
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 413



Abstract— Honeypots are closely monitored decoys that are

employed in a network to study the trail of hackers and to alert

network administrators of a possible intrusion. Using honeypots

provides a cost-effective solution to increase the security posture

of an organization. Even though it is not a panacea for security

breaches, it is useful as a tool for network forensics and intrusion

detection. Nowadays, they are also being extensively used by the

research community to study issues in network security, such as

Internet worms, spam control, DoS attacks, etc. In this paper, we

advocate the use of honeypots as an effective educational tool to

study issues in network security. We support this claim by

demonstrating a set of projects that we have carried out in a

Websites, which we have deployed specifically for running

various web applications’ under supervision . The design of our

projects tackles the challenges in installing a honeypot in

organizational website, thus determining various security

compromises that are performed on it over the Internet by

attackers/hackers. In addition to a classification of honeypots, we

present a framework for designing projects for web application

security courses.

IndexTerms- Honeypot, honeypages, honeytokens

I.INTRODUCTION

A honeypot is a security technology that provides

organizations with a way to catch viruses, malware or

attackers, as well as acting as an alarm system that can

discover attempts to attack a network. Honeypot technology is

defined as a ‘security resource whose value lies in being

probed, attacked or compromised’ .There are two main types

of honeypot: passive and active. The passive honeypot is a

technology that passively waits for attacks in order to detect

them, while the active honeypot, also called a client honeypot,

interacts with a target web page to identify and determine its

potential effect on the browser or operating system.

A. ADVANTAGES

 Honeypots are a valuable source of attack information,

because they allow to observe the attack methodology from

the active information gathering phase to the real intrusion and

track covering. The possibility of analyzing the modus

operandi of the attacker along with the discovery of the new

attack tools are crucial means to be able to deploy the

adequate protection safeguards. This attack visibility

motivates the adequate investment in security prevention

mechanisms, because it points out the real threat status of a

network.

 Another benefit is that the data gathered by a honeypot is by

default illegitimate minimizing the false positive rate of other

security mechanisms, like for example an intrusion detection

system. Comparing with intrusion detection systems,

honeypots leave time for focusing in the real threats and the

network administrators are not bothered with false attack

event showers. Attacks against honeypots are system targeted,

which provide the possibility of gathering detailed information

even if the traffic is encrypted up to the endpoint. This

enhances the possibility of catching insider threats due to the

difficulty of identifying internal illegitimate behavior.

 The resources needed for running a honeypot are minimal,

because it captures mostly attack traffic that is expected to be

minimal when compared to normal traffic. It does not behave

in promiscuous mode, because the traffic gathered is

delivered directly to him, so it requires little network

resources. Being a non-critical asset, the removal of a

honeypot from the network usually does not influence the

existing infrastructure and it can be analyzed, reinstalled and

added later with no impact in availability of other systems.

Honeyweb: a web-based high interaction

client honeypot

Sainath Patil Assi.Prof.INFT.DEPT,

Nageshri B Karhade, Yogini K Kothekar

Vidyavardhini's College Of Engineering And Technology,

Mumbai University,

India

patil_sai@yahoo.co.in

nageshri@msn.com, kothekar.yogini@gmail.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 414

 These deception mechanisms serve as bait to the attacker

while the critical assets are further defended during the

security incident response procedure against new forms of

attack detected in the honeypot.

 B.DISADVANTAGES

 Honeypots give a limited vision about attacks, because they

analyze only the network segment in which they listen. This

direct limited attack vision might impact conclusions leading

to a false sense of situational awareness.

 The identification of the honeypot by the attacker using

fingerprinting techniques will limit further attacks and

actions against that lure system. If a virtual honeypot is used,

the attacker will try to escape the honeypot and intrude the

host system or hypervisor that provides the virtualization

structure sandbox.

 The high interaction honeypot can be used to attack other

systems and to distribute illegal information such as spam, so

it requires higher maintenance and monitorization. On the

other hand the low interaction honeypot is unable to capture

malware and attacking tools as well as multiple phases.

