
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 23 | P a g e

Leon Processor Architecture Implementation with LISA

P.V. Bhandarkar1, Dr.S.S.Limaye2
1Assistant Professor, RCOEM, RTM Nagpur University

Nagpur, M.S, India pvb_bhandarkarpv@rdiffmail.com

2Principal, JIT, RTM Nagpur University

Nagpur, M.S, India shyam_limaye@hotmail.com

Abstract-
This paper presents the machine description language LISA for the generation of bit and cycle accurate models

of LEON processors. Depending on a behavioral operation description, the architectural specification and

pipeline operations of modern LEON processors can be successfully implemented. The behavioral model LISA

of includes other architecture related information like the instruction set. Also the information provided by LISA

models enables automatic generation of simulators. It is mainly focused on ADL based verification of Leon

processor.

Keywords-LISA, Leon processor, Verification

I. INTRODUCTION
Recent advances & progress in the semiconductor

technology has enabled the electronics industry with

the dreams of realizing more ambitious design goal.

With the tremendous progress in the fabrication

technology & the computer-Aided-Design (CAD)

tools, there is an remarkable growth in the market of

embedded processors & the application specific

Instruction-set Processors (ASIPs).There is great

demand of these processors in different domains.

More interesting part is that nowadays the major

innovations in these processors are taking place in

the Architecture level. In the architectural level

the decisions regarding the pipeline depth, caching

strategy, priority arbitration , efficient power, area

management etc are to name a few.

 These architectural decisions are the

design intent of the system-designer, in fact design

intent are like pillars of any successful

implementation of the desired system.
Verification of these large systems is still a major

verifying the whole system simultaneously. Hence,
industry resorts to the verification of the smaller RTL

blocks only. Through the verification of the local

properties, validation engineer tries to guess whether

the global intent has been implemented or not in the

RTL. The design intent expression is usually made

from a higher abstraction level. We have chosen

LISA language to model the Leon processor using it

since provide the higher abstraction

II. SIMILAR WORK
To explore architectural tradeoffs during

the design phase of embedded processors [2,3] has

led to an increased interest in ADLs for processor

design. [3,8] .The ADL are offering promising

avenues for fast design-space exploration with

enough room for optimization for target-specific

architectures.
The advantages offered by ADL-based design are as
follows1.

Faster design-space exploration.
2. Seamless integration of the components through

the automatic generation of the software tool-

bottleneck to Electronic Design Automation (EDA)
industry. Although the demand for the processors is
huge, due to short time-to-market span, there is a

huge competition among the vendors.
All these circumstances make the situation more

complex. In the technical front, the capacity

limitations of the various verification methodologies

largely depend on chain as well as RTL

description of the processor.

3. The higher abstraction doing away with

implementation.

The processor design ADLs can be categorized into

one of three categories. These categories include

languages that focus on describing the processor at

the architectural level (RTL or structural level),

languages that focuses on the instruction level

(behavioral level), and the languages that incorporate

a joint behavioral and structural design

approach.[2,5] MIMOLA (Machine Independent

Microprogramming Language) is an example of an

ADL that describes the processor at the RTL level.[2,

8] The MIMOLA language is very much similar to

that of Verilog or HDL. The software tool suite

utilizes the structural definition of the processor that

RESEARCH ARTICLE OPEN ACCESS

mailto:shyam_limaye@hotmail.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 24 | P a g e

results in poor quality compilers and assemblers.[8]

Languages such as MIMOLA do not support the

exploration of different processor architectures

also.[2] [9] nML and Instruction Set Description

Language (ISDL) are examples of ADLs that

describe the design of an embedded processor at the

behavioral level.[2] [8] nML will produce an

assembler based on the defined model, however the

generated simulator does not support cycle accurate

pipeline or VLIW architectures.[6] The nML

processor model can be used with the separate

CHESS compiler to generate processor specific code

from a higher level language source file.[3,2 ,10]

