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ABSTRACT- 

The paper describes the efficient design of IEEE 754 single precision  floating point matrix calculations.  The 

system provides a catalog of efficient user customizable cores,designed for FPGA implementation,ranging in six 

different matrix calculations categories:(i) Matrix Transpose (ii) Matrix Addition (iii) Matrix Subtraction (iv) 

Matrix Determinant (v) Matrix Multiplication (vi)  Matrix Inverse. The generated cores are application core 
for 2x2 Matrix calculations. In order to prove its legality, the developed algorithm is simulated using the 
Xilinx 9.2i and Quartus software. 
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I. INTRODUCTION 
 High Performance systems are required by 

the developers for fast processing of 

computationally intensive applications. 

Reconfigurable hardware devices in the form of 

Field Programmable Gate Arrays(FPGAs) have been 

proposed as viable system building blocks in the 

construction of high performance systems at an 

economical price. Given the importance and the use 

of matrix calculations in scientific computing and 

data processing applications,they seem ideal 

candidates to harness and exploit the advantages 

offered by FPGAs. Floating point numbers are one 

possible way of representing real numbers in binary 

format; the IEEE 754 [1] standard presents two 

different floating point formats, Binary interchange 

format and Decimal interchange format. Multiplying 

floating point numbers is a critical requirement for 

DSP applications involving large dynamic range. 

 

II. FLOATING POINT ARITHMETIC 
 2.1 Floating Point:  

 A computer word is divided into two parts, 

an exponent and a significand. As an example, an 

exponent of ( −3) and significand of 1.5 might 

represent the number 1.5 × 2–3 = 0.1875. The 

advantages of standardizing a particular 

representation are obvious. The semantics of 

floating-point instructions are not as clear-cut as the 

semantics of the rest of the instruction set, and in the 

past the behaviour of floating-point operations 

varied considerably from one computer family to the 

next. The variations involved such things as the 

number of bits allocated to the exponent and 

significand, the range of exponents, how rounding 

was carried out, and the actions taken on exceptional 

conditions like underflow and over- flow. IEEE 

arithmetic differs from much previous arithmetic in 

the following major ways: 

 

2.2 Floating Point Rounding: 

1. When rounding a “halfway” result to the 

nearest floating-point number, it picks the one   

that is even.  

2.  It includes the special values NaN, ∞, and 

−∞. 

3.  It uses denormal numbers to represent the 

result of computations whose value is less 

than 1.0 × 2Emin. 

4.  It rounds to nearest by default, but it also has 

three other rounding modes.  

5.  It has sophisticated facilities for handling 

exceptions. 

 To elaborate on (1), when operating on 

two floating-point numbers, the result is usually a 

number that cannot be exactly represented as 

another floating- point number. For example, in a 

floating-point system using base 10 and two 

significant digits, 6.1 × 0.5 = 3.05.This needs to be 

rounded to two digits. Should it be rounded to 3.0 or 

3.1? In the IEEE standard, such halfway cases are 

rounded to the number whose low-order digit is 

even. That is, 3.05 rounds to 3.0, not 3.1. 

 The standard actually has four rounding 

modes. The default is round to nearest, which rounds 

ties to an even number as just explained. The other 

modes are round toward 0, round toward +∞, and 

round toward –∞. We will elaborate on the other 

differences in following sections. 

 

   2.3 Special Values and Denormals: 
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 Probably the most notable feature of the 

standard is that by default a computation continues 

in the face of exceptional conditions, such as 

dividing by 0 or taking the square root of a negative 

number. For example, the result of taking the square 

root of a negative number is a NaN (Not a Number), 

a bit pattern that does not represent an ordinary 

number. As an example of how NaNs might be 

useful.  

In IEEE arithmetic, if the input to an 

operation is a NaN, the output is NaN (e.g., 3 + NaN 

= NaN). Because of this rule, writing floating-point 

subroutines that can accept NaN as an argument 

rarely requires any special case checks.  

