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1.Introduchtion 
Emotion recognition from sound has gain a huge 

popularity in research and development. There is a 

huge development of personal robots in recent years. 

Either they may be used for educational purposes or 

for entertainment purpose. When we see to these 

robots they may look like familiar pets such as cats or 

dogs, one such good example is the Sony AIBO 

robot,  or sometimes they may even take shape of the 

young children's such as humanoids and one good 

example of such kind of robots is Sony's SDR3-X. 

The main area of concern here is interaction with 

these machines. Interaction with these machines are 

radically different in the way we interact with 

traditional computers. Human beings learn to use 

very unnatural conventions and devices such as 

keyboards or dialog windows and also need to learn 

computers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 working in order to use them. On the contrast 

personal robots have to learn themselves natural 

conventions such as natural language or social rules 

such as politeness with appropriate modalities such as 

speech or touch which human  beings are learning 

from thousands of years and each and every human 

learns and practices the same from childhood. 

Among all the above mentioned capabilities, the most 

basic requirement that a personal robot must possess 

is the ability to grasp human emotions and in 

particular must recognize the human emotions as well 

as to express their own emotions. Importance of 

emotions are not only limited to human reasoning, 

nut also extends to centralizing social regulation and 

also in particular to control dialog flows. Emotional 

communication is both primitive and efficient enough 

so that we use it a lot when we interact with pets, in 

particular when we tame them. This is also certainly 
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what allows children to bootstrap language learning 

and it should be inspiring to teach robots natural 

language. Human beings express emotions in the two 

main ways viz. the modulation of the facial 

expressions and the modulation of the intonation of 

the voice. Researches regarding automated 

recognition of emotion in facial expression is now 

very rich and researches dealing with speech 

modality, both for automated production and 

recognition by machines has only been active for 

very few years. By the means of this paper we 

present the results for research which aims of 

automatically detecting emotions such as Excitement, 

Contentment, Depression, Anxious from the given 

sample of sound.  The overall research work consists 

of two phases viz. Training phase and Evaluation 

phase as explained in Section II. In the training phase 

the samples of sound is stored in the database along 

with the values of its Mel Frequency component 

(MFCC), Linear predictive code (LPC), Short Term 

Energy (STE), Zero crossing rate (ZCR) and Energy 

Entropy (EE) and also the type of the emotion of that 

particular sound as an input by the user. In the 

evaluation stage the given sound sample is analyzed 

and the type of the emotion is determined using rious 

algorithms such as Active Feature Selection 

algorithm and K-nearest neighbor algorithm.  

 

 

1.1 Mel Frequency Cepstral Coefficients  

(MFCC) 
 

MFCC is most extensively used in speech analysis 

since past few decades and has also gained popularity 

in music analysis. MFCC is the means by which 

spectral information in the sound can be represented. 

Here the changes within each coefficient across the 

range of the sound are examined.  The process of 

obtaining MFCC involves analyzing and processing 

the sound according to the following steps:- 

    1)  Divide the signal into frames. 

2) Get the amplitude spectrum of each frame. 

3) Take the log of these spectrums. 

4) Convert to the Mel scale. 

    5) Apply the Discrete Cosine Transform (DCT). 

The Mel scale is based on human hearing and 

therefore is a perceptual scale. 

 

 

 

1.2 Linear Predective Coding (LPC) 
 

Linear predective coding is one of the most powerful 

techniques used in speech analysis and with the help 

of Linear Predective coding, good quality speech can 

be encoded at a low bit rate and also provides 

extremely accurate estimation of speech parameters. 

LPC methods are the most widely used in speech 

coding, speech synthesis, speech recognition, speaker 

recognition and verification and for speech storage. 

The basic idea behind Linear Predective coding is 

that the current speech sample can be closely 

approximated as a linear combination of past 

samples, 

 
 

for some values of p, 's.  

For periodic signals with period  , it is obvious    

that, 

   . 

 

Basic principles of LPC are as follows:- 

1) The time-varying digital filter represents the 

effects of the glottal pulse shape, the vocal 

tract IR, and radiation at the lips 

2) The system is excited by an impulse train for   

voiced speech, or a random noise sequence for 

unvoiced speech 

3)  This „all-pole‟ model is a natural 

representation for non-nasal voiced speech—

but it also works reasonably well for nasals 

and unvoiced sounds. 

 

 

1.3  Short Term Energy (STE) 
 

The amplitude of the speech signal varies with time. 

Generally, the amplitude of unvoiced speech 

segments is much lower than the amplitude of voiced 

segments. The energy of the speech signal provides a 

representation that reflects these amplitude 

variations. Short-time energy can define as, 

 

                    

The choice of the window determines the nature of 

the short-time energy representation. In our model, 

weused Hamming window. The hamming window 

gives much greater attenuation outside the bandpass 

than the comparable rectangular window, 

(1) h(n) = 0.54 − 0.46cos(2pn /(N −1)) , 0 < n < 

N −1 

               h(n) = 0 , otherwise 
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Fig 1: Computation of Short-Time Energy 

The attenuation of this window is independent of the 

window duration. Increasing the length, N, decreases 

the bandwidth, Fig. If N is too small, will 

fluctuate very rapidly depending on the exact details 

of the waveform. If N is too large,  will change 

very slowly and thus will not adequately reflect the 

changing properties of the speech signal. 