C.LOW AND HIGH INTERACTION HONEYPOTS

The simplest form of a honeypot is a real vulnerable system

that has been modified to include surveillance methods. Such

a system is called a high-interaction honeypots because the

attacker is able to fully interact with the honeypot just like a

real system. This offers the best potential for analyzing all

aspects of an attack, but also introduces risk that the attacker

will use the capabilities of the system to attack others. A high-

interaction honeypot must disguise itself as a real machine,

hiding its surveillance methods to all users even if they have

root privileges. This is usually done using very risky and

resource intensive techniques like full system emulators or

root kit-type software as in the GenIII honeynet. To monitor

automated attacks as for example those performed by

autonomously spreading malware, such effort is not always

required. So called low-interaction honeypots over limited

services to the attacker.For example by emulating only those

parts of a service which are vulnerable. Low-interaction

honeypots can typically be deployed with fewer resources

because they are not fully offering the expected services and

they also incur less risk. However, it is more likely that the

attacker will cut short the attack before useful information can

be learned either because the system does not support

functionality needed for the attack or because the attacker

suspects the system is a honeypot. A popular example of this

kind of honeypots is honeyd , which is very easy to deploy (at

least in comparison to a high-interaction honeypot).

II. RELATED WORKS

Threats to web applications have been previously investigated

using intrusion detection systems and classical honeypots and

a lot of information about attack techniques has been gained.

Honeypots generated with our approach aim at collecting

more such information using less resources.

Our approach is not the first tool in the field of web

application honeypots.GHH (the Google Hack Honeypot) is a

project within the Honeynet project which creates a vulnerable

web application from scratch. The main focus of GHH (and of

its descendent PHP.Hop) is to collect data about the search

patterns attackers use to identify vulnerable applications. In

this sense (and in contrast to our approach), GHH is a low-

interaction honeypot and does not provide real web

application functionality.

Another related area is that of so-called hitlist worms. A hitlist

worm can use (among other information sources) search

engines to collect large lists of vulnerable machines before

spreading. Especially worms that target web applications are

very dangerous and must be investigated before they spread .

Typically, these search worms can only be observed by search

engine operators or victims. Honeypots created by our

framework can be used in this endeavor: Essentially, we

become part of the hitlist and are thus able to learn more

about.

III. CHALLENGES OF LOW INTERACTION CLIENT

HONEYPOTS

Honeypots help security researchers to study the techniques

and objectives of web-based malware. However, there are still

some challenges to be overcome to allow their full benefits to

be achieved:

 IP tracking: this technology is widely used in web-based

tools to track the IP address of visitors. For example,

according to Seifert the Mpack tool tracks visitors’ IP

addresses and only attacks the visitor with malicious scripts

after a number of visits to the website. If a client honeypot

tries to visit a malicious website running the Mpack tool with

the IP tracking feature enabled, it will not detect any

malicious behavior and may assume the site is clean, but if

the client honeypot visited it a number of times, the IP

tracking feature will trigger the malicious behavior.

Therefore, the challenge is to solve this problem to prevent

false negatives.

 Geolocation-dependent: this feature, provided by a number

of malware tools, will cause the malware only to affect

visitors from certain countries, while behaving normally with

visitors from other countries.

IV.WEB ATTACKS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 415

Web attacks increase everyday as more and more enterprises

deploy their business using web applications. These web

applications are no longer based on static HTML or a single

dynamic page provided by a CGI, but are composed of

dynamic content that enables other forms of interaction and

customization via programming languages such as PHP, Java

or .NET and different web server engines.

 SQL Injection-Nowadays most of the websites have

databases to support the backend data storage and SQL

injection takes advantage of the communication between the

website and the database to insert the attack. SQL injection

consists on being able to run commands on a database by

inserting interpreted SQL statements in the client input data.

With this behavior the attacker is able to read the fields of the

database directly if he knows its structure or fingerprint the

database looking for existing tables forcing errors with debug

information. If no useful output is provided by the website, the

attacker can use response timing duration or true/false queries

to infer database information. As databases typically run with

high privileges when compared to the normal operating

system user, the attacker might accomplish remote operating

system command execution.