ISDL is similar to nML and requires a separate

compiler tool to generate processor specific assembly

files.[7] Since these languages model the processor

from a instruction set view, the ability to group

common functionality together into dedicated

hardware units is severely limited; which in return

limits the amount of resource sharing that can

occur.[2]

Many newer ADLs are available that describe the

embedded processor in a combined behavioral and

structural manner. Examples of such ADL tools

include EXPRESSION, Xtensa by Tensilica, CoWare

Inc.’s LISA.[2] Xtensa is built on a predefined RISC

core and is limited in the architectures that it can

model.[10] EXPRESSION and LISA are more

flexible ADLs and allow arbitrary processor

architectures and their memories to be designed and

simulated. Both languages provide automatic

generation of a complete tool suite and RTL code

generation from the model description.[12] [10] [8] .

EXPRESSION is a public-domain product. No

results have been published on the efficiency of the

generated tool suite or RTL code based on an

EXPRESSION model. CoWare’s LISA tool suite is

the leading commercially supported ADL. CoWare is

the only such toolset that has both UNIX and

Windows versions.[2] [8].

III. LISA LANGUAGE

The language LISA [13] is aiming at the

formalized description of programmable architectures

with their peripherals and interfaces connections. It

was developed to close the gap between purely

structural oriented languages VHDL, Verilog and

instruction set languages for architecture exploration

purposes.
The language syntax provides a high flexibility to

describe the instruction set of various processors,

such as Single Input Multiple Data (SIMD), Multiple

Input Multiple Data(MIMD) and VLIW-type

architectures. Other than this, processors with

complex pipelines can be easily modelled. The LISA

machine description provides information consisting

of the following model components:

1. The resource model describes the available

hardware resources, for example registers or

functional units and the resource requirements of

operations to be performed.

2. The instruction set model identifies valid

combinations of hardware operations and

admissible operands. It is given by the assembly

syntax, instruction word coding, and the

specification of valid operands and addressing

modes for each instruction.

3. The behavioral model abstracts the activities of

hardware structures to operations changing the

architecture of the processor for simulation

purposes. The abstraction details of this model

can range widely between the hardware

implementation level and the level of high-level

language (HLL) statements.

4. The timing model specifies the activation

sequence of hard ware operations and units.

5. The micro-architecture model allows grouping

of hardware operations to functional units and

contains the exact micro-architecture

implementation of structural components such as

adders units, multipliers units, etc.

These various model components are sufficient for

generating software tools as well as a HDL

representation each with their particular

requirements. Furthermore, LISA models may cover

a wide range of abstraction levels. This comprises all

levels starting at a pure functional sight, modeling the

data path of the architecture, to register transfer level

(RTL) accurate models. Besides a proper description

of the structure, RTL models include detailed

information about the micro-architecture model.

Therefore, these models can be used to generate a

HDL representation of the architecture, using the

languages VHDL, Verilog or System C. Certainly a

working set of software tools can be generated from

all levels of abstraction.

LISA can be used to model any processor that is

defined by an instruction set, such as an Simple

Reduced Computer (SRC) or a Digital Signal

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 25 | P a g e

processor (DSP). The LISA language allows for the

easy representation of pipelined (cycle-accurate) and

VLIW processors. The LISA tool suite includes

Processor Designer, Processor Debugger, Processor

Generator, and a C Compiler.

The full description of the hardware and

instruction set of the processor can be developed with

Processor Designer. This combining of hardware and

software design for an embedded processor greatly

reduces the complexity and time of modelling. LISA

can be used to describe the instructional hierarchy,

which lends itself to easy addition of instructions to

an already defined design. The behaviour of each

instruction within LISA is coded in ANSI-C.

