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ABSTRACT: 
In this paper, we propose a novel least-mean-square 
(LMS) algorithm for filtering speech sounds in the 
adaptive noise cancellation (ANC) problem. It is based 
on the minimization of the squared Euclidean norm of 
the difference weight vector under a stability constraint 
defined over the a posteriori estimation error. To this 
purpose, the Lagrangian methodology has been used in 
order to propose a nonlinear adaptation rule which is 
derived from NLMS. The proposed method yields better 
tracking ability in this context as shown in the 
experiments which are carried out on the AURORA 2 
and 3 speech databases. They provide an extensive 
performance evaluation along with an exhaustive 
comparison to standard LMS algorithms with almost the 
same computational load, including the LMS and other 
recently reported LMS algorithms such as the TV-LMS 
and NLMS. This algorithm can efficiently reduce the 
amount of missadjustment with respect to the optimum 
response than the previous LMS. 
 
Index Terms— Adaptive noise canceller, least-mean-
square (LMS) algorithm, speech enhancement, stability 
constraint. 

        

I. INTRODUCTION  
       THE widely used least-mean-square (LMS) algorithm 
has been successfully applied to many filtering applications, 
including signal modeling, equalization, control, echo 
cancellation, biomedicine, or beam forming [1]. The typical 
noise cancellation scheme is shown in Fig. 1. Two distant 
microphones are needed for such application to capture the 
nature of the noise and the speech sound simultaneously. 
The correlation between the additive noise that corrupts the 
clean speech (primary signal) and the random noise in the 
reference input (adaptive filter input) is necessary to 
adaptively cancel the noise of the primary signal. The 
adjustable weights are typically determined by the LMS 
algorithm [1] because of its simplicity, ease of 
implementation and low computational complexity. The 
weight update equation for the adaptive noise canceller 
(ANC) is 
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Fig. 1. Adaptive noise canceller. 
 

Where   is a step-size parameter, )(* ne  denotes the 

complex conjugate of the error signal )(ne , and 

),...,(()( nxnx   TLnx ))1(  is the data vector 

containing L samples of the reference signal )(2 nV .  

Many ANCs [1]–[4] have been proposed in the past 
years using modified LMS algorithms in order to 
simultaneously improve the tracking ability and speed of 
convergence. Bershad has studied the performance of the 
normalized LMS (NLMS) algorithm with an adaptive step 
size in showing advantages in convergence time and steady 
state. Later, Douglas and Meng [4] have proposed the 
optimum nonlinearity for any input probability density of 
the independent input data samples, obtaining the 
normalized data nonlinearity adaptation (NDN-LMS). 
Although the latter algorithm is designed to improve the 
steady state performance, its derivation did not consider the 
ANC in case of a strong target signal in the primary input. 
Greenberg’s modified-LMS (M-LMS) [2] extended the 
latter approach to the case of the ANC with the nonlinearity 
applied to the data vector and the target signal itself, 
obtaining substantial improvements in the performance of 
the canceller. The disadvantage of this method is that it 
requires a priori information about the processes which is 
generally unknown. Recently, an interesting approach has 
been proposed based on a nonlinearity applied exclusively 
to the data vector [3].  

This paper shows a novel adaptation for filtering 
speech signals in discontinuous speech transmission (DTX) 
systems, which are characterized by sudden changes of the 
signal statistics. The method is derived assuming stability in 
the sequence of a posteriori errors instead of the more 
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restrictive hypothesis used in previous approaches i.e., 
enforcing it to vanish. 
 

II. CS-LMS ALGORITHM  
The NLMS algorithm may be viewed as the solution to a 
constrained optimization problem [6]. The problem of 
interest may be stated as follows: given the tap-input vector 

)(nx  and the desired response )(nd , determine the tap 

weight vector )1( n  so as to minimize the squared 

Euclidean norm of the change 
)()1()1( nnn    in the tap-weight vector 

)1( n  with respect to its old value )(n , subject to the 

constraint )()()1( ndnxn H  , where H denotes the 

Hermitian transpose. This constraint means that the a 
posteriori error sequence vanishes 

],0)()1()()([ ]1[ nforknxkwndne Hk 
 . 

 
In order to solve this optimization problem, the method of 
Lagrange multipliers is used with the Lagrangian function  
 

)](Re[||)1(||))1(( )1(*2 nennL n        (2) 

  

Where
*  is the Lagrange multiplier, thus obtaining the well 

known adaptation rule in (1) with the normalized step size 

given by
2^

)(nx  . The latter constraint is overly 

restrictive in real applications; thus, if we relax it, another 
interesting solution can be derived. Consider the constrained 
optimization problem that provides the following cost 
function:  
 

)](Re[)1())1(( ]1[*2
nenwnwL n 

(3) 
 

 

