
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute of Technology, Nagpur 50 | P a g e

Analysis of Parsing Algorithms in Natural Language Processing

Pankaj V. Nimbalkar *, Dr. P. K. Butey **
*(Department of Computer Science, R.T.M. Nagpur University, Nagpur-10

** (Department of Computer Science, R.T.M. Nagpur University, Nagpur-10

ABSTRACT-

In this paper, we makes comparative study of different parsing algorithms which is used in machine translating

system. we studied two parsing algorithms namely Early parsing Algorithm and Cocke-Younger-kasami (CKY)

Algorithm .Probabilistic grammar can also be used to disambiguate parse trees. In this paper we used certain

parsing techniques which removes certain ambiguities during parsing. We used bottom-up and top-down parsing

techniques to reduce the ambiguity. We examine both the CKY algorithm and the Early algorithm in the context

of modern multi-processor hardware and modify both algorithms to take advantage of the parallelism available

with such machines[1]

Keywords - Ambiguity, Top-down parsing, Bottom- up parsing, backtracking

I. INTRODUCTION
A CFG defines the syntax of language but

does not specify the assignment of structures. The

rules of grammar which rewrite to either generate a

particular sequence of words or reconstruct its

derivation is termed as parsing. The syntactic parser

is responsible for recognizing a sentence and

assigning a syntactic structure to it. Any sentence that

can have multiple parsers called syntactic Ambiguity.

For parsing any sentence we required backtracking in

some cases, for that we required search process either

from left side or from right side .Some constraints

can be used for the search process[2]. we used Top-

down and Bottom-up parsing techniques used in two

different Algorithms to reduced the ambiguity .Early

parser uses three operations namely predictor,

scanner, completer whereas CKY algorithms uses

probabilistic parsing methods.

A. A Basic Top-down parser

The approach is depth first, left to right

search. The depth first approach expands the search

space incrementally by one state at a time. At each

step, the left-most unexpanded leaf nodes of the tree

are expanded first using the relevant rule of grammar.

The leftmost node is selected for as it determines the

order in which input words needs to be considered. A

basic –top down parsing algorithm maintains agenda

of search states. Each search state consists of partial

trees and a pointer to the next input word in the

sentence[3]. In any successful parse, the current input

word must match the first derivation of the node that

is being expanded.

1) Coordination Ambiguity: Coordination ambiguity

occurs when it is not clear which phrases

are being combined with conjunction like and. In

disambiguation, correct parse may be identified from

number of possible parses. A parse may utilize

statistical and semantic knowledge to disambiguate

the parse tree. Or it may return all possible parses and

leave the disambiguation for subsequent processing.

The basic top-down parser returns the first successful

parse without exploring other possibilities.

2) Local ambiguity: Local ambiguities occurs when

certain parts of a sentence and ambiguous. The parser

makes a few incorrect expansion. Another problem

associated with basic top-down strategy is that of

repeated parsing. The parser often builds valid trees

for portion of the input that discards during

backtracking.

Dynamic programming algorithms can solve these

problems. In parsing, a dynamic programming

algorithms builds a table containing sub-trees for

each and every constituent appearing in the input.

3) Early parser: The early parser implements an

efficient parallel top down search using dynamic

programming. It builds a table of subtrees for each of

the constituents in the input. The states in each entry

provide the following information:

a. A subtree corresponding to grammar rule

b. Information about the progress made in

completing the subtree.

c. Position of the sub-tree with respect to input.

Earley typically outperforms CKY parsing because it

generates fewer intermediate parse trees that do not

contribute to the final parse tree, it is also much

harder to parallelize because the operates performed

by the algorithm are less independent than the

operations performed by CKY. Thus, while Earley

may outperform CKY running on a single processor,

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute of Technology, Nagpur 51 | P a g e

the limitations the algorithm places on parallelism

allow parallel CKY to surpass it given enough

processors. The Earley algorithm operates by

constructing a chart with n + 1 entries, for an n-word

sentence. It fills each entry with states representing a

partial parse tree that has been generated thus far.

Each partial subtree is represented only once. The

algorithm iterates over each entry in the chart, filling

it completely before moving to the next entry. Within

each entry, it iterates over each state in the entry,

predicting when it encounters a non-terminal state,

scanning when it encounters a terminal state, and

completing when it encounters the end of a non-

terminal state. While existing states are never

modified, these operations can add states not only to

the next entry, but also to the entry currently being

processed. Furthermore, these operations can

generate duplicates of states already present in an

entry.In order to prevent not only wasted

computation, but infinite recursion in some

grammars, entries must keep only unique states[4].

