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Abstract 
Floating-point numbers are widely adopted in many applications due their dynamic representation capabilities. 

Floating-point representation is able to retain its resolution and accuracy compared to fixed-point 

representations. Unfortunately, floating point operators require excessive area (or time) for conventional 

implementations. The creation of floating point units under a collection of area, latency, and throughput 

constraints is an important consideration for system designers. This paper presents the implementation of a 

general purpose, scalable architecture used to synthesize floating point multipliers on FPGAs. Although several 

implementations of floating point units targeted to FPGAs have been previously reported, most of them are 

customized for specific applications. Multiplication is an important fundamental function in arithmetic 

operations. It can be performed with the help of different multipliers using different techniques. The objective of 

good multiplier is to provide a physically compact high speed and low power consumption. To save significant 

power consumption of multiplier design, it is a good direction to reduce number of operations.  The main 

objective of this paper is to design “Simulation of IEEE 754 standard double precision multiplier” using VHDL. 
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I. INTRODUCTION 
Field-programmable gate arrays (FPGAs) 

have long been attractive for accelerating fixed-point 

applications. Early on, FPGAs could deliver tens of 

narrow, low latency fixed-point operations. As 

FPGAs matured, the amount of parallelism to be 

exploited grew rapidly with FPGA size. This was a 

boon to many application designers as it enabled 

them to capture more of the application. It also meant 

that the performance of FPGAs was growing faster 

than that of CPUs [7]. Every computer has a floating 

point processor or a dedicated accelerator that fulfils 

the requirements of precision using detailed floating 

point arithmetic. The main applications of floating 

points today are in the field of medical imaging, 

biometrics, motion capture and audio applications. 

Since multiplication dominates the execution time of 

most DSP algorithms, so there is a need of high speed 

multiplier with more accuracy. Reducing the time 

delay and power consumption are very essential 

requirements for many applications. Floating Point 

Numbers: The term floating point is derived from the 

fact that there is no fixed number of digits before and 

after the decimal point, that is, the decimal point can 

float. There are also representations in which the 

number of digits before and after the decimal point is 

set, called fixed-point representations. 

 

 

 

 

A. Floating Point Arithmetic 

The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most widely used 

standard for floating-point computation, and is 

followed by many CPU and FPU implementations. 

The standard defines formats for representing 

floating-point number (including ±zero and 

denormals) and special values (infinities and NaNs) 

together with a set of floating-point operations that 

operate on these values. It also specifies four 

rounding modes and five exceptions. IEEE 754 

specifies four formats for representing floating-point 

values: single precision (32-bit), double-precision 

(64-bit), single-extended precision (≥ 43-bit, not 

commonly used) and double-extended precision (≥ 

79-bit, usually implemented with 80 bits). Many 

languages specify that IEEE formats and arithmetic 

be implemented, although sometimes it is optional. 

For example, the C programming language, which 

pre-dated IEEE 754, now allows but does not require 

IEEE arithmetic (the C float typically is used for 

IEEE single-precision and double uses IEEE double-

precision). 

 

B. Double Precision Floating Point Numbers 

Thus, a total of 64 bits is needed for double-

precision number representation. To achieve a bias 

equal to 2
n-1

- 1 is added to the actual exponent in 

order to obtain the stored exponent. This equal 1023 

for an 11-bit exponent of the double precision format. 
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The addition of bias allows the use of an exponent in 

the range from −1023 to +1024, corresponding to a 

range of 0.2047 for double precision number. The 

double precision format offers a range from 
2-1023 

to 

2
+1023

, which is equivalent to 10
-308

 to 10
+308.

 

 

SIGN EXPONENT FRACTION 

1 Bit 11 Bits 52 Bits 

 

Fig 1. Double precision Floating point format 

 

C.  Floating-Point Multiplication 

Multiplication of two floating point 

normalized numbers is performed by multiplying the 

fractional components, adding the exponents, and an 

exclusive or operation of the sign fields of both of the 

operands The most complicated part is performing 

the integer-like multiplication on the fraction fields . 

Essentially the multiplication is done in two steps, 

partial product generation and partial product 

addition. For double precision operands (53-bit 

fraction fields), a total of 53 53bit partial products are 

generated. The general form of the representation of 

floating point is: 

 

                            (-1) S * M * 2E 

Where  

S represents the sign bit, M represents the mantissa 

and E represents the exponent. Given two FP 

numbers n1 and n2, the product of both, denoted as n, 

can be expressed as: 

n = n1 × n2 

= (−1) S1 · p1 · 2
E1

 × (−1) S2 · p2 · 2
E2 

=(−1) 
S1+S2

 · (p1 · p2) · 2
E1+E2

 

 

In order to perform floating-point multiplication, a 

simple algorithm is realized:  

 Add the exponents and subtract 1023.  

 Multiply the mantissas and determine the 

sign of the result.  

 Normalize the resulting value, if necessary. 

 

 

II. LITERATURE SURVEY 
A few research work have been conducted 

to explain the concept of Floating Point Numbers. D. 

Goldberg [1] explained the concept of Floating Point 

Numbers used to describe very small to very large 

numbers with a varying level of precision. They are 

comprised of three fields, a sign, a fraction and an 

exponent field. B. Parhami [2] proposed IEEE-754 

standard defining several floating point number 

formats and the size of the fields that comprise them. 