The final kind of special values in the 

standard are denormal numbers. In many floating-

point systems, if Emin is the smallest exponent, a 

number less than 1.0 *2Emin cannot be represented, 

and a floating-point operation that results in a 

number less than this is simply flushed to 0. In the 

IEEE standard, on the other hand, numbers less than 

1.0 *2Emin are represented using significands less 

than 1. This is called gradual underflow. Thus, as 

numbers decrease in magnitude below 2Emin, they 

gradually lose their significance and are only 

represented by 0 when all their significance has been 

shifted out. For example, in base 10 with four 

significant figures, let x = 1.234 *10Emin. Then 

x/10 will be rounded to 0.123 * 10Emin, having lost 

a digit of precision. Similarly x/100 rounds to 0.012 

*10Emin, and x/1000 to 0.001 *10Emin, while 

x/10000 is finally small enough to be rounded to 0. 

Denormals make dealing with small numbers more 

predictable by maintaining familiar properties such 

as x =y=>x-y = 0.  

2.4 Representation of Floating-Point Numbers:  

Fig. 1 shows the IEEE 754 single precision binary 

format representation; it consists of a one bit sign 

(S), an eightbit exponent (E), and a twenty three bit 

fraction (M or 

Mantissa). An extra bit is added to the fraction to 

form what is called the significand1. If the exponent 

is greater than 0 and smaller than 255, and there is 1 

in the MSB of the significand then the number is 

said to be a normalized number; in this case the real 

number is represented by (1) 

 
Figure: 1. IEEE single precision floating point format 

 

Z = (-1S) * 2 (E - Bias) * (1.M)                           (1) 

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 

2-22+ m0 2-23; 

Bias = 127. 

Multiplying two numbers in floating point format is 

done 

by 1- adding the exponent of the two numbers then 

subtracting the bias from their result, 2- multiplying 

the significand of the two numbers, and 3- 

calculating the sign by XORing the sign of the two 

numbers. In order to represent the multiplication 

result as a normalized number there should be 1 in 

the MSB ofthe result (leading one). 

 

2.5 Floating-Point Addition / Subtraction 

 Floating-point addition is another essential 

step in matrix-vector multiplication. To perform the 

accumulation for matrix-vector multiplication a 

single precision floating point adder is used in this 

project. The algorithm for floating-point number 

addition is more complex than multiplication, as it 

involves more bit shifting and comparison. The 

floating-point adder performs calculations based on 

the algorithm described below : 

1. Compare two numbers’ exponent and keep the 

largest exponent.  

2. Subtract exponents. Let d be the difference 

between two exponents  

3. Align mantissas. Shift the mantissa to right by d 

bits. (Here the number that has a smaller exponent is 

the one that need to be shifted)  

4. Add mantissas.  

5. Test special case of the mantissa from the result. 

The exponent is set to -128 if the mantissa is zero.   

6. Check for overflows and underflows.  

7. Let k be the number of leading non-significant 

sign bits. The mantissa is left-shifted k bits. The 

exponent is subtracted by k.   

Figure:2 Floating Point Addition / Subtraction 

 

2.6 Floating-Point Multiplication: 

 Floating-point multiplication is one of 

essential steps in matrix-vector multiplication, in 

this project a single precision floating-point 

multiplier is used. The floating-point multiplier 

performs calculations based on the algorithm 

described below:    

1. Multiply mantissas.   

2. Add exponents.   

3. Test for special case of the mantissa. Set exponent 

to –128 if the mantissa equal to zero. If 
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normalization is needed, the mantissa is shifted right 

and exponent is increased accordingly.  

4. Check for exponent overflow or underflow.  

5. Check the sign bit, if both sign bit equal to 1 the 

result of the multiplication is positive. If one of the 

sign bit is 1 and the other is 0 then the result of the 

operation is negative.  

  

 The simplest floating-point operation is 

multiplication, so we discuss it first. A binary 

floating-point number x is represented as a 

significand and an exponent, 

x = s*2e. 