Processor Designer tool of LISA generates an

assembler, linker, disassembler, an instruction set

simulator, and a debugger, based on the LISA design

description. Along with these tools, Processor

Designer tool can generate an instruction set users

manual. The instruction set users manual lists the

complete instruction set in the architecture along

with syntax and a short description of how each

instruction is implemented. The LISA language

model can be tested and debugged using the

Processor Debugger tool, before the HDL code is

generated. Within the debugger tool the user has the

ability to view all the hardware resources, including

registers and memories, as the assembly code is

executed. The debugger tool also keeps track of

statistical information about the processor, such as

the percentage of time a pipeline stage spent

executing on data or how many times a block of

assembly is run i.e keeps iteration counters on every

line of the assembly code. Once the LISA model is

verified with Processor Designer, HDL code can be

generated with the Processor Generator tool. The

Processor Generator tool generates HDL code in

either Verilog or HDL. Options are also given for the

optimization of the generated HDL code; which

includes the degree of resource sharing between

functional Units.

IV. ARCHITECTURE DESIGN

Today’s standard architecture development

process uses description languages in two fields for

the development of new architectures: for

architecture exploration, the software development

tools are realized using a high level language as

C/C++ to describe the target architecture from the

instruction set view, whereas (low level) Hardware

Description Languages (HDL) like VHDL and

Verilog are used to model the underlying hardware in

detail for implementation purposes. It is obvious that

combining the development processes of software

tools suite and HDL description is extremely

benefiting.

As can be seen in figure 1 the LISA language

compiler generates both and design changes only

influence the LISA description. By this, consistency

problems vanish and the generated software

development tools and HDL code are correct by

construction.

Fig 1. Exploration and implementation

The LISA processor design platform (LPDP) [12,14]

is an environment that allows the automatic

generation of software development tools for

architecture exploration and application design,

hardware-software co-simulation interfaces and

hardware implementation, from one sole

specification of the target architecture in the LISA

language. The set of LISA tools consist of the

following programs

1. The LISA language debugger for debugging the

instruction-set as well as the behavior with a

dedicated graphical debugger frontend.

2. The Assembler which translates text-based

instructions into object code for the respective

Programmable architecture.

3. The linker which is configured by a dedicated

linker command file.

4. The Instruction-set architecture (ISA) simulator

for cycle accurate simulation including support

for deep instruction and data pipelines.

After design exploration and application design the

target architecture needs to be implemented, which

will be discussed in subsequent part of this paper.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 26 | P a g e

V. ARCHITECTURE IMPLEMENTATION
 The LPDP platform supports the generation
of a HDL representation of the architecture. Since,
the generated HDL model does not consist of any
predefined components, such as ALUs or basic
control logic, the LISA compiler[13] must derive all
necessary information from the given LISA
description. Thus, the generated HDL model
components can be fully compared to the LISA
model components as given in following section
illustrated in figure 2:

Fig 2: LISA model and correspondent HDL model

components

1. The memory configuration, which summarizes

the register and memory sets including the bus

configuration, is directly derived from the LISA

memory model.

2. The structure of the architecture, such as pipeline

stages and pipeline registers is generated. The

required information is gathered from the

resource model, behavioral model and the micro-

architecture model.

3. The functional units are generated from the

micro architecture model. Depending on the

HDL language used, the functional units are

either generated as empty frames or with full

functionality.

4. The decoders are resulting from the coding

information included in the instruction set model

and the timing model.

5. The pipeline controller is also generated from

instruction set model and the timing model.

VI A.LEON PROCESSOR ARCHITECTURE

The LEON architecture is a Scalable

Processor Architecture V8 compatible architecture,

which was initially developed by the European space

Agency [20]. The complete RT-level VHDL source

code is freely available from Gaisler Research [21].

To begin with, the integer pipeline and memory

configuration of the LEON were modeled in LISA.

SPARC is a CPU instruction set architecture (ISA),

derived from a reduced instruction set computer

(RISC) lineage. SPARC is an instruction set

architecture (ISA) with 32-bit integer and 32-, 64-,

and 128-bit IEEE Standard 754 floating-point as its

principal data types. It defines general-purpose

integer, floating-point, and special state/status

registers and 72 basic instruction operations, all

encoded in 32-bit wide instruction formats.

