Cost Reduction	Yes
Solution	

VI. RESULTS

The main point of this paper was to introduce a method for calculating the linear convolution sum of two finite length sequences that is easy to learn and perform. It has been found on embedding Vedic multiplication for OLA, there is a considerable improvement in their performance. The table below shows the synthesis report of the proposed work with the logic resource utilization.

 TABLE III.
 SUMMARY OF SYNTHESIS REPORT

Device Utilization Summary (estimated values)								
Logic Utilization	Used	Available	Utilization					
Number of Slice Registers	988	93120	1%					
Number of Slice LUTs	10799	46560	23%					
Number of fully used LUT-FF pairs	408	11379	3%					
Number of bonded IOBs	625	240	260%					
Number of BUFG/BUFG CTRLs	1	32	3%					

The other constraints of the synthesis report are as follows.

Total REAL time to Xst completion: 775.00 secs Total CPU time to Xst completion: 774.89 secs Total memory usage is 317328 kilobytes

The following are the simulation results of the proposed work.

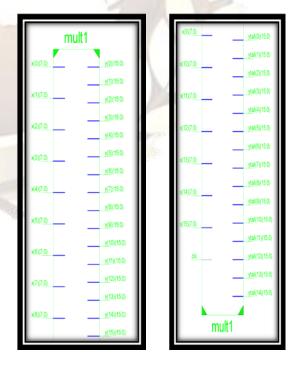
Name	Yalue	Luu	999,996 ps	1999,997 ps	1999,998 ps	1999,999 ps 1
Ug dk	0					
🕨 👹 x[0:15]	[101011,	[101011,1	01011,100011,0,110	,1001101,10110,10	001,101100,110111	,0,10,11,100,10
🕨 🕌 x1[0:255]	[1100,11	[1100,110	1,101101,1000001,1	00,101,101011,101	011,100011,110111,	111,101100,110
🕨 👹 y[0:15]	[1110110	[11101101	1110101,101111101	000111,1110000101	11001,11000111000	D101,101100000)
🕨 👹 ytai[0:14	[1101011	[11010111	0110100,100110101	111001,1011000100	11101,10010010000	0110,100001100)
🎼 dk_period	1000 ps			1000 ps		

Name	¥alue	1	999,996 ps	999,997 ps	999,998 ps	999,999 ps
🗓 ck	0					
🔻 🍓 x[0:15]	[101011,	[101011,1	01011,100011,0,110	,1001101,10110,10	0001,101100,110111	,0,10,11,100,10
16 (o)	101011			101011		
1 [1]	101011			101011		
16 [2]	100011			100011		
16 [3]	0			0		
16 [4]	110			110		
16 [5]	1001101			1001101		
16]	10110			10110		
16 [7]	100001			100001		
16 [8]	101100			101100		
[9] لائي	110111			110111		
16 [10]	0			0		
16 [11]	10			10		
16 [12]	11			11		
16 [13]	100			100		
16 [14]	1001110			1001110		
16 [15]	11			11		
🔻 🔣 ×1[0:255]	[1100,11	[1100,110	1,101101,1000001,1	00,101,101011,101	011,100011,110111,	111,101100,110
1 <u>6</u> [0]	1100			1100		
16 [1]	1101			1101		
16 [2]	101101			101101		
16 [3]	1000001			1000001		
16 [4]	100			100		
16 (5)	101			101		

Name	Value	1	999,996 ps	999,997 ps	999,998 ps	999,999 ps 1
16]	101011			101011		
46 [7]	101011			101011		
16 [8]	100011			100011		
(9] لائ	110111			110111		
lia [10]	111			111		
16 [11]	101100			101100		
16 [12]	110111			110111		
16 [13]	1000010			1000010		
16 [14]	1001101			1001101		
16 [15]	10110			10110		
lia [16]	100001			100001		
17]	101100			101100		
lia [18]	110111			110111		
19]	1001100			1001100		
lia (20)	1010111			1010111		
lia [21]	110110			110110		
16 [22]	110111			110111		
1 [23]	100010			100010		
16 [24]	101101			101101		
lig [25]	1000001			1000001		
le [26]	1011001			1011001		
16 [27]	1001			1001		
16 [28]	1100011			1100011		
16 [29]	1010110			1010110		
16 [30]	1010111			1010111		