 Cross Site Scripting-Cross site scripting happens when the

web server interprets malicious HTML or Javascript code

supplied by an attacker as a parameter, including it as part of

the page response to the browser of a legitimate user. This

allows transferring user private information or redirecting the

user to a malicious site taking advantage of the trust that the

user deposits on the legitimate accessed site, although the site

is not trustworthy due to this vulnerability. These sorts of

attacks that affect the client’s browser are called client-side

attacks.

 Remote File Include-Remote file include allows attackers to

execute malicious code residing on an external webserver on a

vulnerable website. This causes the vulnerable website to

implicit trust the malicious code interpreting it as an internal

configuration or plugin and executing its actions.

Taxonomy of attacks

A.STATISTICS

One might wonder what makes web attacks so critical and

differentiates them from other attacks. The following

statistical information provides an insight regarding this

subject by presenting real information about the security risk

of web attacks.

Vulnerabilities affecting Web applications

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 416

Evolution of detected Web vulnerabilities

 B. OBSERVED ATTACK TRAFFIC

Source of transferred data targeting the web-honeypot

In 14.72% of the hits, just the webpage itself was requested

without transmitting further parameters to the application.

When parameters were transmitted, the HTTP_GET method

was used in 84.07% of the cases. Although only few requests

were using the HTTP POST method, these hits contained a

comparatively high number of attacks that were detected.

Almost all these POST requests were malicious in nature.

Orthogonal to this, the request can also use cookie parameters

in addition to GET or POST requests. This additional cookie

data was transferred in about 10% of the requests.

Interestingly, we were not able to observe any request which

was trying to use HTTP cookies to perform an attack. Of

course, this may change with a longer observation time or a

different set of applications that is deployed.

Distribution of types for successful attacks

It displays the distribution of the different attack types. SQL

injections build the vast majority of the attacks, together with

remote file inclusions they represent nearly 80% of all attack

types we observed on our honeypots. The main reason for the

high percentage of SQL injections probably lies in the

selection of modules we deployed.

C.SAMPLE ATTACKS

 Command Injection Example. We start with a brief example

of a command injection .The following HTTP GET request

was monitored.

name=Forums

highlight=%2527.$poster=%60id%60.%2527

The variable highlight is not filtered correctly. In the second

line of the request we see that the attacker tries to inject and

execute the command “id" into that variable. The command

identifies the current user and denotes a typical test done by

attackers in order to check a system for suitable command

injection vulnerability.

 File Inclusion Example.The next example deals with a

typical remote file inclusion and explains the tool attackers

tried to download and use on our honeypots.

The attack itself consisted of just a single (sanitized) request:

/phpBB/includes/functions.php?phpbb_root_path=http://XXX/

c99.txt

The attacker attempts to use a vulnerability in the phpbb_root_

path variable in order to download the _le c99.txt from a

remote server and include it in the web application. A copy of

the file was automatically captured and stored in the database

which allowed us to analyse its content. c99.txt is actually a

PHP script which allows an attacker a web-based backdoor to

a

compromised machine. Via this script, the attacker can for

example create files, execute arbitrary commands, or list files

and directories.

 Self-Propagation Example. As a third example, we show a

more complex attack, involving different tools and file

downloads. The attack started with a single HTTP GET query

using the following (sanitized) request:

/phpBB/includes/functions.php?phpbb_root_path=\%20\%22

powered\%20byhttp://XXX/j0.gif?\&add=bot

This denotes an attack against the PHP bulletin board: an

attempted file inclusion attack targeting the variable

phpbb_root_path in the file functions.php. The attack tried to

include the file j0.gif from a remote location. Again, we

retrieved a copy of this _le automatically via Honeyweb. This

file turned out to be a PHP-based shell utility. The utility

supports all basic operations like file listing, changing of

permissions, command execution, and file upload. Moreover,

it includes a mechanism for self-propagation. This mechanism

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 417

is activated once the shell is executed the first time. At this

time, it tries to download and execute a second file, named

spread.txt. The second file has only one purpose: it attempts to

fetch and execute a copy of a third file called fast.txt. It uses

fifteen different commands, download locations, and options

to get a copy of fast.txt. Once the third file has been

downloaded successfully, it is executed.

