
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014

 Jhulelal Institute Of Technology,Lonara,Nagpur 39 | P a g e

Low Latency, Area Optimized, High Throughput Double

Precision Pipelined Floating Point Multiplier Using VHDL on

FPGA

Tushar S.Muratkar
#

Electronics & Telecommunication Department, JDCOEM, Nagpur tushar_16m@yahoo.co.in

Abstract
Floating-point numbers are widely adopted in many applications due their dynamic representation capabilities.

Floating-point representation is able to retain its resolution and accuracy compared to fixed-point

representations. Unfortunately, floating point operators require excessive area (or time) for conventional

implementations. The creation of floating point units under a collection of area, latency, and throughput

constraints is an important consideration for system designers. This paper presents the implementation of a

general purpose, scalable architecture used to synthesize floating point multipliers on FPGAs. Although several

implementations of floating point units targeted to FPGAs have been previously reported, most of them are

customized for specific applications. Multiplication is an important fundamental function in arithmetic

operations. It can be performed with the help of different multipliers using different techniques. The objective of

good multiplier is to provide a physically compact high speed and low power consumption. To save significant

power consumption of multiplier design, it is a good direction to reduce number of operations. The main

objective of this paper is to design “Simulation of IEEE 754 standard double precision multiplier” using VHDL.

Keywords— floating point multiplier, VHDL, FPGA,Latency,IEEE

I. INTRODUCTION
Field-programmable gate arrays (FPGAs)

have long been attractive for accelerating fixed-point

applications. Early on, FPGAs could deliver tens of

narrow, low latency fixed-point operations. As

FPGAs matured, the amount of parallelism to be

exploited grew rapidly with FPGA size. This was a

boon to many application designers as it enabled

them to capture more of the application. It also meant

that the performance of FPGAs was growing faster

than that of CPUs [7]. Every computer has a floating

point processor or a dedicated accelerator that fulfils

the requirements of precision using detailed floating

point arithmetic. The main applications of floating

points today are in the field of medical imaging,

biometrics, motion capture and audio applications.

Since multiplication dominates the execution time of

most DSP algorithms, so there is a need of high speed

multiplier with more accuracy. Reducing the time

delay and power consumption are very essential

requirements for many applications. Floating Point

Numbers: The term floating point is derived from the

fact that there is no fixed number of digits before and

after the decimal point, that is, the decimal point can

float. There are also representations in which the

number of digits before and after the decimal point is

set, called fixed-point representations.

A. Floating Point Arithmetic

The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most widely used

standard for floating-point computation, and is

followed by many CPU and FPU implementations.

The standard defines formats for representing

floating-point number (including ±zero and

denormals) and special values (infinities and NaNs)

together with a set of floating-point operations that

operate on these values. It also specifies four

rounding modes and five exceptions. IEEE 754

specifies four formats for representing floating-point

values: single precision (32-bit), double-precision

(64-bit), single-extended precision (≥ 43-bit, not

commonly used) and double-extended precision (≥

79-bit, usually implemented with 80 bits). Many

languages specify that IEEE formats and arithmetic

be implemented, although sometimes it is optional.

For example, the C programming language, which

pre-dated IEEE 754, now allows but does not require

IEEE arithmetic (the C float typically is used for

IEEE single-precision and double uses IEEE double-

precision).

B. Double Precision Floating Point Numbers

Thus, a total of 64 bits is needed for double-

precision number representation. To achieve a bias

equal to 2
n-1

- 1 is added to the actual exponent in

order to obtain the stored exponent. This equal 1023

for an 11-bit exponent of the double precision format.

RESEARCH ARTICLE OPEN ACCESS

mailto:tushar_16m@yahoo.co.in

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014

 Jhulelal Institute Of Technology,Lonara,Nagpur 40 | P a g e

The addition of bias allows the use of an exponent in

the range from −1023 to +1024, corresponding to a

range of 0.2047 for double precision number. The

double precision format offers a range from
2-1023

to

2
+1023

, which is equivalent to 10
-308

 to 10
+308.

SIGN EXPONENT FRACTION

1 Bit 11 Bits 52 Bits

Fig 1. Double precision Floating point format

C. Floating-Point Multiplication

Multiplication of two floating point

normalized numbers is performed by multiplying the

fractional components, adding the exponents, and an

exclusive or operation of the sign fields of both of the

operands The most complicated part is performing

the integer-like multiplication on the fraction fields .

