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ABSTRACT 
The RNA (RiboNucleic Acid) is a biological polymer with sugar-phosphate backbone as ribose. It usually found 

as a single strand and contains the base Uracil(U) , Adenine (A), Cytosine (C) and Guanine (G). RNA bases can 

bond and form pairs. The canonical pairs are A-U, G-C, G-U, where A-U, G-U are based on two hydrogen 

bonds and G-C is based on three hydrogen bonds. There are many methods to predict the secondary structure of 

an RNA molecule like dynamic programming, greedy programming etc. However, the dynamic programming 

approach usually takes more time. Thus, it is not very practical to solve the problem of long sequences with 

dynamic programming. Greedy programming does not guarantee the correctness.  RPGA (RNA Sequence 

prediction by the Genetic Algorithm) is a genetic algorithm to align two similar sequences where the structure of 

one of them, the master sequence, is known and the other (slave sequence) is unknown. It is possible to  predict 

the structure of an RNA molecule by analyzing several homologous sequence alignments. Here a new operation 

in RPGA is added  to mutate the residues of the base pairs in the master sequence and then realign the two 

sequences again.  
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I. INTRODUCTION 

The RNA (RiboNucleic Acid) is a biological 

polymer with sugar-phosphate backbone as ribose. It 

usually found as a single strand and contains the base 

Uracil(U) , Adenine (A), Cytosine (C) and Guanine 

(G). RNA bases can bond and form pairs. The 

canonical pairs are A-U, G-C, G-U, where A-U, G-U 

are based on two hydrogen bonds and G-C is based on 

three hydrogen bonds (as seen in Figure 1). It  plays 

important roles in many biological processes including 

gene expression and regulation. Out of these three 

bonds G-U is highly unstable (referred to as a ―wobble‖ 

pair) and thus quite rare. 

 

 

 

Fig 1: The three possible base pairs form two or three hydrogen 

bonds [29] 

Secondary structural elements in RNA are crucial to 

their functionality and can be separated into stem loops 

and pseudoknots (see Figure 2). In both elements, it is 

well known that an adenine binds with a uracil and a 

cytosine binds with a guanine. Any  

 

stem-loop or pseudoknot contains an inversion, which 

is a string of nucleotides followed closely by its inverse 

complementary sequence. 

 

 (a) Stem-loop                       (b) Pseudoknot 

Fig2: Two basic elements in RNA secondary structures.[30] 

Figure 3 shows an example of an inversion, with the 6-

nucleotide string ―ACCGCA‖ followed by its inverse 

complementary sequence ―UGCGGU‖ after a gap of 3 

nucleotides. 

 
Fig 3: Inversion with stem length 6 and gap size 3.[30] 
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A. Types of RNA 

There are several types of RNA, each with its own 

structural and functional characteristics: 

• Messenger RNA (mRNA): Encodes for the primary 

sequence of a protein through the genetic code. 

• Transfer RNA (tRNA): Binds an amino acid with its 

anti-sense codon in order to perform translation at 

the ribosome. 

• Ribosomal RNA (rRNA): Binds with proteins to 

form the ribosome - a complex which translates an 

mRNA strand to the suitable protein. 

• Small Nuclear RNA (snRNA): Short RNA 

sequences which perform ‖maintenance‖ on RNA 

(such as splicing and regulation of transcription 

factors) within the nucleus. 

• MicroRNA (miRNA): Short RNAs which can 

inhibit the translation of mRNA or increase its RNA 

structure degradation. 

B. RNA Structure 

• Primary structure - the sequence of RNA bases 

• Secondary structure - a two dimensional folding 

containing an annotation of which base pairs are 

formed. 

• Tertiary structure - a three dimensional folding 

containing a base sequence with base pair 

annotation and we describe the spatial location of 

every atom 

 

II. RNASECONDARY STRUCTURE PREDICTION 
Most secondary structure prediction 

algorithms are based on the minimization of a free 

energy (MFE) function and the search for a 

thermodynamically most stable structure starts from the 

whole RNA sequence. The search for a structure with 

global minimal free energy may be memory and time 

demanding, especially for long sequences and for 

pseudoknot predictions. At the same time, minimal 

energy configurations may not be most favorable for 

carrying out the biological functions of RNA, which 

often require the RNA to react and bind with other 

molecules (e.g., RNA binding proteins). Our current 

work suggests that local structures formed by pairings 

among nucleotides in close proximity and based on 

local minimal free energies, rather than the global 

minimal free energy, may correlate better with the real 

molecular structure of long RNA sequences. The 

secondary structure consists of the following base-

pairing patterns:  Single Strand (unpaired bases), stem, 

hairpin loop, bulge loop, interior loop, junction 

(multiloop) and pseudoknot, as shown in Figure 4. It is 

easy to see that if the primary structure and the stem 

positions are known, it is easy to determine all the other 

characteristics of the secondary structure, except for the 

pseudoknots. Normally, the common belief is that 

pseudoknots contribute very little to the energy balance 

of the RNA molecule hence a common practice to 

ignore their locations when predicting RNA folding. 