This file contains a so called IRC bot. An IRC bot is a

program that connects to an Internet Relay Chat (IRC) server

and typically allows to automate some of the IRC functions.

V. HONEYWEB FEATURES AND SCOPE

 A. FEATURES

 Automatically scans for known attacks.

 Detects SLQ-Injections, (Remote) File-Inclusions,

Cross-Site Scripting (XSS).

 Provides an overview mode which allows you to look

and scan for new incidents quickly (semi-automatic

mode).

 Supports detailed information about all data correlated

with every access to the honeypot.

This includes but is not limited to HTTP-GET,

HTTP-POST and COOKIE data.

 Saves copies of malicious tools in a secured place for

later analysis.

 Generates numerous statistics about all traffic

recognized at the system.

B.SCOPE

 This project will be focusing on server side

programming language specifically PHP which are

mainly used for development of CMS – content

management systems, e – commerce, social

networking site, etc.

 The project acts as a Service Provider for Honeypot

security to various websites.

 The project is proposed to trace the user activities on

the client site – demo websites.

 Various attacks performed on the demo sites will be

traced within the tool. Thus providing a competitive

analytical & statistical data so as to find the loop

holes of the demo sites.

 This project can be deployed at on the same server as

in where the demo website is located or can also

work with remote web server

 This project will be using PHP, JavaScript, & my SQL.

 With a user-friendly environment, it will diminish the

problem of reading long and unstructured log files

and efficiently captures what has happened inside the

virtual honeypots.

VI. HONEYWEB

Honeyweb allows to transform arbitrary PHP applications into

web-based high-interaction Honeypots. Furthermore a

graphical user interface is provided which supports the process

of monitoring the Honeypot and analysing the acquired data.

A typical use could be the transformation of PHPMyAdmin

into a full functional Honeypot, which offers the complete

functionality of the application to the users but performs

comprehensive logging and monitoring in the background.

Honeyweb Architecure

Our basic approach is to start with an existing web application

and convert it into a honeypot in an automated and generic

way. This involves adding capabilities for logging important

data about an attack and containing the existing application

within a honeynet to protect others.

Most of the prevalent web applications are written in PHP.

Thus, we chose to focus on PHP based web applications.

Nevertheless, the ideas presented in this paper could also be

applied to web applications written in other programming

languages used on the web.

To automatically identify the data we will log, we begin by

observing that all traffic coming to a web-based honeypot will

use HTTP. This protocol provides two basic transmission

methods:

 The GET method means that form data is encoded into

the uniform resource locator (URL) by the web-browser. This

method is commonly used when the form processing is

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 418

idempotent in such a way that no status changes will apply by

performing the request. The maximum amount of data that

can be transferred with a single GET request is limited and

depends on the maximum size of a URL. For example,

Microsoft Internet Explorer has a maximum URL length of

2,048 characters, minus the number of characters in the

actual path.

 The POST method describes a procedure to transmit data

that is meant to be used for non-idempotent queries. Every

request that results in a status change is non-idempotent. In

contrast to GET requests, form data appears within the body

of a message when using POST requests. Typical examples

for such non-idempotent requests using POST are _le

uploads or sending emails. The amount of data transferable

via POST is larger and theoretically unlimited. In practice,

however, the maximum length depends on the settings of the

web server.

In order to log the information an attacker enters into a web

application, we need to track these two transmission methods.

This can be achieved by monitoring four crucial arrays, which

are provided by PHP within a global scope:

1. $_SERVER: This array contains the main server

information such as headers, paths, and script locations. The

entries within this array are created by the web server. There is

no guarantee that every web server will provide all of them,

servers may omit some, or provide others. However, a large

number of these variables are part of the CGI 1.1

specification, thus it is reasonable to expect those.

2. $_GET: This array contains all data transferred to the server

via HTTP GET requests. This type of requests typically

includes data like session IDs or path information, referring to

clicks of the user inside the web application.

