
Abdul Haseeb Shaik, Bhaskar Chakradhar
Dept of ECE, CMR College of Engineering & Technology, Hyderabad, Telangana-India.
Email: 1abdulhaseebsk401@gmail.com 2 bchakradhar.1987@gmail.com

Abstract—In recent times the home automation system deals with monitoring and control of building services, such as heating, lighting controlling and air conditioning. The proposed system presents Home Automation System through Wireless Sensor Networks is able to control lighting which includes the ability to track occupancy and energy use, to monitor and control lighting and the ability to minimize peak demand. This design controls the appliances using wireless technology and it acts as center to monitor and to control the devices in Home Area Network. This system is implemented using ARM7 Cortex M3 processor that controls devices through a home network controller prototype according to the information received from the sensors. The proposed system controls the Home appliances and keep the sufficient lighting by changing the illuminance levels according to the day lighting ventilation. Major enhancement of this work is that the device can be operated in either of two modes: Manual or Automatic. The data can be received from various nodes (wireless sensor network) is transmitted using Zigbee for effectively deliver solutions for a variety of areas by the design of a multi-sensing and controlling.

Keywords— Home automation, Wireless sensor Network, Cortex-M3 (LPC 1768), Auto mode.

I INTRODUCTION

In the present existing system, building parameters and environment conditions will be monitored by a person and controlling of the devices are done by manual operation. As technology is being advanced now the people has gone through with remote automation systems for appliances. We can overcome the disadvantage of the existing method by remote control is not a new feature and used in home automation systems. This paper proposes Home automation system through wireless sensor network which is used for controlling various appliances at home using ZigBee wireless network exchange information over the wireless network.

In this project the main purpose is to provide a single control point which provides access to all home services with low cost reduction factors. A remote monitoring allows the quick detection of failing devices without needing long searches and wasting personal time.

The design, this continuous monitoring enables a preventive, or predictive as well, maintenance, which results in a reduction of operational and maintenance costs. Since it is estimated that the operational cost of a building is about seven times the initial investment, taking into consideration the global life-cycle an additional initial cost is worth the effort.

As an extension to existing work, an Auto mode operation has been implemented in this work. This system upgrades the functionality to embed the automation feature. Depending on the environmental light and temperature conditions, devices within the network are operated automatically. We have a facility to operate the device in either Manual mode or Auto mode based on the user’s convenience. In this perspective, accessibility is defined as a condition for autonomous and safe use of home networks by people with physically challenged.

The communication protocol has been mostly used to connect personal computers so far, but shortly all kinds of appliances with embedded computers will exchange information over the wireless network. The advantage of using WSN is that this system can be easily installed in already existing buildings where as a wired system will be expensive and difficult to install in the same scenario.

This paper proposes a single feasible interface to control multiple devices in Home Area Networks. It designs a system that enables the users to remotely control and coordinate the home appliances.

II RELATED WORK

In this section, Cortex-M3 (LPC 1768) microprocessor, ZigBee module, sensors relay and used in the work are reviewed.
A. Cortex-M3 Microprocessor

In order to integrate the display interface with a home automation system, a development board with an embedded microprocessor (LPC1768) was used. Based on the data information it receives via Zigbee, it controls lighting, air conditioner, fan, and few other common appliances within the network.

Cortex-M3 processor is preferred in this paper because of its rich features like high performance through better efficiency, rich connectivity. It is also powerful and fully deterministic in interrupt handling, and results in low power consumption.

![Microprocessor board LPC1768 connected with Zigbee at Receiver end.](image)

B. ZigBee Module Overview

Cortex M3 display interface works in a home automation environment using a ZigBee-based wireless sensors and actuators network.

A. ZigBee applications, markets and forecasts

Although ZigBee standard development is still under progress, the ZigBee market is opened for many various applications. The most promising are:

- Home Control: Security, Heating, Ventilation, and Air-Conditioning (HVAC), Lighting control, Access control, Irrigation,
- Personal healthcare: Patient monitoring, Fitness monitoring,
- Industrial control: Asset management, Process control, Energy management, Environmental,
- Building automation: Automatic Meter Reading (AMR), Security, HVAC, Lighting control, Access control,
- Consumer electronics: Remote control,
- PC & peripherals: Mouse, keyboard, joystick,
- Environment: Environment monitoring.

ZigBee is one of the most promising technologies for Home Area Networks. It is a low cost, low power wireless mesh network standard. ZigBee is preferred in applications that require low data rate, long battery life and secure network. In this work, Zigbee acts as coordinator which transmits and receives the commands from the interface to the end devices wirelessly. Information reaches the main processor from ZigBee (receiver) networks and depending on the processor information, devices are controlled accordingly. To develop this accessible interface, Zigbee module is connected to the main processor i.e. LPC 1768 board. ZigBee is best suited for periodic, intermittent data or single signal transmission from a sensor or an input device to transmit it over a long distance. ZigBee has also very low latency compared to Bluetooth which in turn helps in resulting less power consumption.

C. Networking Overview

Zigbee network uses three device types: Network Coordinator Full Function Device and Reduced Function device. Various network topologies used by Zigbee are shown in figure2.

![Figure 2: Various networking topologies used by Zigbee](image)

D. Relay:

In our display design, there are various items available along with the commands to monitor and control the devices. This work makes use of SPDT relays to switch the appliances to ON or OFF state accordingly based on
the input signals received from the user end. Relays are like electromechanical devices which are used in many applications because of their relative simplicity, long life and higher reliability. Below figure illustrates relay with Dc motor to switch it to either ON/OFF. Similarly relays are used in controlling other appliances like Fan, light, geyser etc.

