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ABSTRACT  

Shift variance, poor directional selectivity, oscillations and 

aliasing are four fundamental, intertwined shortcomings of 

the DWT that undermines its application for certain image 

processing tasks. The initial motivation behind the work to 

use advanced CWT which will overcome the  limitations of 

standard DWT. In this paper, we demonstrate that 

excellent shift-invariance properties and directional 

selectivity with transform-domain redundancy in 2D. We 

achieve this by projecting the wavelet coefficients from 

Selesnick’s almost shift-invariant, double-density wavelet 

transform so as to separate approximately the positive and 

negative frequencies, thereby increasing directionality. 

Subsequent decimation and a novel inverse projection 

maintain the low redundancy while ensuring perfect 

reconstruction. Although the advanced CWT generates 

complex-valued coefficients allowing processing 

capabilities that are impossible with real-valued 

coefficients. The proposed method is highly efficient and 

useful for image processing applications and also      

outperforms the method proposed by the previous authors 

for image de-noising with significant improvement in the 

value of PSNR over RMSE as given by the other classical 

methods.    
 

KEYWORDS-  Complex DWT, De-noising, 1-D DWT, 2-D 

DWT, Redundant CWT. 

 

1. INTRODUCTION 
 

Many scientific experiments results in a datasets corrupted 

with noise, either because of the inadequate data acquisition 

process, or because of environmental effects. A first 

preprocessing step in analyzing such datasets is de-noising, 

that is, removing the unknown signal of interest from the 

available noisy images. There are several approaches to de-

noise images. Despite similar visual effects, there are subtle 

differences between de-noising, de-blurring, smoothing and 

restoration.  

 It has been observed that standard DWT and its 

extensions suffer from two or more serious limitations. The 

initial motivation behind the earlier development of complex-

valued DWT was the third limitation that is the „absence of 

phase information‟. Complex Wavelets Transforms(CWT) use 

complex-valued filtering(analytic filter) that decomposes the 

real/complex signals into real and imaginary parts in transform 

domain. The real and imaginary coefficients are used to  

 

compute amplitude and phase information, just the type of 

information needed to accurately described the energy 

localization of oscillating functions(wavelet basis).  

 Edges and other singularities in signal processing 

applications manifest themselves as oscillating coefficients in 

the wavelet domain. The amplitude of these coefficients 

describes the strength of the singularity while the phase 

indicates the location of singularity. In order to determine the 

correct value of localized envelop and phase of an oscillating 

function, „analytic‟ or „quadrature‟ representation of the signal 

is used. This representation can be obtained from the Hilbert 

transform of the signal. Thus, the complex orthogonal wavelet 

may prove to be a good choice, since it will allow processing 

of both magnitude and phase simultaneously.   

 This paper presents the concept of DT-DWT versions 

of RCWT have limited redundancy with very good properties 

of shift-invariance, improved directionality and availability of 

phase information, which are not present in standard DWT. 

RCWT has a huge potential in signal/image de-noising.. The 

paper is organize as follows: Section 2 involves Separable 

DWT. The Complex Dual Tree DWT is discussed in Section 3 

& Section 4 deals with bivariate shrinkage functions. Section 

5 gives the general method involves in image de-noising. 

Section 6 deals with results & discussions & the conclusion 

are given in Section 7. 

 

2. Separable DWT 

2.1  1-D Discrete Wavelet Transform 

 

In separable DWT the analysis filter bank decomposes the 

input signal x(n) into two sub band signals, c(n) and d(n). The 

signal c(n) represents the low frequency part of x(n), while the 

signal d(n) represents the high frequency part of x(n). We 

denote the low pass filter by af1(analysis filter 1) and the high 

pass filter by af2(synthesis filter 2). As depicted in figure(1), 

the output of each filter is then down sampled by 2 to obtain 

the two sub band signals c(n) & d(n). 

            c(n)  

    

x(n)                                                                            y(n) 

                                                                                

 

 

              d(n) 

Fig.(1): Separable DWT(Analysis) & (Synthesis)   
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The Synthesis filter bank combines the two sub band signals 

c(n) & d(n) to obtain a single signal y(n). The synthesis filter  

bank up-samples each of the two sub band signals. The signals 

are then filtered using a low pass and high pass filter. We 

denote the low pass filter by sf1(synthesis filter 1) and the 

high pass filter by sf2(synthesis filter 2). The signals are then 

added together to obtain the signal y(n). If the four filters are 

designed so as to guarantee that the output signal y(n) equals 

the input signal x(n), then the filters are said to satisfy the 

perfect reconstruction condition. 