B. LEON PROCESSOR pipeline
Leon Processor [20,21] is a pipelined

architecture. Pipelining is one of the key concepts in

architecture of processor, defined as an

implementation technique in which multiple

instructions can be executed in overlapping way. This

is possible if only operation tasks performed in each

cycle of a multi-cycle architecture are clearly defined

and independent from one another [24].

Fig.2 Block Diagram of Leon Processor

The Leon Processor pipeline is a five stage pipeline.

Each instruction’s execution follows all or some of

the pipeline stages corresponding to these cycles:

Instruction Fetch (IF), Instruction Decode/Register

Read (ID), Execution/Effective Address (EX),

Memory Access/Branch Completion (MEM), and

Write-back (WB) cycle. Communication among the

various stages is done using pipeline registers, as

shown in Fig.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 27 | P a g e

Fig. 3. Pipelined LEON architecture.

As shown, LEON load/store architecture features a

5-stage instruction pipeline including: instruction

fetch (IF), instruction decodes (ID), execution (EX),

and memory access (MEM) and write back (WB).

Instruction Fetch is a primary pipeline cycle in
which a new instruction is fetched from the
instruction memory and then sent to the
Instruction Register (IR), then the Program
Counter (PC) is incremented by 4. Next,
during the Instruction Decode/Register Read (ID)

cycle, the fetched instruction is decoded and register

file is accessed in order to initialize internal

registers.

C.LISA Implementation

Considering the above description of the

Leon processor, we are planning to implement it

through definition and ADL implementation (LISA)

of several groups of instructions. We primarily focus

on integer instructions . Leon architecture also

supports floating-point operations.

In order to make the implementation easy, we

decided to divide integer instructions into six

groups, based on functions they perform:

1. load/Store instructions
2. arithmetic/logical/shift instructions,
3. read/write control instructions,
4. Floating point operate
5. Coprocessor operates instructions.

All of them have some different characteristics.
Some registers and memory are also mandatory for
the Leon processor to function correctly. I n i mp l e
m e n t a t i o n of the IU may contain from 40 to

520 general-purpose 32-bit r registers. This
corresponds to a grouping of the registers into 8
global r registers, plus a circular stack of from 2 to
32 sets of 16 registers each, known as register

windows. Since the number of register windows
present (N WINDOWS) is implementation-
dependent, the total number of registers is
implementation-dependent. We are planning to

implement this general purpose register with
pipeline register to implement the above
instructions.

VII. Proposed Leon Processor verification

The verification of Proposed Leon Processor

functionality can be done by comparing the result

obtained in simulation and the one attained using

existing and already verified processor architecture.

VIII. CONCLUSION AND FUTURE WORK
LISA is a language which aims at the

formal description of programmable architectures,

their peripherals, and interfaces. The language

supports different description styles and models at

various abstraction levels. Its development was

necessary since existing approaches are not able to

produce cycle-accurate models of pipelined DSP

architectures and to cover their instruction-set.

Furthermore, LISA enables the principle of fast

compiled simulation of embedded processors. This

paper provides an overview of the LISA language

and discusses modeling issues.
In future work we will focus on modeling

further real-life processor architectures and the

generation of fast simulators.

Reference
[1.] Uwe Meyer-B¨ase, Alonzo Vera, Suhasini

Rao, Karl Lenk, and Marios Pattichis FPGA

Wavelet Processor Design using Language

for Instruction-set Architectures (LISA).

Independent Component Analyses,

Wavelets, Unsupervised Nano-Biomimetic

Sensors, and Neural Networks V, Proc. of

SPIE Vol. 6576, 65760U, (2007).