Essentially the multiplication is done in two steps,

partial product generation and partial product

addition. For double precision operands (53-bit

fraction fields), a total of 53 53bit partial products are

generated. The general form of the representation of

floating point is:

 (-1) S * M * 2E

Where

S represents the sign bit, M represents the mantissa

and E represents the exponent. Given two FP

numbers n1 and n2, the product of both, denoted as n,

can be expressed as:

n = n1 × n2

= (−1) S1 · p1 · 2
E1

 × (−1) S2 · p2 · 2
E2

=(−1)
S1+S2

 · (p1 · p2) · 2
E1+E2

In order to perform floating-point multiplication, a

simple algorithm is realized:

 Add the exponents and subtract 1023.

 Multiply the mantissas and determine the

sign of the result.

 Normalize the resulting value, if necessary.

II. LITERATURE SURVEY
A few research work have been conducted

to explain the concept of Floating Point Numbers. D.

Goldberg [1] explained the concept of Floating Point

Numbers used to describe very small to very large

numbers with a varying level of precision. They are

comprised of three fields, a sign, a fraction and an

exponent field. B. Parhami [2] proposed IEEE-754

standard defining several floating point number

formats and the size of the fields that comprise them.

This Standard defines several rounding schemes,

which include round to zero, round to infinity, round

to negative infinity, and round to nearest. Michael L.

Overton [3] performed the multiplication of two

floating point normalized numbers by multiplying the

fractional components, adding the exponents, and an

Exclusive OR operation of the sign fields of both of

the operands. Cho, J. Hong et al. and N. Besli et

al.[4][5] multiplied double precision operands (53-bit

fraction fields),in which a total of 53 53-bit partial

products are generated . To speed up this process, the

two obvious solutions are to generate fewer partial

products and to sum them faster. Sumit Vaidya et

al.[6] compared the different multipliers on the basis

of power, speed, delay and area to get the efficient

multiplier. It can be concluded that array Multiplier

requires more power consumption and gives

optimum number of components required.

III. METHODOLOGY AND THE PIPELINED

FLOATING POINT MODULE
There are number of techniques that can be

used to perform multiplication. In general, the choice

is based upon factors such as latency, throughput,

area, and design complexity. Thus I had used Array

Multiplier for implementing the multiplier.

Array multiplier is an efficient layout of a

combinational multiplier. Multiplication of two

binary number can be obtained with one micro-

operation by using a combinational circuit that forms

the product bit all at once thus making it a fast way of

multiplying two numbers since only delay is the time

for the signals to propagate through the gates that

forms the multiplication array.

Fig 2.Pipelined Floating point multiplier

The details of each block is as given below

1) Check Zero Modules:

Here both operands are checked to

determine whether they contain a zero. If one of them

is zero, zero _flag is set to zero. If none of them are

zero, then inputs in IEEE 754 format is unpacked and

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014

 Jhulelal Institute Of Technology,Lonara,Nagpur 41 | P a g e

assigned to the check sign, add exponent, and

multiply mantissa module.

2) Add Exponent Module:

This module is activated if both the

operands are non-zero. Two extra bits are also added

to indicate the overflow and underflow conditions.

The resulting sum has a double bias, so the extra bias

is subtracted from the exponent sum. After this, Exp_

Flag is set to 1.

3) Multiply Mantissa module:

Here zero _flag is checked first. If zero _flag

is set to zero the no calculation and normalization is

performed. The Mantissa_ Flag is set to zero. If both

the operands are not zero then operation is done with

multiplication operator. Mantissa_ Flag is set to 1,

indicating that the operation is executed.

4) Check Sign Module:

It determines the sign of the two operands

.The resultant sign is positive if both the operands

have same sign else it is negative. For this XOR

circuit is used.

5) Normalize and concatenate all modules:

It checks the overflow and underflow after

adding the exponent .Overflow occurs if 8
th

 bit is 1,

underflow occurs if 9
th

 bit is 1. If Exp_ Flag,

Mantissa_ Flag, Sign_ Flag are set, then

normalization is carried out. Lastly all are

concatenated and are normalized.