 

2.2 2-D Discrete Wavelet Transform   

image-processing applications requires two-dimensional 

implementation of wavelet transform. Implementation of 2-D 

DWT[3],[4],[5] is also referred to as „multidimensional‟ 

wavelet transform in literature. In the 2D case, the 1D analysis 

filter bank is first applied to the columns of the image and then 

applied to the rows. If the image has N1 rows and N2 

columns, then after applying the 1D analysis filter bank to 

each column we have two sub band images, each having N1/2 

rows and N2 columns; after applying the 1D analysis filter 

bank to each row of both of the two sub band images, four sub 

band images are obtained, each having N1/2 rows & N2/2 

columns. This is depicted in figure (2) given below. The 2D 

synthesis filter bank combines the four sub band images to 

obtain the original image of size N1 by N2 [4][5]. 

 

                                                                                   

      C 

 

                                                                          dLH 

 

x(n) 

                                                                                       dHL 

                                                                         

    

 

 

Fig.(2): One stage in multi-resolution wavelet 

decomposition of an image x(n) 
 

3.  The Complex Wavelet Transform:  
There is no one unique extension of the standard DWT into 

the complex plane. The complex valued symmetric 

Daubenchies Wavelets (SDW) has been used for applications 

such as image enhancement, restoration and coding. The 

recent research in the field of CWT[1],[2] is directed towards 

the design of complex valued filter bank structure such that 

the resulting wavelets(real and imaginary parts) after high pass 

filtering from the Hilbert transform pairs at each successive 

level in the framework of standard DWT decomposition 

structure. 

Recent development of CWTs can be broadly classified in two 

groups; RCDWT(Redundant CWTs) and NRCWT(Non-

redundant CWTs). Standard DWT is critically decimated and 

gives N samples in transform domain for the same N samples  

of a given signal. While the redundant transform gives M 

samples in transform domain for N samples of given input 

signal (where M>N) and hence it is expensive by the factor 

M/N.  The RCWT include two almost similar CWTs. They are 

denoted as DT-DWT(Dual-Tree DWT based CWT) with two 

almost similar versions namely Kingsbury‟s DT-DWT(K), and 

Selesnick‟s DT-DWT(S). These redundant transforms consist 

of two conventional DWT filter bank trees working in parallel 

with respective filters of both the trees in approximate 

quadrature. The filter bank structure of both DT-DWTs is 

same but the design methods to generate the filter coefficients 

are different. Both DT-DWTs provide phase information; they 

are shift-invariant with improved directionality. Selesenik 

proposed an alternative filter design methods for DT-DWT(K) 

and designed DT-DWT(S), almost equivalent to DT-DWT(K) 

such that in the limit the scaling and wavelet functions form 

Hilbert transform pairs. DT-DWT(S) is designed with simple 

methods to obtain filter coefficients. 

 

4. Redundant Complex Wavelet Transform 
RCWT comprises of two types of DT-DWT (Dual-Tree DWT 

based complex wavelet transforms) one is Kingsbury‟s DT-

DWT(K) and the other is Selesnick‟s DT-DWT(S). These DT-

DWT based transforms are redundant because of two 

conventional DWT filter bank trees working parallel and are 

interpreted as complex because of the respective filters of both 

the trees are in approximate quadrature. In other words, 

respective scaling and the wavelet functions at all 

decomposition levels of both the trees form the (approximate) 

Hilbert transform pairs. Both versions of DT-DWT use 2-band 

perfect reconstruction filter sets. 

 The DT-DWT(S) is the less redundant version of its 

primitive 3-band perfect reconstruction Double-Density Dual-

Tree DWT(DDTWT) structure that can e found. The DDTWT 

is derived by combining two parallel Double-Density 

DWT(DDWT) trees, preserving the quadrature properties of 

their respective wavelet filters. Thus, DDTWT has two 

important benefits: first is the shift-invariance due to 

redundant DDWT and second is Hilbert pair of wavelets 

because of two parallel trees in quadrature. It is important to 

note that DDWT is a shift invariant 3-band redundant DWT 

but not a CWT. Both DT-DWTs have same filter bank 

structure. The DT-DWTs use the analysis and synthesis filter 

bank structures the seems identical to those used for standard 

DWT as shown in figures() and (). The key difference is that 

all the real filters are replaced with analytic filters formulated 

in figure() to have complex solutions. The replacement of real 

filters with analytic filters makes the new structure equivalent 

to two standard DWT filter bank structures operating in 

parallel. Because of two parallel trees for analysis and 

synthesis, these CWT are described as Dual-Trees DWT based 

CWT. The insertion of the parallel structure eliminates the 

disadvantages of standard DWT. 

dHH 
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4.1 Selesnick’s DT-DWT based CWT: 
The filter bank structures for both DT-DWTs are identical.  