 

 

 

 

 

 

 

 

 

 
Fig 4: Typical motifs of RNA secondary structure (taken from 

Wuchty) 

 

III. OVERVIEW OF A GENETIC ALGORITHM 
A genetic algorithm has two functions, 

recombination (or crossover) and mutation. There are 

also other aspects of a genetic algorithm, which are 

described below. 

(i) Representation of an individual gene: There are 

many ways of achieving this, such as a discrete 

representation, real-valued representation, and 

order based representation.  

(ii) Evaluating fitness: In order to determine if some 

gene represents a good solution, there should be a 

way of determining the fitness of a gene. Using a 

fitness function suitable parents can be selected. 

(iii) Mutation operators: It must be ensured that a 

population stays diverse, so some mutation 

operators are to be applied to the genes. It is 

obvious that these operators depend on the type of 

representation of a gene. 

(iv) Crossover operator: Creating new genes from a 

set of genes requires an operator that selects two 

specific genes (called parents) to create one or 

more new genes (called children). 

(v) Selection of suitable parents: By using a method 

called fitness proportionate selection, it is 

possible to determine which genes are most 

suitable for reproduction and which genes should 

be excluded from the next generation. 

(vi) Stopping criteria: A genetic algorithm can in 

principle run indefinitely, so there must be some 

stopping criterion (e.g. due to a limit on 

computing resources). Detecting convergence of a 

genetic algorithm can be accomplished by 

monitoring the gene that represents the best 

solution of each generation and checking whether 

it has changed significantly during previous 

generations. 

 

IV. RNA SECONDARY PREDICTION 
The prediction of RNA structures is very 

important as well as difficult task in bioinformatics. It 

is very easy to find the primary structure of RNA 
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molecules, by the technique of sequencing. But the task 

is more difficult for secondary and tertiary structure. 

The secondary structure of RNA sequence is a set S of  

(ri,rj) over the alphabet {A, C, G, U} satisfying the 

following criteria [12]: 

1. ∀ (ri,rj)∈S,(ri,rj) ∈{(A,U), (U,A), (G,C), (C,G), 

(G,U), (U,G)}  

2. 1 ≤ i<j ≤ |S|  

3. ∀ (ri,rj), (ri’,rj’ )∈ S, i = i’⇔j = j’  

4. (ri,rj)∈ S ⇒ |j - i| ≥ 4  

 

There are many methods available to determine the 

structure of RNA molecules. One of them is an exact 

method which uses experimental techniques such as 

nucleic magnetic resonance (NMR) and X-ray 

crystallography. This approach is long, difficult and 

expensive. Another method predicts the secondary 

structure starting from the primary structure by using 

secondary prediction algorithms [13].  

    To find the RNA structure it is necessary to calculate 

energy of molecule. The energy of the molecule is the 

sum of energies of each pair of bases. The free energy 

of a structure S is given by following formula: 

                E ( S ) ∑ a ( ri , r j ) (ri,rj)∈ S 

 

a (ri , r j ) is the free energy of the pair (ri,rj). This 

method presents some limits like the relevance of the 

energy function and biological assumptions are not 

always true. Another method of score scheme to assess 

the precision of the conserved secondary structure 

information contained within the alignment, is the 

structural conservation index SCI [9]. It is based on the 

RNAalifold consensus folding algorithm (MFE) [15, 

16] which is based upon the sum of a thermodynamic 

and a covariance term. The Structural conservation 

index is computed using the following function: 

 

SCI  =  E A/  E ' 

 

Where EA is the consensus minimum free energy 

(MFE) of the alignment and E' is the average of the 

individual MFEs. The SCI is close to zero if 

RNAalifold identifies no common RNA structure in the 

alignment, while a set of perfectly conserved structures 

has an SCI≈1. An SCI >1 shows that there is a 

conserved RNA secondary structure which is, in 

addition, supported by compensatory and/or consistent 

mutations [9]. 

    The GA for RNA secondary structure prediction is 

divided in two-phases. First, the genetic algorithm is 

applied i.e., an initial population is created. In the 

second step, alignment is refined iteratively in order to 

improve the quality of the conserved secondary 

structure information of the alignment. In each 

generation a selection operation is performed to 

constitute the mature population. Then, the crossover 

and mutation operators are applied which allow 

exploring other solutions, only one type of mutations is 

selected randomly. The mature population is evaluated 

using the objective function. The global best solution is 

then updated if better one is found and the whole 

process is repeated until having satisfaction of stopping 

criterions. 

 

V. THE GENETIC APPROACH 
In this approach, initially it is required to 

derive representation scheme which includes the 

definition of an appropriate representation of potential 

alignments and the definition of evolutionary operators.  

A.  Genetic representation of alignment 

    For multiple RNA structural alignment, it is 

necessary to map potential solutions into a 

chromosome representation which canbe easily 

modifiedby genetic operators. The multiple structural 

sequence alignment Aln= {S1,S2,…,Sn} is viewed as 

an alphabetic matrix AM where: 

Each line i represents a sequence Si’. The character 

―−‖denotes a gap.  