Input :Sentence and the grammer

Output:chart

Chart[0]←S’→S,[0,0]

n←length(sentence)

 //Number of words in the sentence

for i=0 to n do

 for each state in chart[i] do

 if (incomplete(state) and next category is not a

part of

 speech)then

 predictor(state)

 else if(incomplete(state) and next category is a

part of

 speech)

 scanner(state)

 else

 completer(state)

 end-if

 end-if

 end for

return

Procedure

predictor(A→X1…….B…..Xm[I,j])

 for each rule(B→α) in G do

 Insert the state B→.α,[j,j] to chart [j]

 End

Procedure

scanner(A→X1…..B…..Xm[I,j])

 If B is one of the part of speech associated with

word[j]

 then

 Insert the state B→word[j].,[j,j+1] to chart [j+1]

End

Procedure completer (A→X1….,[j,k])

 For each B→x1….A….,[I,j] in chart[j] do

 Insert the state B→x1…A….[i,k] to chart[k]

End

Fig 1 Early parsing algorithm

II. OPERATIONS IN EARLY PARSING

 At each step one of the three operations are

applicable depending on the state. Application of

these operators results in addition of new states to

either the current or next set of states.

A. Predictor

 The predictor generates new states

representing potential expansion of the non-terminal

in the leftmost derivation. A predictor is applied to

every state that has a nonterminal to the right of the

dot. The application of this operator results in this

creation of as many new states as there are grammar

rule for the non terminal.

B. scanner

When a state has a part of speech category

to the right of the dot then scanner is used. The

scanner examines the input, if it is part-of –speech

appearing to the right of the dot matches one of the

part –of-speech associated with the current input. The

parser finds a part-of-speech category next to the dot,

it checks if the category of the current word matches

with the expectation in the current state.

C. Completer

When dot reaches the right end of the rule

then completer is used. This state signifies successful

completion of the parse of some grammatical

category.

III. THE CYK PARSER
 The CKY algorithm parses sentences by

constructing an n * n chart, where each cell (hi, ji)

corresponds to the sentence fragment spanning from

word i to word nj. It fills each cell with the parse

trees for its corresponding fragment, a process that

culminates in a set of parse trees that span the entire

sentence. The insight behind the algorithm is that the

parse trees in each cell are binary combinations of the

parse trees for each way of bisecting the cell’s

sentence fragment on word boundaries. At the core of

CKY, the algorithm for computing the contents of a

single cell consists of three nested loops. The outer-

most loop bisects the sentence fragment spanned by

the new cell on each word boundary, examining each

pair (l, r) of sentence fragments that can be

concatenated to form the new cell’s sentence

fragment. Each of these sentence fragment pairs

corresponds to a pair of neighboring cells: the parses

of l are found in a cell to the left of the new cell and

the parses of r are found in a cell below it[5]. We

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute of Technology, Nagpur 52 | P a g e

refer to this outer loop as a dot product because it

combines these neighboring cells in a pair-wise

fashion, collecting parse trees that can be constructed

as binary combinations of parse trees from some pair

of cells. The inner two loops of CKY perform a join

operation between each pair of neighboring cells,

pairing up each possible parse of l with each possible

parse of r and constructing new parse trees out of any

pair of parse trees that matches the right hand side of

any grammar rule. For example, if l can be parsed as

an NP or a JJ and r can be parsed as a VP or a PP, the

algorithm will try each combination.

Let w=w1 w2 w3 w4….wj….wn

and wij=wi….wi+j-1

//Initialization step

 For i:=1 to n do

 For all rules A→wi do

 Chart[I,j]=[A]

//Recursive step

 For j=2 to n do

 For i=1 to n-j+1 do

 Begin

 Chart[i,j]=Ф

 For k= 1 to j-1 do

Chart[i,j]:=chart[i,j]U{A/A→BC is a

production

 and B є chart[i,k]

and Cє

 chart[i+k,j-k]}

 End

 If Sє chart[1,n] then accept

 Else

 reject

 Fig 2 The CYK algorithm

A. Measuring Parallelism

 When parallelizing any algorithm, it is

important to consider the algorithm’s work and span.

Work is the total amount of computation performed

by the algorithm, across all processors (or,

equivalently, the total time taken when run on one

processor). Span is a theoretical measure of the

fastest time an algorithm could execute given a

infinite number of processors. An algorithm’s span is

limited by its critical path, the longest sequence of

computations that depend on each other’s results[8].

The ratio of an algorithm’s work to its span limits its

speedup, or the performance it can achieve relative to

its single processor performance. An ideal parallel

algorithm achieves linear speed-up; that is, given P

processors, it will execute P times faster than it

would on one processor[6]

B. Parallelizing Parsing

We mention methods of parallelizing CKY

and Earley algorithms earlier. Both CKY and Earley

are instances of dynamic programming algorithms

and both divide the parsing problem into smaller

subproblems that can be solved separately[7]. This

structure makes them amenable to parallelization

because the separate subproblems can often execute

in parallel.CKY parallelizes very well because the

dependencies between operations are very sparse and

well-defined.Earley proved more difficult to

parallelize; in literature some parallelized Earley by

making the entries in the Early chart independent,

and predicting all possible rules per entry instead of

working only with a subset of states from the entry

that came before [9]. We chose to instead maintain

the top-down nature of Earley for contrast with CKY.