The formula 

(s1 *2e1) • (s2 *2e2) = (s1 • s2) *2e1+e2 

shows that a floating-point multiply algorithm has 

several parts. The first part multiplies the 

significands using ordinary integer multiplication. 

Because floating point numbers are stored in sign 

magnitude form, the multiplier need only deal with 

unsigned numbers (although we have seen that 

Booth recoding handles signed two’s complement 

numbers painlessly). The second part rounds the 

result. If the significands are unsigned p-bit numbers 

(e.g., p = 24 for single precision), then the product 

can have as many as 2p bits and must be rounded to 

a p-bit number. The third part computes the new 

exponent. Because exponents are stored with a bias, 

this involves subtracting the bias from the sum of 

the biased exponents. 

The interesting part of floating-point multiplication 

is rounding. Since the cases are similar in all bases, 

the figure uses human-friendly base 10, rather than 

base 2. 

 There is a straightforward method of handling 

rounding using the multiplier with an extra sticky 

bit. If p is the number of bits in the significand, then 

the A, B, and P registers should be p bits wide. 

Multiply the two significands to obtain a 2p-bit 

product in the (P,A) registers Using base 10 and p = 

3, parts (a) and (b) illustrate that the result of a 

multiplication can have either 2p − 1 or 2p digits, 

and hence the position where a 1 is added when 

rounding up (just left of the arrow) can vary. Part (c) 

shows that rounding up can cause a carry-out. 

 a)     1.23    

        *6.78_______              

                  8.3394     r=9>5 so round up rounds to 

8.34.    

b)      2.83       

         *4.47    _______              

                     12.6501   r=5 and following digit !=0 

so round up rounds to 1.27*101 

P and A contain the product, case1 x0=0 shift 

needed, case2 x0=1 increment exponent. 

 
Figure: 3 Floating Point Multiplication 

  

The top line shows the contents of the P and A 

registers after multiplying the significands, with p = 

6. In case (1), the leading bit is 0, and so the P 

register must be shifted. In case (2), the leading bit is 

1, no shift is required, but both the exponent and the 

round and sticky bits must be adjusted. The sticky 

bit is the logical OR of the bits marked s. 

 During the multiplication, the first p −2 

times a bit is shifted into the A register, OR it into 

the sticky bit. This will be used in halfway cases. Let 

s represent the sticky bit, g (for guard) the most-

significant bit of A, and r (for round) the second 

most-significant bit of A.  

There are two cases:  

1.The high-order bit of P is 0. Shift P left 1 bit, 

shifting in      the g bit from A. Shifting the rest of A 

is not necessary.  

2.The high-order bit of P is 1. Set s= s.v.r and r = g, 

and add 1 to the exponent.Now if r = 0, P is the 

correctly rounded product. If r = 1 and s = 1, then P 

+ 1 is the product (where by P + 1 we mean adding 1 

to the least-significant bit of P). If r = 1 and s = 0, 

we are in a halfway case, and round up according to 

the least significant bit of P. After the multiplication, 

P = 126 and A = 501, with g = 5, r = 0, s = 1. Since 

the high- order digit of P is nonzero, case (2) applies 

and r := g, so that r = 5, as the arrow indicates in 

Figure H.9. Since r = 5, we could be in a halfway 

case, but s = 1 indicates that the result is in fact 

slightly over 1/2, so add 1 to P to obtain the 

correctly rounded product. Note that P is 

nonnegative, that is, it contains the magnitude of the 

result.  

2.6 Floating-Point Division 
 Division of a pair of FP numbers X ¼ mx * 

2a and Y ¼ my * 2b is represented as X=Y ¼ 

(mx=my)* 2ab. A general algorithm for division of 

FP numbers consists of three basic steps: 

1) Compute the exponent of the result by 

subtracting the exponents. 

2) Divide the mantissa and determine the sign 

of the result. 

3) Normalize and round the resulting value, if 

necessary. 

4) Example Consider the division of the two 

FP numbers X ¼ 1.0000 * 222 and Y 

¼21.0100 * 221.  
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1. Subtract exponents: 22 2 (21) 

¼21.  