A –CUUGGAAG Character              A – C UU G G AAG 

AUCUAG– UUG Representation     A U C U A G – U U G 

AUC– – CC – – G              A U C – –C C – – G 

Figure 3: Alphabetic representation of multiple sequence 
alignment. 

B. Population creation 

    Initial population of chromosomes is generated by 

encoding the potential sequence alignments. The initial 

solution is very important and must be significant as a 

good initial solution can effectively converge faster and 

consequently cut the computational cost.Hence initial 

population is created by a progressive alignment 

method such as ClustalW[19]. 

C. Selection 

Large numbers of selection methods are available 

having some pron and con. Using Elitism selection [20] 

it is easy to promote the best individuals of the 

population, so the best ones will participate in the 

improvement of population. Elitism method can 

increase the convergence of genetic algorithm, because 

it always preserves the best solutions in every 

generation [20]. But there is the problem of  the local 

optimum. 

D.  Mutation 

Here it is very difficult to place gaps in different 

RNA sequences. A wrong placement of gaps 

appears when gap series of the same size occur in 

different positions, or when an island of characters is 

surrounded by gaps. 
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       Less significant          More significant 

     GG – – –CAAAU  GG– – – CAAAU 
AAC– – –  CUC– – –UAC AACCUC– – – – – –  UAC 

To resolve this problem, a simple mutation based on 

changing randomly the position of gaps can be used. 

But many times the simple kind of mutation does not 

improve the solution quality. Hence it is required to 

use four adaptive mutations. The mutation operators 

operate on a gap, series of gaps, gap column and gap 

blocs. 

 

F.1. Gap Mutation 

In this type an isolated gap is chosen to a suite of 

gap in a sequence  
     

 G– –CUAUCCU –C  G– –CUAUCCU– C  
 CU– –A–AU –CUC      Mutation CU– – –AAU– CUC  
     

Fig 5: Single gap mutation. 
F.2. Gap sequence Mutation 

A sequence of gaps is moved to the left or to the right 

as it’s shown in Figure 6. 
       

 

        

 G– –CAGTCCA  Mutation  GCA– – GTCCA  
 

 CG––AATCTC    CG––AATCTC  
 

       
 

       
 

Fig6: Gap series mutation. 
F.3. Gap column Mutation 

This kind of mutation affects a set of sequences of an 

alignment. It consists in taking a column of gaps and 

moves it to the left or to the right (Figure 7). 
       

 

 

G– C–UAUCGU– 

   

G––CUAUCGU– 

 
 

     
 

     
 

 C–––AAU–CUA     Mutation  C–––AAU–CUA  
 

        

       
 

Fig7: Gap column mutation. 
F.4. Gap bloc Mutation 

A gap bloc is moved left or right. This kind of mutation 

affects many sequences (Figure 8). 
       

 

   

Mutation 
   

 

 G––CAUUCC –A   G––CAUUCC–A  
 

      

 
UA–––AUGGU – 

 

 

 
U–––AAUGGU– 

 

 

 
 

       
 

       
 

Fig 8: Gap bloc mutation. 
E. Crossover operator 

For crossover two alignments are taken and then a vertical 

cut is applied on each alignment. The next step of the 

crossover operator is to create new individuals by 

interchanging the parent parts (Figure 9). 

 
UUGAGUUUUUCU UUGAGUUUUUCU–– 
UUGAGUUCUUAU UUGAG–UUCUUA–U 

Parent 1 Son 1 
Crossover 

 

UUGAGUU––UUUCU UUGAGUU––UUUCU 
UUGAG–UUCUUA–U UUGAGUUCUUAU–– 

Parent 2 Son 2 
Fig 9: Crossover operator. 

 

F.  Fitness evaluation 

The fitness function is used to evaluate the alignment quality, 

and it is the heart of the optimization process. Normally, the 

objective function is the mathematical tool used to measure 

the degree to which two or more sequences are similar. For a 

multiple alignment which is not structurally conserved, the 

SCI will be near to 0, which predicts that there is no common 

RNA structures between different sequences. The SCI should 

be close or greater than 1for an alignment that is structurally 

conserved. If the alignment is structurally well conserved and 

compensatory and consistent mutation often occurs, the SCI 

maybe above 1. 

Hence it is possible to use the local search method is 

the genetic algorithm as follow: 

Input:A set of sequences SEQ 

(1) Generate population of n chromosomes, POP.  

  Repeat  

       Select a subset of the population using the 

selection operator.  

      Apply a crossover operation.  

      Apply a mutation operation.  

      Evaluate the current population.  

         If SCI(Alnbest) <SCI(Alni) then  

                  Alnbest = AlniandSCIbest = SCI(Alni).  

     Apply the replacement operator  

Until a termination criterion is reached. 

Output: Alnbest and CSI(Alnbest) 

 

VI. CONCLUSION 
In this paper, an approach to solve the RNA 

secondary structure prediction problem is explained. 

The objective of this study is to demonstrate the 

efficiency of the genetic algorithm and its hybridization 

with a local search method to deal with the problem at 

hand. It would be really promising to study this issue as 

ongoing work.  
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