Figures(3) and (4) shows 1-D analysis and synthesis filter 

banks spanned over three levels. It is evident from the filter 

bank structure of DT-DWT that is resembles the filter bank 

structure of standard DWT with twice the complexity. It can 

be seen as two standard DWT  trees operating in parallel. One 

tree is called as a real tree and other is called as an imaginary 

tree. Sometimes in future discussions the real tree will be 

referred to as tree-a and the imaginary tree as tree-b. 

The form of conjugate filters used in 1-D DT-DWT is given 

as:                            (hx+jx)  

 

Where, hx is the set of filters {h0,h1}, and gx is the set of filters 

{g0,g1}both sets in only x-direction(1-D). 

 

The filters h0 and h1 are the real-valued low pass and high pass 

filters respectively for real tree. The same is true for g0 and g1 

for imaginary tree. 
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Fig.(3): Analysis Filter Bank for 1-D DT- DWT 
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Fig.(4): Synthesis Filter Bank for 1-D DT- DWT 
Though the notation of h0 and h1 are use for all level in the real 

part of analysis tree, h0 and h1 of first level are numerically 

different then the respective filters at all other levels above 

level-1. The same notation is applied for imaginary tree filters 

g0 and g1. The synthesis filter pairs Ãh0, h1, and g0, g1 as shown 

in figure(4) from orthogonal or bi-orthogonal pairs with their 

respective counterpart filters of analysis tree as shown in 

figure(3). The 2-D DT-DWT structure has an extension of 

conjugate filtering in 2-D case. The filter bank structure of 2-

D dual-tree is shown in figure(5). 2-D structure needs four 

trees for analysis as well as for synthesis. The pairs of 

conjugate filters are applied to two dimensions (x and y), 

which can be expressed as: 

 

(hx+jgx) (hy+jgy) = (hxhy-gxgy) + j(hxgy + gxhy)----(1)  

 

                        Analysis   Synthesis 

 

          
 

 

 

 

   x(t)                               Real Tree                         ~                    

                                                                              x(t) 

 

 

 

 

 

           Imaginary Trees 
         Fig.(5) Filter bank structure for 2-D DT-DWT 

 

5. 2-D De-noising: 
In this section 2-D de-noising performance of redundant  

CWT DT-TWT(S) is compared with other wavelet based 

algorithms such as standard DWT, SWT by using relevant 

Matlab (Image Processing toolbox) functions. 

  

5.1  Image and Noise Model: 
The standard test images such as Lena, Kaiterina kaif are 

taken for experiments. Original images are corrupted by 

additive white Gaussian noise. 

The image and noise model is given as: 
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         x = s + σ.g  -----------------(2) 

where, s is an original image and x is a noisy image corrupted 

by additive white Gaussian noise g of standard deviation σ. 

Both images s and x are of size N by M (mostly M=N and 

always power of 2). 

 

5.2 Algorithm: 
2-D de-noising is an extension of 1-D de-noising based on 2-D 

separable WT implementation. For all conventional filtering 

methods, 3-by-3 filter kernel is taken for convolution. For all 

wavelet based methods, decomposition is performed up to J 

levels. For standard DWT and SWT the arbitrary wavelet 

basis employed is „wtype‟. Filters for DT-DWT(S) („w-type-

s‟) are given below in Tables (1),(2),(3) and (4): 
 