IV. CKY PERFORMANCE
The final CKY algorithm achieves near-

perfect scaling up to 16 cores, the number of cores

available in our test system. However, parallelism

allows the parser to scale better not only with the

number of available processors, but also with the

sentence length and grammar size. Increasing either

of these factors increases the ambiguity of the final

parse, which, in turn, increases the opportunities for

parallelism.

A. Earley Performance

Earley is a top-down parser. Single

processor performance compare against 8 processor

and 16 processor performance. The performance for

short sentences is different for a different number of

processors, but increase the sentence length and thus

the ambiguity, the gap between single processor

performance and multi-processor performance does

not widen as dramatically as with the CKY parser,

This is because as the number of words

increases, the number

of entries in the chart increases, and the Earley

parser must process these sequentially.

V. RESULTS
The CKY and Earley algorithms are

implemented on Cilk++ 4.2.4 (a commercialization

of MIT Cilk-5 [11]),utilizing Cilk’s fine-grained

work scheduling algorithm. All experiments ran on

an AMD 16-core system running Linux with 64

Gbytes of memory and used the Penn Treeback Wall

Street Journal grammar, as well as the WSJ grammar

samplings. Compare both the absolute times required

by the parser implementations, as well as their

speed-up relative to single processor performance.

Considering both is important, as the added

complexity of parallelism can negatively impact the

absolute performance of an algorithm, even if it

improves its relative performance.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute of Technology, Nagpur 53 | P a g e

VI. CONCLUSION
Natural language parsing is a natural

application for parallelization, though achieving

linear speedup requires carefully understanding the

algorithm and modifying it to create fine-grained

units of work that can be solved independently, avoid

points of synchronization, and size data to fit within a

processor’s cache. Furthermore, while some

algorithms may achieve higher performance in

traditional, single processor settings, in the parallel

realm, the scalability of an algorithm has the greatest

impact on its performance. As processing power

grows with the number of cores on a chip, utilizing

gains in computational power to better understand

and process natural language will require rethinking

existing single-threaded algorithms to take advantage

of highly scalable multicore hardware architectures.

Comparative difference between Earley

parsing algorithm and CYK parsing algorithm

Early parsing algorithm CYK parsing algorithm

The early parser implements
an efficient parallel top-

down search using dynamic
programming

The CYK parser
implements an efficient

bottom-up approach using
dynamic programming

 It builds a table of sub-trees

for each of the constituents

in the input

It builds a parse tree

incrementally by building

a parse tree of length 1.

The algorithm eliminates the

repetitive parse of a

constituent which arises
from backtracking and

successfully reduces the

exponential time problem to

polynomial time

The process is iterated

until the entired sentence

has been parsed

The early parser can handle

recursive rules such as

A→AC without getting into
an infinite loop

This algorithm considering

all rules which could

produce words in the
sentence being parsed.

This algorithms mostly used

in Context Free Grammer

This algorithm mostly used

in Statistical parsing

The early parser algorithm
fills the chart entry in

polynomial time,extracting

all parse trees still requires
an exponential amount of

time.

The search space of
possible tree structures is

usually very large and the

search is quite time
consuming

REFERENCES
[1]. Bharti,Akshar and Rajeev sangal,1990,’ A

karaka based approach to parsing of Indian

languages’proceedings of 13
th

 conference on

computational linguistics,Association for

computational linguistic-3

[2]. Chomsky,N.,1957,syntactic

structures,mouton,the hague.

[3]. Marcus,Mitchell p.,Beatrice santorini and

mary Ann,1993,’Building a large annotated

corpus of English:the penn Treebank

computational linguistic,19,pp.313-30

[4]. Charniak,Eugene,1993,statistical language

learning,MIT press,Cambridge.

[5]. J. Earley. An efficient context-free parsing

algorithm.Commun. ACM, 13(2):94–102,

1970.

[6]. J. C. Earley. An efficient context-free parsing

algorithm.PhD thesis, Pittsburgh, PA, USA,

1968.

[7]. M. Frigo, C. E. Leiserson, and K. H.

Randall.The implementation of the Cilk-5

multithreaded language.In Proceedings of the

ACM SIGPLAN ’98 Conference on

Programming Language Design and

Implementation, pages 212–223, Montreal,

Quebec,Canada, June 1998. Proceedings

published ACM SIGPLAN Notices, Vol. 33,

No. 5, May, 1998.

[8]. T. Kasami. An efficient recognition and syntax

analysis algorithm for context-free languages.

Technical Report AFCRL-65-758, Air Force

Cambridge Research Laboratory, 1965.

[9]. A.Koulouris, N. Koziris, T. Andronikos, G.

Papakonstantinou,and P. Tsanakas. A parallel

parsing VLSI architecture for arbitrary context

free grammars.In Proceedings of the

International Conference on Parallel and

Distributed Systems (ICPADS),pages 783–

790, 1998.

[10]. M. Sipser. Introduction to the Theory of

Computation, chapter 2.1, pages 98–101.

PWS, 1997.

[11]. The Cilk Project.

http://supertech.csail.mit.edu/cilk/. D. H.

Younger. Recognition and parsing of context

free languages in time n3. In Information and

Control,volume 10, pages 189–208, 1967.