3. $_POST: This array contains all data transferred to the

server via HTTP POST request. These requests are used for

similar purposes as the GET request. The differences between

both types of requests were outlined above.

4. $ COOKIE: This array contains all data transferred to the

server via HTTP cookies. Web applications typically use

cookies in order to store data like configuration settings and

session information, but also login information like username

and password can often be found here.

These arrays contain all information that is needed to track

every step of an attack against an arbitrary web application. If

we thus monitor all these arrays and correlated the collected

data, we are able to monitor the exact attack traffic for any

PHP-based web application.

Different automated means are provided which facilitate a

user who is monitoring and analyzing the acquired data. The

combination between automatic data preparation by the tool

and manual monitoring by a person ensures the highest

detection rate for attacks and interesting incidents and the

lowest rate of false positives. Furthermore, only a reasonably

low amount of effort for the user is required for monitoring

and analysis due to the high level of automatization. In terms

of data analysis, the chosen design approach, which allows

arbitrary web applications to be transformed, now results in

several challenges. Thus, different problems and issues have

to be considered in the design of Honeyweb.

The tool should display each access that was made to the

honeypot web application. For example, this includes every

single click within the application and every entry in a form.

Thus the logging results in a vast amount of data.

Nevertheless, all the information needs to be presented by the

tool in such a way that the person who is monitoring the

honeypot can quickly overview the information and extract the

important data. Furthermore, the importance and impact of

data depends on the web application it originates from. In one

application a variable called username may be very important

and at high risk of being attacked, whereas in another

application, the same variable could be negligible.

As arbitrary web applications are involved, it is not possible to

focus on some set of variables. All kind of variables with

different names, contents, and lengths have to be taken into

account.

The tool should identify known attacks automatically as good

as possible. An example would be the automatic identification

of all SQL injection attacks. But again, even for known

attacks, this is not trivial since arbitrary web applications can

be involved: whereas in one case an application may use parts

of SQL statements to perform normal operations, SQL

commands may refer to an attempted SQL injection attack in

another case with a different variable or application. While it

may be possible to automatically identify all SQL statements

in the data, the decision if a specific statement actually denotes

an attack or is part of the application's normal behavior cannot

simply be made automatically.

The tool should support the detection of new attacks as good

as possible. Certainly not all new attacks can be detected

automatically. Nevertheless the system could try to identify

patterns, strings, or names that are more likely to represent an

attack. This helps in identifying zero day attacks, i.e., attack

vectors which are unknown at the time of attack.

As described before, the tool supports the person who is

monitoring the honeypot and analyzing the collected data. The

combination of automatic filtering by the system and human

inspection is most likely to yield the highest accuracy in terms

of information collection about attacks as well as the lowest

rate of false positives. All issues identified above led to the

following design decisions for Honeyweb. First, two main

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 419

views are supported: On the one hand, there is the overview

mode, which allows the user to get a quick general view about

all the activity that was captured. On the other hand, the tool

allows to switch into a detailed viewing mode, where all

information about a single event is provided. The detailed

view provides an overview of all data transferred to the web

application via the four different arrays provided by PHP.

The tool automatically filters for attack patterns that can be

derived from known attacks like SQL injection or file

inclusion attacks. This is achieved via regular expression

which we derived from an analysis of known attacks against

web applications. For example, we search for patterns like

INTO OUTFILE, script, or include which indicate possible

attacks. Furthermore, we include generic attack patterns that

identify common commands executed by an attacker after a

compromise, e.g., the commands id or uname. The tool

provides high extendibility because it supports the easy

supplement of new patterns.

The overview mode helps the user to recognize attacks quickly

and gain an impression about the traffic and the activities of a

honeypot at a glance. When the user has spotted an interesting

entry in the overview, he can access further information by

switching to the detailed viewing mode. Honeyweb is also

equipped with a search function in order to allow the user to

quickly find the desired information and to facilitate the

handling of large amounts of data. It can for example search

for IP addresses, specific attacks, or date and time.