Analysis Filters 

 Real Tree Imaginary Tree 

 Low Pass High Pass Low Pass High Pass 

1 0 0 0.011226792
15254 

0 

2 -

0.08838834

764832 

-

0.011226792

15254 

0.011226792

15254 

0 

3 0.08838834

764832 

0.011226792

15254 

-

0.088388347

64832 

-

0.088388347

64832 

4 0.69587998
903400 

0.088388347
64832 

0.088388347
64832 

-
0.088388347

64832 

5 0.69587998

903400 

0.088388347

64832 

0.695879989

03400 

0.695879989

03400 

6 0.08838834

764832 

0.695879989

03400 

0.695879989

03400 

-

0.695879989

03400 

7 -

0.08838834

764832 

0.695879989

03400 

0.088388347

64832 

0.088388347

64832 

8 0.01122679
215254 

-
0.088388347

64832 

-
0.088388347

64832 

0.088388347
64832 

9 0.01122679
215254 

-
0.088388347

64832 

0 0.011226792
15254 

10  
0 

0 0 -
0.011226792

15254 

Table 1: 1
st
 Stage Analysis Filters 

 

Synthesis Filters 

 Real Tree Imaginary Tree 

 Low Pass High Pass Low Pass High Pass 

1 0 0 0 0.011226792

15254 

2 0.01122679
215254 

-
0.088388347

64832 

0 -
0.011226792

15254 

3 0.01122679

215254 

-

0.088388347
64832 

-

0.088388347
64832 

-

0.088388347
64832 

4 -

0.08838834
764832 

0.695879989

03400 

0.088388347

64832 

-

0.088388347
64832 

5 0.08838834

764832 

0.695879989

03400 

0.695879989

03400 

0.695879989

03400 

6 0.69587998

903400 

0.088388347

64832 

0.695879989

03400 

-

0.695879989
03400 

7 0.69587998

903400 

0.088388347

64832 

0.088388347

64832 

0.088388347

64832 

8 0.08838834
764832 

0.011226792
15254 

-
0.088388347

64832 

0.088388347
64832 

9 -
0.08838834

764832 

-
0.011226792

15254 

0.011226792
15254 

0 

10 0 0 0.011226792

15254 

0 

 

Table 2: 1
st
 Stage Synthesis Filters 

 

     

 

       Table 3: Remaining Stage Analysis Filters 

 

  

Analysis Filters 

 Real Tree Imaginary Tree 

 Low Pass High Pass Low Pass High Pass 

1 0.03516384

000000 

0 0 -

0.035163840

00000 

2 0 0 0 0 

3 -

0.08832942

000000 

-

0.114301840

00000 

-

0.114301840

00000 

0.088329420

00000 

4 0.23389032
000000 

0 0 -
0.088388347

64832 

5 0.76027237
000000 

0.587518300
00000 

0.587518300
00000 

0.760272370
00000 

6 0.58751830

000000 

-

0.760272370

00000 

 

0.760272370

00000 

0.587518300

00000 

7 0 0.233890320

00000 

0.233890320

00000 

0 

8 -

0.11430184
000000 

-

0.088329420
00000 

-

0.088329420
00000 

-

0.114301840
00000 

9 0 0 0 0 

10  

0 

-

0.035163840
00000 

 

0.035163840
00000 

 

0 
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       Table 4: Remaining Stage Synthesis Filters 
 

 

5.3 Performance Measure: 

The quantitative measures for 2-D de-noising, namely 

MSE(Mean Square Error) and PSNR(Peak Signal to Noise 

Ratio) are determined as: 

 

                                     N   M                               2 

 MSE = 1/NM Σ    Σ    [s(n,m) – y(n,m)] -------(3) 

                                    n=1 m=1 

 

 

    255 

PSNR = 10 log10                        ----------------------------------(4)  

    √MSE  

 

Where, s is an original image and y is a recovered image from 

noisy image x. The quantitative performance is evaluated 

through human visual system by observing the recovered 

images with various algorithms.  

 

6     Results and Discussion: 
A few sample results of de-noising performance based on 

quantitative measure are presented in tables (5) and (6) and the 

quantitative performance based on human visual system for 

various algorithms are shown in figures(6) and (7). The effect 

of  improved directionality on de-noising for redundant CWT 

DT-DWT compared to less directional standard DWT is quite 

clear for „pattern‟ image for all noise conditions. For human 

visual perspective, the performance of various algorithms for 

high noise conditions is quite clear. The performance of DT-

DWTs is distinguishably superior to standard DWT. But under 

low noise conditions, minute differences are very difficult to 

perceive hence all wavelet based methods seem to have nearly 

same visual effects.  