						Name	Value	1999,996 ps	999,997 ps	999,998 ps	1999,999 ps
Name	Value	999,996 ps		999,998 ps 9999,999 ps	1		value 1100010		1100010		1999,999 ps
1 [31]	111000		111000			U ₀ [100]	1000011		1000011		
U ₀ [32]	111000		111000			U ₀ [108]			1110110		
Un [33]	1000011		1000011			la [109]			1001101		
16 [34] 16 [35]	110110 110101		110110 110101			1. [110]	1100011		1100011		
Un [36] Un [36]	110101		100010			1. [111]			1111101		
U ₀ [37]	100011		100011			1 [112]	101100		101100		
16 [38]	111000		111000			U. [113]	10111		10111		
Un [39]	10110		10110			16 [114]	1110000		1110000		
Ug [40]	100010		100010			1 [115]	101101		101101		
U ₀ [41]	110111		110111			16 [116]	1011001		1011001		
16 [42]	1001110		1001110			16 [117]	1000010		1000010		
16 [43]	1100010		1100010			16 [118]	110111		110111		
16 [44]	1000011		1000011		1000	1 [119]	101101		101101		
16 [45]	1110110		1110110		Street, Square,	16 [120]	100010		100010		
16 [46]	1001101		1001101		the second se	16 [121]	10111		10111		
Un [47]	1100011		1100011			122]	101101		101101		
16 [48]	1111101		1111101		Durnet, M	123]	1000010		1000010		
U ₀ [49]	101100		101100			124]	1001110		1001110		
16 [50]	10111		10111			16 [125]	1001101		1001101		
U ₀ [51]	1110000 101101		1110000			126]	1100		1100		
U ₀ [52]	101101		101101 1011001			1 [127]	1101		1101		
U ₀ [53] U ₀ [54]	1011001		1011001			128]	101101		101101		
U ₀ [55]	1101111		110111			129] 🖓 [129]	1000001		1000001		
						lig [130]	100		100		
		R I	1.1.	State of the		1	. 3.7	and the second		1	
Name	Value	1999,996 ps		999,998 ps 999,999 ps	Sec.	Name	Value	1999,996 ps	999,997 ps	999,998 ps	1999,999 ps
16 [56]	101101		101101			16 [131]			101		
16 [57]	100010		100010			1 [132]	101011		101011		
16 [58]	10111		10111			16 [133]	101011		101011		
16 [59] 16 [60]	101101 1000010		101101			134]	100011		100011		
ug (60) 16 (61)	1000010		1000010			ີ [135]			110111		
lia [61]	1001110		1001101			136]	111		111		
la [63]	1100		1100			16 [137]			101100		
164]	1101		1101			[138]	110111		110111		
165]	101101		101101			Ug [139] Ug [140]	1000010 1001101		1000010		
166]	1000001		1000001			ug [140] Ug [141]	1001101		1001101 10110		
167]	100		100			la [141]			100001		
168]	101		101			la [143]	101100		101100		
169]	101011		101011			lia [144]			110111		
[70]	101011		101011			145]	1001100		1001100		
16 [71]	100011		100011			146]	1010111		1010111		
[72]	110111		110111			147]	110110		110110		
16 [73]	111		111			7 [148]	110111		110111		
16 (74) 16 (75)	101100 110111		101100			149]	100010		100010		
le [76]	1000010		1000010			16 [150]	101101		101101		
lig [77]	1001101		1001101		1	16 [151]			1000001		
16 [78]	10110		10110			Ug (152) Ug (153)	1011001 1001		1011001 1001		
[79]	100001		100001		all a	ug [155] [154]			1100011		
16 [80]	101100		101100			lla (155)			1010110		
		1.1		1							
						Name	Value	1999,996 ps	1999,997 ps	1999,998 ps	1999,999 ps
Name	¥alue	1999,996 ps		99,998 ps 999,999 ps			value 1010111		1010111		
	110111		110111				111000		111000		
	1001100		1001100			70	111000		111000		
	1010111 110110		1010111				1000011		1000011		
	110110 110111		110110			160]	110110		110110		
	100010		100010				110101		110101		
			101101				100010		100010		
	1000001		1000001				100011		100011		
	1011001		1011001		Signal Wallshow		111000		111000		
16 [90]	1001		1001			165]			10110		
16 [91]	1100011		1100011				100010		100010		
U ₀ [92]	1010110		1010110				110111		110111		
	1010111		1010111				1001110		1001110		
16 [94]	111000		111000				1100010		1100010		
	111000		111000				1000011		1000011		
(96]	1000011		1000011				1110110		1110110		
	110110		110110			u@ [172]]⊑_rraa	1001101 1100011		1001101		
			110101				1100011 1111101		1100011		
	100010 100011		100010				101100		101100		
	100011 111000		100011			ug [175] Ug [176]			10110		
Ug [101] Ug [102]			10110				1110000		1110000		
102 [102]	100010		100010				101101		101101		
	110111		110111				1011001		1011001		
					0						
			1001110			us [180]	1000010		1000010		