IV. IMPLEMENTATION
The black box view of the double precision

floating point multiplier is shown in figure 3.The

Multiplier receives two 64-bit floating point numbers.

First these numbers are unpacked by separating the

numbers into sign, exponent, and mantissa bits. The

sign logic is a simple XOR. The exponents of the two

numbers are added and then subtracted with a bias

number i.e., 1023. Mantissa multiplier block

performs multiplication operation. After this the

output of mantissa division is normalized, i.e., if the

MSB of the result obtained is not 1, then it is left

shifted to make the MSB 1. If changes are made by

shifting then corresponding changes has to be made

in exponent also.

Fig 3. Black box view of floating point double

precision multiplier

V. RESULTS
The double precision floating point

multiplier designs were simulated in Modelsim 6.6c

and synthesized using Xilinx ISE 13.1i which are

mapped on to Virtex-6 FPGA. The simulation results

of 64-bit floating point double precision multiplier

are shown in Figure 4 below. The „opa‟ and „opb‟ are

the inputs and sign, exponent, product are the parts of

output . Table 1 gives the comparison of device

utilization between my work and [11].

FIG 4. SIMULATION RESULTS OF DOUBLE PRECISION

FLOATING POINT MULTIPLIER

TABLE I

Device utilization summary

Slice Logic

Utilization

Present

work

Purna Ramesh

Addanki 1, Venkata

Nagaratna Tilak

Alapati2

and Mallikarjuna

Prasad Avana3 [11]

Number of

Slice

Registers

 (Flip-Flops)

952 1,998

Number of

Slice LUTs

1758 2,181

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC-12-13th April 2014

 Jhulelal Institute Of Technology,Lonara,Nagpur 42 | P a g e

VI. CONCLUSIONS
The double precision pipelined floating

point multiplier supports the IEEE-754 binary

interchange format, targeted on a Xilinx Virtex-6

xc6vlx75t-3ff484 FPGA. The designs achieved the

operating frequency of 306.937 MHz which boost the

performance to a great extent.

REFERENCES
[1] D. Goldberg, “What every computer

scientist should know about floating-point

arithmetic, ACM Computing Surveys vol.

23-1 , pp. 5-48 ,1991.

[2] B. Parhami, “Computer Arithmetic:

Algorithms and Hardware Designs”, Oxford

University Press, 2000.

[3] Michael L. Overton, “Numerical Computing

with IEEE Floating Point Arithmetic,

Published by Society for Industrial and

Applied Mathematics,2001.

[4] Cho, J. Hong, and G Choi, “54x54-bit

Radix-4 Multiplier based on Modified Booth

Algorithm,” 13th ACM Symp.VLSI, pp

233-236, Apr. 2003.

[5] N. Besli, R. G. DeshMukh, “A 54*54-bit

Multiplier with a new Redundant Booth‟s

Encoding,” IEEE Conf. Electrical and

Computer Engineering, vol. 2, pp 597-602,

12-15 May 2002.

[6] Sumit Vaidya and Deepak

Dandekar,“ Delay-Power Performance

comparison of multipliers in VLSI circuit

design”, International Journal of Computer

Networks & Communications (IJCNC),

Vol.2, No.4, pg 47-55, July 2010.

[7] K. D. Underwood. FPGAs vs. CPUs:

Trends in peak floating-point performance.

In Proceedings of the ACM International

Symposium on Field Programmable Gate

Arrays, Monterrey, CA, February 2004.

[8] P. Assady, “A New Multiplication Algo

Using High-Speed Counters”, European

Journal of Scientific Research ISSN 1450-

216X, Vol.26 No.3 ,pp.362-368, 2009.

 [9] Y. Wang, Y. Jiang, and E. Sha, “On Area

Efficient Low Power Array Multipliers”,In

the 8th IEEE International Conference on

Electronics, Circuits and Systems, pp 1429–

1432,2001.

[10] U. Kulisch, “Advanced Arithmetic for the

Digital Computers”, Springer- Verlag,

Vienna, 2002.

[11] Purna Ramesh Addanki 1, Venkata

Nagaratna Tilak Alapati2 and Mallikarjuna

Prasad Avana “An FPGA Based High Speed

IEEE - 754 Double Precision Floating Point

Adder/Subtractor and Multiplier Using

Verilog”.