 

Performance 

Measure for 

De-noising 

Methods 

Image with σ = 10 

Lena Goldhill Oeppers Parrot Katrina 

Initial MSE 100 100 100 100 100 

 MSE (Hard Thresholding) 

Standard 

DWT 

56 65 43 45 79 

SWT 39 41 28 26 42 

DT-DWT(S) 35 38 26 23 30 

 MSE (Soft Thresholding) 

Standard 

DWT 

44 48 38 40 63 

SWT 36 39 28 28 47 

DT-DWT(S) 33 37 27 27 38 

 

Table (5): MSE for various de-noising methods (σ=10) for 

different images: (a) Hard thresholding (b) Soft 

tthresholding with parameters J=3, stpsz = 1, wtype = 

‘db2’, wtype-s = ‘FSfilt’. 

 

 

Performance 

Measure for 

De-noising 

Methods 

Image with σ = 10 

Lena Goldhill Oeppers Parrot Katrina 

Initial PSNR 

in dB 

28.12 28.15 28.12 28.12 28.15 

 (a) PSNR in dB (Hard Thresholding) 

Standard 

DWT 

30.63 29.99 31.71 31.52 29.15 

SWT 32.24 31.95 33.65 33.93 31.88 

DT-DWT(S) 32.64 32.25 33.84 34.38 33.28 

 (b) PSNR in dB (Soft Thresholding) 

Standard 

DWT 

31.65 31.28 32.23 32.10 30.14 

SWT 32.59 32.18 33.60 33.53 31.39 

DT-DWT(S) 32.87 32.33 33.77 33.76 32.27   

 

Table(6): PSNR for various de-noising methods (σ=10) for 

different images: (a) Hard Thresholding (b) Soft 

Thresholding with parameters J = 3, stpsz = 1, 

wtype=’db2’, wtype-s=’FSfilt’ and ‘otherfilt’. 

 

Synthesis Filters 

 Real Tree Imaginary Tree 

 Low Pass High Pass Low Pass High Pass 

1 0 -

0.035163840

00000 

0.035163840

00000 

0 

2 0 0 0 0 

3 -

0.11430184

000000 

0.088329420

00000 

-

0.088329420

00000 

-

0.114301840

00000 

4 0 0.233890320
00000 

0.233890320
00000 

0 

5 0.58751830

000000 

-

0.760272370
00000 

0.760272370

00000 

0.587518300

00000 

6 0.76027237

000000 

0.587518300

00000 

0.587518300

00000 

-

0.760272370

00000 

7 0.23389032

000000 

0 0 0.233890320

00000 

8 -
0.08832942

000000 

-
0.114301840

00000 

-
0.114301840

00000 

0.088329420
00000 

9 0 0 0 0 

10 0.03516384
000000 

0 0 -
0.035163840

00000 
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 Fig.(6):MSE Vs Peak Signal-to- Noise Ratio(Hard Thresholding) 
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Fig.(7):MSE Vs Peak Signal-to- Noise Ratio(Soft Thresholding) 

 

6.1 Results via Soft Thresholding 

 
         Original Image     Noisy Image 

           
          Separable DWT                      DT-DWT(S)   
 

 Fig.(8): Output Results via Soft Thresholding 

 

6.2 Results via Hard Thresholding 

 
       Separable DWT                  DT-DWT(S)       

 

Fig.(9): Output Results via Hard Thresholding 

 

The de-noised image obtained using hard and soft 

thresholding has a PSNR of 33.28 and 32.27 in dB 

respectively. The de-noised image obtained using 

conventional wavelet transform  has a PSNR of 29.15 dB and 

30.14 dB for Hard and Soft thresholding. Thus the Redundant 

CWT type DT-DWT(S) gives better performance over the 

classical method. The values are tabulated above  in table(6). 
 

7 Conclusion and Future Scope 

In this paper, a advance complex wavelet transform such as 

Redundant DT-DWT(S) is proposed for image de-noising. 

This new rule maintains the simplicity, efficiency and classical 

soft thresholding approach. The result is simulated on Matlab 

7.0.1 environment. The Simulation results of Katrina Kaif for 

classical Separable DWT and Complex Dual-Tree DWT are 

shown in above figures(8) and (9). With these results it is clear 

that the proposed method gives significant improvement in 

terms of image quality and preserve the useful information 

from the original image. These properties are important for 

many applications in image processing. In future, this work 

can be extended by using different types of wavelets for 

different values of noise variance also.  
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