682 | P a g e


Name	Value	 999,996 ps	999,997 ps	999,998 ps	999,999 ps
16 [181]	110111		110111		
16 [182]	101101		101101		
16 [183]	100010		100010		
16 [184]	10111		10111		
16 [185]	101101		101101		
16 [186]	1000010		1000010		
16 [187]	1001110		1001110		
16 [188]	1001000		1001000		
1. [189]	1101		1101		
16 [190]	101101		101101		
16 [191]	1000001		1000001		
1. [192]	100		100		
16 [193]	101		101		
16 [194]	101011		101011		
16 [195]	101011		101011		
16 [196]	100011		100011		
1 [197]	110111		110111		
16 [198]	111		111		
16 [199]	101100		101100		
16 [200]	110111		110111		
1. [201]	1000010		1000010		
1. [202]	1001101		1001101		
1 [203]	10110		10110		
16 [204]	100001		100001		
1 [205]	101100		101100		

Name	Value	 999,996 ps	999,997 ps	999,998 ps	999,999 ps
[206]	110111		110111		
1 [207]	1001100		1001100		
16 [208]	1010111		1010111		
1209]	110110		110110		
1 [210]	110111		110111		
1211]	100010		100010		
1 [212]	101101		101101		
1213]	1000001		1000001		
1 [214]	1011001		1011001		
1 [215]	1001		1001		
16 [216]	1100011		1100011		
1 [217]	1010110		1010110		
16 [218]	1010111		1010111		
1 [219]	111000		111000		
Ug [220]	111000		111000		
Ug [221]	1000011		1000011		
Ug [222]	110110		110110		
Ug [223]	110101		110101		
1224]	100010		100010		
1225]	100011		100011		
Ug [226]	111000		111000		
Ug [227]	10110		10110		
Ug [228]	100010		100010		
16 [229]	10111		10111		
1 [2301	101101		101101		

Name	Value	1999,996 ps 1999,997 ps 1999,998 ps 1999,999	pş -
16 [231]	1000010	1000010	
Ug [232]	1001110	1001110	
Ug [233]	1001101	1001101	
16 [234]	1100	1100	
16 [235]	1101	1101	
16 [236]	101101	101101	
1 [237]	1000001	1000001	
1 [238]	100	100	
1 [239]	101	101	
12 [240]	101011	101011	
1 [241]	101011	101011	
1242]	100011	100011	
1243]	0	0	
16 [244]	110	110	
1245]	1001101	1001101	
46 [246]	10110	10110	
47] [247]	100001	100001	
1248]	101100	101100	
1249]	110111	110111	
1250]	0	0	
16 [251]	10	10	
1 [252]	11	11	
1 [253]	100	100	
1254]	1001110	1001110	
1 [255]	11	11	

Name	Value		1999,996 ps	999,997 ps	1999,998 ps	999,999 ps 1
V[0:15] 👽 👽	(1110110	[11101101	1110101,101111101	000111,1110000101	11001,11000111000	0101,101100000
lig [0]	11101101			111011011110	01	
1 [1]	10111110			101111101000	111	
16 [2]	11100001			1110000101111	01	
16 [3]	11000111			110001110000	01	
16 [4]	10110000			1011000001001		
16 [5]	10110000			1011000011000		
16]	10000111			1000011111110		
16 [7]	10010100			1001010011110		
16 [8]	10010001			1001000111010		
16 [9]	11111010			111110101110		
16 [10]	11000100			110001000000		
U ₀ [11]	10100101			1010010100101		
U ₀ [12] U ₀ [13]	10110010			1011001011100		
Ug [13] Ug [14]	10010100			1001010001100		
Ug [14] Ug [15]	10010111 10011001			1001011111011		
va [15] ▼ 😽 ytai[0:14		[11010111	0110100,100110101			1110 100001100
Val(0:14	11010111	Inororm	5110100,100110101	11010111000100		5110,100001100
Ug [1]	10011010			100110101111		
1. [2]	10110001			101100010011		
U. [3]	10010010			100100100000		
16 [4]	10000110			1000011001110		
16 (5)	11100110			111001101101	01	
(a) #[11000010			110000101110	10	
1.0	0.1				1	
16 [7]	10000001			10000001010	011	
16 [8]	10101010			10101010100	11	
lia (9)	11001110			1100111011	11	
10]	11001111			11001111101	10	
- 16 [11]	11010010			11010010101	00	
12]	10101100			10101100110	00	
lla [13]	10001110			10001110100	1	
16 [14]	10101000			10101000		
🖟 ck_perioc	1000 ps			1000 ps		

The figure shown below is the RTL view of the proposed Vedic convolution.