2. Divide the mantissas: 1.0000 

421.0100 ¼20.1101. 

3. The result is 20.1101* 221. 

Division of two FP numbers can be illustrated using 

the schematic shown in Figure. 

Figure: 4 Floating Point Division 

 

III. RESULTS 

 
Figure 5: Block Diagram of  2x2 Matrix Addition 

 

Figure 5 and 6 shows the RTL schematic 

and simulation results of 2x2 matrix  addition with 

floating point numbers 

INPUT 

:FP_A11 

0.24414062 => 

(0011111001111010000000000000000

0)2 INPUT 

:FP_A12 

0.24414062 => 

(0011111001111010000000000000000

0)2 INPUT 

:FP_A21 

0.24414062 => 

(0011111001111010000000000000000

0)2 INPUT 

:FP_A22 

0.24414062 => 

(0011111001111010000000000000000

0)2 INPUT 

:FP_B11 

5.9127808E-5  => 

(0011100001111000000000000000000

0)2 
INPUT 

:FP_B12 

5.9127808E-5  => 

(0011100001111000000000000000000

0)2 INPUT 

:FP_B21 

5.9127808E-5  => 

(0011100001111000000000000000000

0)2 
INPUT 

:FP_B22 

5.9127808E-5  => 

(0011100001111000000000000000000

0)2 OUTPUT 

:FP_Z11 

0.24419975=>(0011111001111010000

0111110000000)2 
OUTPUT 

:FP_Z12 

0.24419975=>(0011111001111010000

0111110000000)2 
OUTPUT 

:FP_Z21 

0.24419975=>(0011111001111010000

0111110000000)2 

OUTPUT 

:FP_Z22 

0.24419975=>(0011111001111010000

0111110000000)2 
 

 

 

 

 

Table1 : Results of 2x2 matrix addition 

 
Figure 7: Block Diagram of 2x2 Matrix 

SubtractionFigure 7 and 8 shows the RTL schematic 

and simulation results of 2x2 matrix  subtraction 

with 32 bit  floating point numbers. 

INPUT 

:FP_A11 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A12 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A21 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A22 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_B11 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 INPUT 

:FP_B12 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 INPUT 

:FP_B21 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 INPUT 

:FP_B22 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 OUTPU

T 

:FP_Z11 

-0.2440834=> 

(10111110011110011111000100000000

)2 OUTPU

T 

:FP_Z12 

-0.2440834=> 

(10111110011110011111000100000000

)2 OUTPU

T 

:FP_Z21 

-0.2440834=> 

(10111110011110011111000100000000

)2 OUTPU

T 

:FP_Z22 

-0.2440834=> 

(10111110011110011111000100000000

)2 Table2 : Results of 2x2 matrix subtraction 

 

Figure 9: Block Diagram of 2x2 Matrix Multiplication 

Figure 9 shows the RTL Schematic of 2x2 

Matrix Multiplication. Figure 10 shows the Xilinx 

simulation results of 2x2 matrix multiplication in 

which the 4 elements of first 2x2 matrix are 

FP_A11, FP_A12, FP_A21, FP_A22 and the 4 

elements of second 2x2 matrix are FP_B11, 

FP_B12, FP_B21, FP_B22. The result of this 

multiplication is assigned to four otput elements 

named FP_Z11, FP_Z12, FP_Z21 and FP_Z22. 
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INPUT 

:FP_A11 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A12 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A21 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A22 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_B11 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 INPUT 

:FP_B12 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 INPUT 

:FP_B21 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 INPUT 

:FP_B22 

5.9127808E-5  => 

(00111000011110000000000000000000

)2 OUTPU

T 

:FP_Z11 

2.8871E-5 => 

(00110111111100100011000000000000

)2 OUTPU

T 

:FP_Z12 

2.8871E-5 => 

(00110111111100100011000000000000

)2 OUTPU

T 

:FP_Z21 

2.8871E-5 => 

(00110111111100100011000000000000

)2 OUTPU

T 

:FP_Z22 

2.8871E-5 => 

(00110111111100100011000000000000

)2 Table:3 Result of 2x2 Matrix multiplication of  

floating point numbers 

 
Figure 10: Block Diagram of 2x2 Matrix Inverse 

 

Figure 10 and 11 shows the RTL schematic 

and simulation results of 2x2 matrix with floating 

point numbers which provides the inverse of a 

matrix. 