Detailed view

Overview

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 420

Statistics

VII.INCLUDED FEATURES

A.TRANSPARENT LINKING

In order to attract attackers to our honeypot, we need to catch

their attention and interest. Since attacks on web-based

applications commonly use search engines in order to find

their victims, we want our honeypot to be listed by the indices

of popular search engines. Once the honeypot is indexed,

attackers that use search engines are drawn to the system,

which results in more traffic being driven to the honeypot.

Basically the trick is to become part of the hitlist.

The important question is how to add the honeypot to the

index of a search engine. Nowadays, the search index is

commonly constructed automatically with the help of so called

web spiders. Web spiders are programs which crawl the World

Wide Web in a methodical and automated manner with the

intent of creating an index about the crawled contents. As

search engines do not provide a method for directly modifying

search results for such a research purpose, we need to use the

behavior of the web spiders themselves in order to

complement the search index with information about our

honeypot. Specifically, we add links to our honeypot in

existing, regularly crawled web pages.

There are two problems with this approach. First, the details

about the exact behavior of the web spiders are usually kept

secret, in order to avoid abuse or distortion. Neither the exact

construction criteria for the ranking of the index are public,

nor information about if and how the content of a web page

gets rated. Some documents describe the basic principle of the

algorithms, but the exact details are commonly not known.

Secondly, we cannot place arbitrary links to our honeypot on a

website. This is due to the fact that not only web spiders or

attackers may follow the link, but probably also many benign

users who are just visiting the webpage. By following the link,

these users would cause false positives in our log files and

incidentally also increase the chance that an attacker reveals

the true purpose of this link for our honeypot.

In order to tackle these problems, we choose the following

solution: a specially crafted link is required, which satisfies

two requirements. First, it needs to be invisible to a benign

Internet user surfing the web page. Second, it is still

recognized by web spiders crawling the page. A link of this

type is named transparent link since only web spiders can see

it.

We have to keep in mind that transparent links represent an

issue where web based honeypots strongly differ from

traditional honeypots where every access is considered to be

an illicit use of that resource. Instead, web-based honeypots

need to be indexed by web-spiders in order to catch a

reasonable amount of interest and to work properly as we

explained above. Hence, in this point, web based honeypots

pursue a different concept than other honeypots: we need to

advertise the presence of the honeypot. Nevertheless, the main

value for both types of honeypots lies in the unauthorized or

illicit use of that resource.

B.HONEYPAGES

These are obscure web pages sprinkled in the web site. They

have no legitimate purpose, nay they are not even linked from

any valid page. Normal users would never reach these pages.

However, we drop hints about these pages by embedding their

url as comments or hidden fields in valid pages. While normal

users would never see this, an attacker who analyzes the

source code, or a vulnerability scanner that spiders the site

would see these and follow the link. When the page is

accessed, it points us to the intruder.

C.HONEYTOKENS

Honeytokens are fake records that are inserted in the database.

These fake records are not expected to be used by normal

users. If any of these honeytokens are used, they alert us of the

database having been compromised. An example of

honeytokens is fake username/passwords in the user database.

These users do not exist in the real world, and hence are not

expected to be logging in to the application. If the application

sees these credentials being used, it immediately recognizes

that the user database has been compromised.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 421

File, web, or email servers can all have honeytokens

embedded into them. Anything that has data can easily have

additional bogus data added, bogus data that becomes our

honeytoken. File servers could have bogus files, such as Word

documents, .pdf files, or Excel spreadsheets. These files could

have unique names, or unique tags embedded in the files.

Intrusion Detection Systems can then have signatures

customized to look for these honeytokens. If you see any

honeytokens traversing your networks, you know you have

employees (or someone on your internal network) accessing

files they are not authorized to. For encrypted environments,

kernel modules can be developed to monitor system files. If

someone attempts to read() one of the files residing on the

system, the kernel module can detect this unauthorized activity

and generate an alert.

VIII.FUTURE WORK

Honeyweb was developed as a web-based high interaction

client honeypot which integrate the web technology to client

honeypot. Therefore, there are some future works which will

be implementing in future versions of Honeyweb. The

following points are the future for Honeyweb:

1. Plug-in simulation: Some malicious websites will exploit

vulnerability within plug-ins installed on the web browser,

such as Flash Player, RealPlayer and Adobe Reader. There are

some exploits available for such plug-ins and therefore the

attacker can check the visitor plug-in through some plug-in

detectors and exploit the user if the valuable plug-in is present.