Where )1()()( ]1[]1[]1[   nenene nnn . This 

equilibrium constraint ensures stability in the sequence of a 

posteriori errors, i.e., the optimal solution )1( nwopt  is 

the one that renders the sequence of errors as smooth as 
possible. Taking the partial derivative of (3) with respect to 

the vector )1( nwH  and setting it equal to zero leads to 
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 for k=n,n-1 and 
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Where )1()()(  nxnxnx  is the difference 

between two consecutive input vectors. Hence, the step of 
the algorithm is  
 

).(
2

1
)()1()(
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)1( ** nxnwnwnxnw  

 (6) 
 

Finally, after multiplying both sides of (5) by )(nxH  , 

the Lagrange multiplier can be expressed as  
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where )1()()( ][][][  nenene nnn  is the difference in 

the a priori error sequence [denoted by )(ne  for short], 

since the numerator on the left-hand side of (7) is equal to 

 )1()1()1()( nwnxnwnx HH
 

).()1()()( nwnxnwnx HH   Therefore, applying the 

equilibrium constraint on the right-hand side of (7) 

)0)(( )1(  ne n  leads to  

                  
2||)(||

)(2 ][

nx

ne n




                         (8) 

Finally, the minimum of the Lagrangian function satisfies 
the following constrained stability update condition (CS-
LMS)  

2||)(||

)()(
)()1(

*

nx

nenx
nn




               (9) 

 
The weight adaptation rule can be made more robust by 
introducing a small positive constant  into the denominator 
to prevent numerical instabilities in case of a vanishingly 

small squared norm 2||)(|| nx  and by multiplying the 

weight increment by a constant step size  to control the 

speed of the adaptation. Note that the equilibrium condition 

enforces the convergence of the algorithm if 0||)(|| 2nx . 

Several learning algorithms, where the learning relies on the 
concurrent change of processing variables, have been 
proposed in the past for decorrelation, blind source 
separation, or deconvolution applications [5]. Stochastic 
information gradient (SIG) algorithms [5] maximize (or 
minimize) the Shannon’s entropy of the sequence of errors 
using an estimator based on an instantaneous value of the 
probability density function (pdf) and Parzen windowing. In 
this way, the CS-LMS algorithm can be considered as a 
generalization of the single sample-based SIG algorithm 
using variable kernel density estimators. 
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III.  THEORETICAL REMARKS ON THE CS-
LMS ADAPTATION  

      Once the CS-LMS method has been derived, a 
comparison is established with the NLMS algorithm. This 
section shows that, under some conditions: 1) CS-LMS and 
NLMS algorithms converge to the optimal Wiener 

solution 0  , and 2) for any fixed step size , the proposed 

CS-LMS exhibits improvements in excess minimum 
squared error (EMSE) and misadjustment (M) [6] when 
compared to the NLMS algorithm.  
 
A. Convergence Analysis of CS-LMS  
 
Theorem 1 (Convergence Equivalence): Let )(nx be the tap 

inputs to a transversal filter and )(n  the corresponding 

tap weights. The estimation error )(ne  is obtained by 

comparing the estimate )(ny  provided by the filter with the 

desired response )(nd , that is ).()()( nyndne   On 

the other hand, if the desired signal )(nd  is generated by 

the multiple linear regression model, i.e., 

)()()( nenxwnd o
H
o  , where )(neo  is an uncorrelated 

white-noise process that is statistically independent of the 
input vector )(nx , then the CS-LMS adaptation converges 

to the Wiener solution )(nwo  under stationary environment.  

 
         Proof: This theorem is proven by showing that 

2' |)([|minarg neEw wo   is equal 

to .|)([|minarg 0
2 wneEw  . This condition is satisfied 

since the cross-correlation vector between the concurrent 
change in the desired responses (d ) and input-

vectors 0
* ][),(   xxd RdxErx  , where 

][ H
x xxER    denotes auto-correlation matrix of x .  

 
B. Learning Curves of the CS-LMS Algorithm: EMSE and 
Misadjustment  
 
       It is common in practice to use ensemble-average 
learning curves to study the statistical performance of 
adaptive filters. The derivation of these curves is slightly 
different for the ANC problem due to the presence of the 
desired clean signal )(ns  . Using the definition of the 

weight-error vector )()( 0 nwwn   and (9) with the 

step size defined as , we may express the evolution of 

)(n  as   

)()()1( nxnn     

              *
0 )())(()()(( nxnwnvnsX H   

                                                              (10)  

Where )1[.]()[.]()[.](  nnn  and )(nv  denotes the 

noise in the primary signal )(nd  )1.( 1 FiginV . If )(nv  

is assumed to be generated by the multiple regression 

model: )()()( 00 nenxnv H  , the weight-error vector 

is expressed as  

)()()(()1( nnxnxIn H    

                 *
0 ))()()(( nsnenx   .           (11) 

By invoking the direct-averaging method [6], the equation 
above leads to  
 

)()()()()1( *
000 nenxnRIn x    (12)  

 

Where )()()( 00 nsnene   , and the mean-squared 

error produced by the filter is given by     
   )()()()(|)(|)( 00

2
0 nnxnxnEnsEJnJ HH   (13)  

 

Where  2
00 |)(| neEJ   and  2

0min |)(| nsEJJ   .        The 

stochastic evolution on the natural modes can be studied by 
transforming (12) into  
     )()()()1( nnvInv                  (14) 

  
and by applying the unitary similarity transformation [6] to 

the correlation matrix xR  , where QRQ x
H

  is a 

diagonal-  matrix consisting of the eigenvaluesk  of 

QRx , , is a unitary matrix whose columns constitute an 

orthogonal set of eigenvectors and the stochastic force 

vector is defined as )()()( *
0 nenxQn H    . This 

vector has the following properties.  
 