REFERENCES

- [1] Asmita Haveliya,Kamlesh Kumar Singh," A Novel Approach For High Speed Block Convolution Algorithm (Based on Ancient Indian Vedic Mathematics Approach)" International Conference on Advanced Computing and ommunication Technologies (ACCT 2011) Copyright © 2011 RG Education Society ISBN: 978-981-08-7932-7.].
- [2] Very High Speed Integrated Circuit Hardware Description Language.

URL: http://electrosofts.com/vhdl/.

- [3] Alan V. Oppenheim, Ronald W. Schafer with John R. Buck, *Discrete Time Signal Processing*, Second Edition.
- [4] Hanuman tharafu .M.C., Jayalaxmi . H., Renuka R.K., Ravishankar .M., "A high speed block convolution using Ancient Indian Vedic Mathematics", *IEEE international conference on computational intelligence and multimedia applications*, 2007.
- [5] Jagadguru Swami Sri Bharati Krishna Tirthji Maharaja, "Vedic Mathematics", Motilal Banarsidas, Varanasi, India, 1986.
- [6] A.P Nicholas, K.R Williams, J. Pickles-Vertically and Crosswise applications of the Vedic Mathematics Sutra, Motilal Banarsidass Publishers, Delhi, 2003.
- [7] J.G Proakis and D.G Monalkis, *Digital Signal Processing*. Macmillian, 1988.
- [8] Hanumantharaju M.C and Shashidhara K.S "A Novel Multiplier Architecture for FIR Filter Based on Field Programmable Gate Array's", *IEEE International Conference on Signal and Image Processing, Hubli, Dec 2006.*
- [9] Purushottam D. Chidgupkar and Mangesh T. Karad, "The Implementation of Vedic Algorithms in Digital Signal Processing", *Global J. of Engng. Educ.*, Vol.8, No.2 © 2004 UICEE Published in Australia.
- [10] Madihalli J. Narasimha, "Modified Overlap-Add and Overlap-Save Convolution Algorithms for Real Signals", *IEEE Transactions on Signal Process, vol.* 13, no. 11, pp. 669-671, Nov. 2006.
- [11] Madihalli J. Narasimha, "Linear Convolution using Skew Cyclic Convolutions", *IEEE Transactions on* Signal Process, vol. 14, no. 3, pp. 173-176, Mar. 2007.
- [12] Shogo Muramatsu, Hitoshi Kiya, "An Extended Overlap-Add and Save Methods for Multirate Signal Processing", *IEEE Transactions on Signal Process*, vol. 45, no. 9, pp. 2376-2380, Sep 1997.
- [13] John W. Pierre, "A Novel Method for Calculating Convolution Sum of Two Finite Length Sequences" *IEEE Transactions on Education, vol. 39. no. 1 , pp.* 77-80, Feb 1996.

- [14] Jung KapKuk and Nam Ik Cho "Block convolution with arbitrary delays using fast fourier transform" in Proceedings of *IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Dec2005.*
- [15] Shripad Kulkarni, "Discrete Fourier Transform (DFT) by using Vedic Mathematics", *report*, *vedicmathsindia.blogspot.com*, 2007.
- [16] Abhijeet Kumar, Dilip Kumar, Siddhi, "Hardware Implementation of 16*16 bit Multiplier and Square using Vedic Mathematics", *Design Engineer, CDAC, Mohali.*
- [17] Shamim Akhter, "VHDL Implementation of Fast NXN Multiplier Based on Vedic Mathematics", Jaypee Institute of Information Technology University, Noida, 201307 UP, INDIA, 2007 IEEE.
- [18] Multi digit multiplication: vertically and crosswise. URL:<u>http://threesixty360.wordpress.com/2008/02/15/</u> multidigit-multiplication-vertically-and-crosswise/
- [19] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy, "Efficient FPGA implementation of ft/ifft processor", *international journal of circuits, systems and signal processing, issue 3, volume 3, 2009.*
- [20] Convolution.

URL:http://mue.music.miami.edu/thesis/jvandekieft/j vchapter2.htm