An example of plug-in vulnerabilities is CVE-2009-0376 and

CVE-2009-0375; these vulnerabilities affect RealPlayer

version 11, allowing remote execution of an arbitrary code for

an attacker to successfully exploit this vulnerability. However,

if the attacker fails to exploit the previous vulnerability, then it

will cause a denial-of-service condition.

2. Intrusion detection system (IDS): Honeyweb uses scan

engines to scan the target server. In addition, the use of such

IDS as Snort [23] will add an excellent feature to Honeyweb.

3. Honeyweb Crawling: The current version of Honeyweb

supports two of the main search engines, Yahoo! and MSN,

and it will be helpful if other search engines were added to

Honeyweb to give the user the ability to search across

different search engines. Search engines such as Google and

Ask are examples that can be added to Honeyweb.

4. Improve Honeyweb client.

IX. CONCLUSION

In conclusion, we have presented the design and

implementation of a generic toolkit for turning arbitrary PHP

web applications into high interaction honeypots.

We have described a method for drawing attackers to our

honeypot with transparent links.

In our case, we used this tool to deploy PHP applications with

known vulnerabilities. This allowed us to study how often in

what ways already known vulnerabilities are being exploited.

We could instead have deployed the newest and most patched

versions of these applications shifting the emphasis to

monitoring for new exploits discovered in the latest software.

Applying our logging

code is so simple and un-intrusive to apply that original

application developers could consider use of this tool as a

phase in testing their software.

One keys area of future work is to extend support to other

programming languages popular for web development such as

Javascript and Perl. Another is to make the limits on outgoing

web traffic more dynamic. In order to protect other systems,

we currently place relatively tight limits on the amount of

outgoing web traffic an attacker can generate from our

honeypot. However this can cut off the process of the attack

before sufficient data is collected to completely analyze and

understand it.

We would like the administrator of the honeypot to be able to

write triggers to match attack patterns they have seen before

and for which they want to allow incrementally more access in

order to learn about the next stage of the attack vector.

X.REFERENCES

[1] L. Spitzner, (2002). Honeypots: Tracking Hackers. 1st

edition. Addison-Wesley Professiona. ISBN-10: 0321108957.

[2] C. Seifert, (2007). Know Your Enemy: Behind the Scenes

of Malicious Web Servers. [Online]. Available at:

http://honeynet.org/book/export/html/181 [Accessed 1st Mar

2009].

[3] Laurent Oudot. PHP.Hop { PHP Honeypot Project.

http://www.rstack.org/phphop/, February 2006.

[4] The Honeynet Project. Know Your Enemy: Learning

About Security Threats. Addison-Wesley Longman, 2nd

edition, May 2004.

[5] L. Spitzner. Honeypots: Tracking Hackers. Addison-

Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.

[6] Lance Spitzner. Honeytokens: The other honeypot.

Securityfocus

http://www.securityfocus.com/infocus/1713, July 2003.

[7] Lance Spitzner. Honeypots: Catching the insider threat. In

ACSAC ’03: Proceedings of the

19th Annual Computer Security Applications Conference,

page 170, Washington, DC, USA,

2003. IEEE Computer Society.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622
National Conference on Emerging Trends in Engineering & Technology (VNCET-30 Mar’12)

Vidyavardhini’s College of Engineering and Technology, Vasai Page 422

[8] Christian Kreibich and Jon Crowcroft. Honeycomb:

creating intrusion detection signatures

using honeypots. SIGCOMM Comput. Commun. Rev.,

34(1):51–56, January 2004.

[9] Jamie Riden and Laurent Oudot. Building a php honeypot.

InfoSecWriters

http://www.infosecwriters.com, April 2006.

[10] Fabien Pouget and Marc Dacier. Honeypot-based

forensics. In AusCERT Asia Pacific Information

technology Security Conference 2004, Brisbane, Australia,

May 2004.