 

1.4  Zero Crossing Rate (ZCR) 

In the context of discrete-time signals, a zero 

crossing is said to occur if successive samples have 

different algebraic signs. The rate at which zero 

crossings occur is a simple measure of the frequency 

content of a signal. Zero-crossing rate is a measure 

of number of times in a given time interval/frame 

that the amplitude of the speech signals passes 

through a value of zero. Speech signals are 

broadband signals and interpretation of average 

zero-crossing rate is therefore much less precise. 

However, rough estimates of spectral properties can 

be obtained using a representation based on the 

short time average zero-crossing rate  

 

Fig 2: Definition of zero-crossings rate 

 

 

Zero crossing rate can be defined as, 

 

Where,  

                   

And, 

                     w(n) =  

The model for speech production suggests that the 

energy of voiced speech is concentrated below about 

3kHz because of the spectrum fall of introduced by 

the glottal wave, whereas for unvoiced speech, most 

of the energy is found at higher frequencies. Since 

high frequencies imply high zero crossing rates, and 

low frequencies imply low zero-crossing rates, there 

is a strong correlation between zero-crossing rate and 

energy distribution with frequency. A reasonable 

generalization is that if the zero-crossing rate is high, 

the speech signal is unvoiced, while if the zero-

crossing rate is low, the speech signal is voiced. 

 

1.5  K Nearest Neighbor Algorithm 

K nearest neighbor algorithm is also called as lazy 

learning algorithm. This is so because it defers the 

decision to generalize till a new query is encountered. 

Whenever we have a new point to classify, we find 

its K nearest neighbors from the training data.  

Algorithm 

 

     1)For each training example <x,f(x)>,add the  

example  to the list of training examples. 

     2) Given a query instance  to be classified, 

          a) Let x1, x2..denote the k instances from   

             training examples that are nearest to . 

        b)Return the class that represents the  

              maximum of the k instances. 
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2.PROPOSED WORK 

 
The overall diagrammatic representation of the 

proposed work is as shown below:- 
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Fig3:- Diagrammatic representation of work flow 
 

 

The proposed methodology consists of two phases:-       

     2.1) Training Phase and 

     2.2) Evaluation Phase 

 

 
2.1Training Phase 

 
In training phase firstly the complete system is 

trained. In this phase various sounds as input by the 

user is saved in the database along with its value of 

Mel Frequency component or Mel Frequency cepstral 

coefficients (MFCC), Linear predictive code (LPC), 

Short Term Energy (STE), Zero crossing rate (ZCR) 

and Energy Entropy (EE) and also the type of the 

emotion of each and every particular sound is stored 

in the database as an input by the user. Either the user 

can store its own sound or there are some readymade 

sound databases available. One such database that is 

readily available is Berkeley database, and the same 

database is used in our work. The Berkeley is 

university in US where emotion based research is 

going on.   The second phase consists of an 

Evaluation phase which is as explained below. 

 

 

 2.2 Evaluation Phase 

 
In the evaluation phase firstly the sound features are    

given to Active feature selection to get active 

features from the sound sample. If the active features 

are more then 2000, then the variance of all the 

features are calculated and only those features are 

stored in the database whose value of variance is 

high. Now the active features are given as input to 

the system as shown below 

 

Features 

(AFS) 

                                                 Emotion o/p 

 

 

                            Database 

 

    
 Fig4:-Diagrammatic Representation of Evaluation 

          Phase     

 

Now the active features are given as input to the 

system. Here KNN algorithm is applied to the input 

which gives the output as emotion of the particular 

sound sample.  Some of the examples of emotions 

obtained in output consists of Excitement, 

Contentment, Depression, Anxious.  

 

 

 3.MODELING RESULT 

 

 STEP 1:- For creating database 

 

 
 

This is training phase. As early we define, here we 

take various input sound by the user and select its 

type of emotion and saved in database. Advantage of 

this technique is, size of database if not fixed and it 

manually created. 
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Stage 2:- Recognizing new input type of emotion  

 

 

 
After creating the database we are ready to get new 

input type  sound to find its emotion. This phase is 

called as evaluation phase. Where new input sound is 

check with database calculate its variance value and 

get output with its emotion type.   
 

 
4.CONCLUSION 

 

The proposed method brought forward by means of 

this paper work effectively and efficiently in 

recognition of emotion from the particular sound 

sample. Various efficient algorithms are used in the 

work, thus giving fruitful results. The overall 

research work consisted of two phases viz. training 

and evaluation wherein training phase consists of 

training of the system by user itself feeding the 

database with particular sound along with its 

emotion. Hence, the results obtained by this research 

work is a far more better than the previous works and 

the proposed method does excellent job in detecting 

emotion from particular sound sample with high 

accuracyrate.        
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