E. Sensors

As an enhancement to the existing work, Auto mode has been achieved in this paper. Depending on the current conditions of a room, devices within the network are operated automatically. This has been implemented by making use of different sensors like Light sensor (LDR) and temperature sensor (LM35).

When a human presence in the room is identified then current environmental conditions of a room like temperature, lighting intensity level are monitored with the help of sensors and then the appliances are operated automatically.

III INTERFACE DESIGN

Here the system with sensors are interfaced with the Microcontroller which is used to monitor the light source, temperature content of a room are gathered and transmitted to the monitoring section using Zigbee wireless communication. As this work targets to provide the illumination of the home or building as per the recommended illumination levels, an easy to use interface was designed with considering four different rooms with different lux levels.

The design of four different rooms. An example of this approach can be seen in below Figure

A. System Overview Framework

The improved ZigBee wireless sensor network is composed of various sensors, ZigBee nodes, host computer. In the network, the sensor collects the information and uploads it to the ZigBee node. The ZigBee node sends this information to the control section. Then it will monitor the status of each device and also will control can be done by sending command signal to those devices.

B. Design

The design of the ZigBee wireless sensor network includes two parts: ZigBee Transmitter and Zigbee receiving section. The ZigBee sensor node consists of multiple sensors used to sense the status of the devices and transmits the sensed data to the control section. Zigbee control device will receive the data and displayed in PC. The control command will be send through Zigbee to the node then it will be transferred to the intended destination.

C. Transmission Section

Using Zigbee technology the home automation like lighting, temperature checking and air conditioning is done by using wireless sensor network. Here the system with sensors are interfaced with the Microcontroller which is used to monitor the light source, temperature content of a room are gathered and transmitted to the monitoring section using Zigbee wireless communication.

D. Receiving Section

The data from the transmitter section will be received by the receiver end they can control the system. So the control data will reach the proper node and after receiving the data the controller will controls the devices. A PC personal computer is used in every section for displaying the status.
When the input is given to temperature sensor and LDR, the output of those devices are in analog form so ADC is used to convert the analog signal into digital form. Then the digitized output is given to controller and will be transmitted to the monitoring section. The transmitted data will be displayed in PC. If the temperature is high then the speed of the fan will be increased and if the place is dark light will get turned on automatically.

This paper includes control of home appliances using designed interface. Other home automation applications such as security lock of gates and doors and other systems safety (gas and smoke sensors) and home entertainment can be integrated into the interface.

IV SYSTEM IMPLEMENTATION AND RESULTS

Manual mode Implementation

This below picture shows is the manual mode is selected by # and in order to control the system the controllers are displayed to operate manually. (L/M) means L-light, M-motor. (1/2/3/4) these numbers initiating names of the rooms, and (O/l/h) o-off, l-low, h-high. By using these commands we can operate manually. Fan in the room that has been selected from menu by pressing M and for lights L and selecting room 1.

After a room is selected from the main menu, control the appliances available in that room along with the commands. Here control and operating of the light intensity level and fan speed in the room that has been selected from the main menu is being done. When we touch on the command “Light-H” and high all the LED’s from a bunch will glow resulting high intensity of light. Similarly we have commands for “Light-I” (few out of bunch will glow) “Light-O” off the lights and in case of controlling fan speed, we have commands available like “Fan Low”, “Fan High” and “Fan Off” as shown in figure 9. These various proposed options for controlling light and fan would result in power saving.

Current Status information:

As a part of enhancement, this work includes feedback system which provides the state of device. It provides the facility to the user to know about the current status of device if it is in OFF state or ON state before or while operating them using this display. To develop this, Microcontroller from which its output data is carried to ZigBee further and with the help of LED indications we can track the current state of the device. As eight devices are being controlled in four rooms, below figure illustrates Microcontroller for Current status and complete system prototype.
lights automatically. Next it checks for the temperature level inside the room with the help of temperature sensor. Now depending on the current temperature inside the room, relay switches the Fan to either ON or OFF state. In this system Home conditions are detected and the light intensity will be adjusted to the required value.

Step1: Initialization of process
Step2: Select the type of mode-Manual or Auto
Step3: If selected mode is Manual, give the input commands to operate the devices accordingly.
Step4: If the selected mode is Auto
Step5: First Checks the ldr, and temp sensor.
Step6: Check the light intensity of the room.
Step7: If the light intensity value is less than predefined value, automatically lights will be ON.
Step8: if not, lights will remain OFF.
Step9: Similarly after step6, it will check for temperature condition in the room.
Step10: If temp greater than some value say T2, Fans will be ON.
Step11: If not Fan will remain OFF.
Step12: Stop the Process.

V CONCLUSION AND FUTURE SCOPE

This paper provides a single control point which provides access to all building services. Our main purpose is to provide the end consumer with an economical fully centralized system in which home appliances are managed by an IEEE 802.15.4 based wireless sensor network. It is used for managing energy usage is a crucial factor in addressing the home’s growing energy concerns. As a future scope we can Further implementations will be done in order to extend the proposed system to other standards or technologies of lamps, luminaries or lightning communication and control protocols. We can include applications based on proper security and safety of a person at home like preventing thefts, prevention and control of gas leakages at home.

References

BIOGRAPHIES

Shaik Abdul Haseeb(12H56D5521), received B.Tech degree in Electronics & Communication Engineering from JNTU, Anantapur, currently pursuing M.Tech, Embedded Systems in CMR college of Engineering & Technology, Hyderabad.

Botta Chakradhar received his M.Tech degree in Electronics & Communication Engineering from JNTU, Hyderabad, currently working as a Assistant professor ECE Department of CMR College of Engineering & Technology, Hyderabad.