• The mean of the stochastic force vector )(n  is zero: 

0)]([ nE  . 

• The correlation matrix of the stochastic force vector is a 
diagonal matrix:    JnnE H 2)]()([  , where 

)}),1(Re{|])([||])([|(2 22
0 srnsEneEJ   

and )]()1([)1( * nsnsErs  . 

The first two moments of the natural modes can be obtained 
by using these properties as in [6], which allow one to show 
the evolution of )(nJ  with time step n  . The third term of 

(13), in light of the direct-averaging method, is equal to 

)]()()()([)( 00 nnxnxnEnJ HH
ex   
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where )]()1([)1( nxnxER H . Assuming that the 

input signal is weakly correlated )0~)1((R  , the second 

term can be bounded in the last equality of (15) with the first 
term (natural evolution), i.e., 

}])}1(Re{{[ QvRQvtrE HH 
]|)([|)2/1( 2

1 nvE kk
L
k   , and then  
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where )(nvk  denotes the k th-component of natural mode 

)(nv  [6]. If the exponential factor is neglected with 

increasing n  
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the reduction in )(exJ  is achieved whenever 

}{}{
2

1
)( RtrJRtrJJ xex     

                

             )}1(Re{}{
2

1
)( min s

LMS
ex rRtrJJ    

             min4

3
J                                        (18)  

i.e., the desired signal is strongly correlated. It also follows 
from classical analysis [6] that 1) the high value of   

balances the trade-off between )(exJ  and the average 

time constantT  since  

                      
}{ xRtr

L
T


                              (19) 

Where L is the filter length, and 2) a necessary condition for 

stability is that k /20  , for allk .      

              
IV simulation setup 

The desired speech and noise statistical parameters as 
follows: 
Desired speech:   
  Frequency: 4000Hz,  
  Sampling Frequency: 8000Hz 
 
Noise Parameters: 
  Amplitude: 0.15 
  Type: normal distribution noise:  

  Mean: 0 
  Variance: 1.01 
  Initial Seed: 10 
 
Filter Specifications used: 
                             Filter Type: FIR 
                Order: 32 
                Structure: Direct form-I 
                Window: Rectangular 
                        No. Of Iterations: 100 to 1000 
 
V Results      
        The signals above described in simulation setup are 
taken as the input to the adaptive filter and the filter 
coefficients are updated using the constrained stability LMS 
algorithm and standard LMS algorithm. We compare the 
performance characteristics of both algorithms finally.  
 

Fig 1: simulated result of noise cancellation 
In speech using CS-LMS algorithm 

 

Table 1:  Indicates MSE Comparison after Performing 
various no of Iterations in Standard LMS, CS-LMS, 

TV –LMS 

No. of 
iterations  

CS- LMS 
algorithm 

LMS1 
(µ1=0.05)  

TV LMS  
µ=0.02  

100  0.0367  0.0428  0.0326  

200  0.0183  0.0213  0.0176  

300  0.0121  0.0142  0.0126  

400  0.0091  0.0106  0.0100  

500  0.0073  0.0085  0.0084  

600  0.0061  0.0071  0.0073  

700  0.0052  0.0061  0.0064  

800  0.0045  0.0053  0.0058  

900  0.0040  0.0047  0.0053  

1000  0.0036  0.0042  0.0049  
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Fig 2: Learning curve of various algorithms 
For noise cancellation in same speech signal 

 
VI CONCLUSION AND FUTURE SCOPE              

 This paper presented a novel CS-LMS algorithm 
based on the concept of difference quantities and the 
constraint of equilibrium condition in the sequence of a 
posteriori estimation errors. The method, which applies 
nonlinearities to the error and input signal sequences, is 
derived using the Lagrange multiplier method as a 
generalization of the LMS algorithm. Under certain 
conditions, the proposed ANC based on the CS-LMS 
algorithm showed improved performance by decreasing the 
Mean-Squared Error compared to the standard LMS and 
Time Varying LMS algorithms. As shown in the figure 2. 
we can conclude that CS-LMS algorithm is producing 
optimized response, while producing very small MSE’s 
compared with standard LMS and time varying LMS 
algorithms. 
 We can efficiently use this CS-LMS algorithm in 
Sub-Band Adaptive filtering Applications in order to 
produce optimized response. So undoubtedly this algorithm 
has appreciable significance in speech processing.  
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