[2.] A. Hoffmann, F. Fiedler, A. Nohl, and

Surender Parupalli, A Methodology and

Tooling Enabling Application Specific

Processor Design, IEEEConference on

VLSI Design, 2005

[3.] A. Hoffmann, H. Meyr, and R. Leupers,

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology ,Lonara,Nagpur 28 | P a g e

Architecture Exploration for Embedded

Processors with LISA, Kluwer Academic

Publishers, Boston, 1 ed., 2002.

[4.] P. Ienne and R. Leupers, Customizable

Embedded Processors, Morgan Kaufmann,

Boston, 1 ed., 2006

[5.] A. Hoffmann, A. Nohl, G. Braun, and H.
Meyr, A Survey on Modeling Issues Using
the Machine Description Language LISA, ,
2001

[6.] G. Hadjiyiannis, S. Hanono, and S.

Devadas, ISDL: An Instruction Set

Description Languagefor Retargetability, in

Proc. of the Design Automation Conference

(DAC), Jun 1997

[7.] A. Halambi, P. Grun, V. Ganesh, A. Khare,

N. Dutt, and A. Nicolau, EXPRESSION: A

Language for Architecture Exploration

Compiler/Simulator Retargetability, In Proc.

of the Conference Design,Automation &

Test in Europe, Mar. 1999

[8.] Peter Marwedel, The MIMOLA Design

System: Tools for the Design of Digital

Processors, In Proceedings of the 21st

Design Automation Conference, pages 587-

593, 1983

[9.] S. Yang, Y. Qian, H. Tie-Jun, S. Rui, and H.

Chao-Huan, A New HW/SW Codesign

Methodology to Generate a System Level

Platform Based on LISA,2005
[10.] R. Gonzales, XTensa: A Configurable and

Extensible Processor, IEEE Micro,Mar.
2000

[11.] Vincent P. Heuring and Harry F. Jordan,
Computer System Design and Architecture
Second Edition, Pearson Education Inc.,
2004

[12.] S. Pees, A. Hoffmann, V. Zivojnovic, and H.

Meyr. LISA –Machine Description

Language for Cycle-Accurate Models of

Programmable DSP Architectures. In Proc.

of the Design Automation Conference

(DAC), New Orleans, June 1999

[13.] A. Hoffmann, A. Nohl, G. Braun, O.

Schliebusch, T. Kogel, and H. Meyr. A

Novel Methodology for the Design of

Application Specific Instruction Set

Processors (ASIP) Using a Machine

Description Language. IEEE Transactions

on Computers-Aided Design, Nov. 2001

[14.] Zivojnovi, S.Pees & H.Meyr;LISA–

machine description language and generic

machine model for HW/SW codesign in

Proceedings of the IEEE Workshop on VLSI

Signal Processing,San Francisco,Oct 1996

[15.] http//www.ertrwth_aachende.com

[16.] Integrated Verification Approach during

ADL-driven Processor Design, Anupam

Chattopadhyay, Arnab Sinha, Diandian

Zhang, Rainer Leupers, Gerd Ascheid,

Heinreich Meyr, Microelectronics Journal,

Volume 40, Issue 7, July 2009.

[17.] S. Pees, V. Zivojnovic, A. Ropers, and H.

Meyr, Fast Sim-ulation of the TI TMS

320C54x DSP," in Proc. Int. Conf. on Signal

Processing Application and Technology (IC-

SPAT), (San Diego), pp. 995{999, Sep.

1997.

[18.] Stefan Pees,Andreas Hoffmann,Vojin

Zivojnovic, Heinrich Meyer Meyr

LISA -Machine Description Language

forCycle_Accurate Models of

Programmable DSP Architectures

[19.] J. Rowson, \Hardware/Software co-

simulation," in Proc. Of the ACM/IEEE

Design Automation Conference (DAC),

1994.

[20.] esa:LEON

http://www.estec.esa.nl/wsmwww/leon/.

[21.] Gaisler Research. http://www.gaisler.com/