INPUT 

:FP_A11 

5.9127808E-5 => 

(00111000011110000000000000000000

)2 INPUT 

:FP_A12 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A21 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A22 

5.9127808E-5 => 

(00111000011110000000000000000000

)2 OUTPUT 

:FP_Z11 

-9.920001E-4 

=>(101110101000001000000110000000

00)2 

OUTPUT 

:FP_Z12 

4.096=>(0100000010000011000100100

1101111)2 

OUTPUT 

:FP_Z21 

4.096=>(0100000010000011000100100

1101111)2 

OUTPUT 

:FP_Z22 

-9.920001E-4 

=>(101110101000001000000110000000

00)2 
Table4 : Results of 2x2 matrix Inverse 

 
Figure 12: Block Diagram of 2x2 Transpose of a 

Matrix 

Figure 12 and 13 shows the respective RTL 

schematic and simulation results of 2x2 matrix with 

floating point  which is producing the transpose of a 

2x2 Matrix at the output. 

INPUT 

:FP_A1

1 

5.9127808E-

5=>(00111000011110000000000000000

000)2 INPUT 

:FP_A1

2 

5.9127808E-

5=>(00111000011110000000000000000

000)2 INPUT 

:FP_A2

1 

0.24414062 => 

(00111110011110100000000000000000

)2 INPUT 

:FP_A2

2 

0.24414062 => 

(00111110011110100000000000000000

)2 OUTPU

T 

:FP_Z11 

5.9127808E-

5=>(00111000011110000000000000000

000)2 OUTPU

T 

:FP_Z12 

0.24414062 => 

(00111110011110100000000000000000

)2 OUTPU

T 

:FP_Z21 

5.9127808E-

5=>(00111000011110000000000000000

000)2 OUTPU

T 

:FP_Z22 

0.24414062 => 

(00111110011110100000000000000000

)2 Table5 : Results of 2x2 matrix transpose 

 
Figure 14: Block Diagram of Determinant of a 

Matrix

 

 
Figure 6:  Simulation Results for Floating point 2*2 Matrix Addition 
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Figure 8:  Simulation Results for Floating point 2*2 Matrix Subtraction 

 
Figure 10:  Simulation Results for Floating point 2*2 Matrix Multiplication 

Figure 11:  Simulation Results for Inverse of Matrix

Figure 13:  Simulation Results for Floating point Matrix Transpose 

Figure 15:  Simulation Results for Floating point Matrix Determinant 

 

Figure 14 and 15 shows the respective 

RTL schematic and simulation results of 2x2 

matrix with floating point  which is producing the 

determinant of a 2x2 Matrix at the output FP_Z. 

INPUT 

:FP_A11 

5.9127808E-5 => 

(0011100001111000000000000000000

0)2 INPUT 

:FP_A12 

0.24414062 => 

(0011111001111010000000000000000

0)2 INPUT 

:FP_A21 

0.24414062 => 

(0011111001111010000000000000000

0)2 INPUT 

:FP_A22 

5.9127808E-5 => 

(0011100001111000000000000000000

0)2 OUTPU

T :FP_Z 

-0.05960464 => 

(1011110101110100001000111111111

1)2 Table6 : Results of 2x2 matrix Determinant 

 

IV. CONCLUSION 
This project describes a system for matrix 

algorithm cores generation used in image 

processing applications. The system provides a 

catalogue of user-customizable cores ranging in 

three different matrix algorithm categories: (i) 

matrix operations, (ii) matrix transforms and (iii) 

matrix decomposition. The system includes a GUI 

to help the users customize the cores to be 

generated to meet the requirements of their 

applications. 
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