This Standard defines several rounding schemes, 

which include round to zero, round to infinity, round 

to negative infinity, and round to nearest. Michael L. 

Overton [3] performed the multiplication of two 

floating point normalized numbers by multiplying the 

fractional components, adding the exponents, and an 

Exclusive OR operation of the sign fields of both of 

the operands. Cho, J. Hong et al. and N. Besli et 

al.[4][5] multiplied double precision operands (53-bit 

fraction fields),in which a total of 53 53-bit partial 

products are generated . To speed up this process, the 

two obvious solutions are to generate fewer partial 

products and to sum them faster. Sumit Vaidya et 

al.[6] compared the different multipliers on the basis 

of power, speed, delay and area to get the efficient 

multiplier. It can be concluded that array Multiplier 

requires more power consumption and gives 

optimum number of components required. 

 

III. METHODOLOGY AND THE PIPELINED 

FLOATING POINT MODULE 
There are number of techniques that can be 

used to perform multiplication. In general, the choice 

is based upon factors such as latency, throughput, 

area, and design complexity. Thus I had used Array 

Multiplier for implementing the multiplier. 

Array multiplier is an efficient layout of a 

combinational multiplier. Multiplication of two 

binary number can be obtained with one micro-

operation by using a combinational circuit that forms 

the product bit all at once thus making it a fast way of 

multiplying two numbers since only delay is the time 

for the signals to propagate through the gates that 

forms the multiplication array. 

 
 

Fig 2.Pipelined Floating point multiplier 

 

The details of each block is as given below 

1) Check Zero Modules: 

Here both operands are checked to 

determine whether they contain a zero. If one of them 

is zero, zero _flag is set to zero. If none of them are 

zero, then inputs in IEEE 754 format is unpacked and 
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assigned to the check sign, add exponent, and 

multiply mantissa module. 

 

2) Add Exponent Module: 

This module is activated if both the 

operands are non-zero. Two extra bits are also added 

to indicate the overflow and underflow conditions. 

The resulting sum has a double bias, so the extra bias 

is subtracted from the exponent sum. After this, Exp_ 

Flag is set to 1. 

 

3) Multiply Mantissa module: 

Here zero _flag is checked first. If zero _flag 

is set to zero the no calculation and normalization is 

performed. The Mantissa_ Flag is set to zero. If both 

the operands are not zero then operation is done with 

multiplication operator. Mantissa_ Flag is set to 1, 

indicating that the operation is executed. 

4) Check Sign Module: 

It determines the sign of the two operands 

.The resultant sign is positive if both the operands 

have same sign else it is negative. For this  XOR 

circuit is used. 

 

5) Normalize and concatenate all modules: 

It checks the overflow and underflow after 

adding the exponent .Overflow occurs if 8
th

 bit is 1, 

underflow occurs if 9
th

 bit is 1. If Exp_ Flag, 

Mantissa_ Flag, Sign_ Flag are set, then 

normalization is carried out.  Lastly all are 

concatenated and are normalized. 

 

 

IV. IMPLEMENTATION 
The black box view of the double precision 

floating point multiplier is shown in figure 3.The 

Multiplier receives two 64-bit floating point numbers. 

First these numbers are unpacked by separating the 

numbers into sign, exponent, and mantissa bits. The 

sign logic is a simple XOR. The exponents of the two 

numbers are added and then subtracted with a bias 

number i.e., 1023. Mantissa multiplier block 

performs multiplication operation. After this the 

output of mantissa division is normalized, i.e., if the 

MSB of the result obtained is not 1, then it is left 

shifted to make the MSB 1. If changes are made by 

shifting then corresponding changes has to be made 

in exponent also. 

 

 
Fig 3. Black box view of floating point double 

precision multiplier 

 

V. RESULTS 
The double precision floating point 

multiplier designs were simulated in Modelsim 6.6c 

and synthesized using Xilinx ISE 13.1i which are 

mapped on to Virtex-6 FPGA. The simulation results 

of 64-bit floating point double precision multiplier 

are shown in Figure 4 below. The „opa‟ and „opb‟ are 

the inputs and sign, exponent, product are the parts of 

output . Table 1 gives the comparison of  device 

utilization between my work and [11].  

 
FIG 4. SIMULATION RESULTS OF DOUBLE PRECISION 

FLOATING POINT MULTIPLIER 

 

TABLE I 

Device utilization summary 

Slice Logic 

Utilization  

 

Present 

work  

Purna Ramesh 

Addanki 1, Venkata 

Nagaratna Tilak 

Alapati2   

and Mallikarjuna 

Prasad Avana3 [11] 

Number of  

Slice 

Registers  

 (Flip-Flops) 

952 1,998 

Number of 

Slice LUTs 

1758 2,181 
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VI. CONCLUSIONS 
The double precision pipelined floating 

point multiplier supports the IEEE-754 binary 

interchange format, targeted on a Xilinx Virtex-6 

xc6vlx75t-3ff484 FPGA. The designs achieved the 

operating frequency of 306.937 MHz which boost the 

performance to a great extent. 
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