
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 84 | P a g e

Priority Based Assignment of Shared resources in RTOS

Ms. Raana Syeda*, Ms. Manju Ahuja**, Ms. Sneha Khatwani***

Mrs. Swara Pampatwar****
*(Department of Computer Science & Engg., Jhulelal Institute of Technology, Nagpur

Email: raana.syeda@gmail.com)

** (Department of Computer Science & Engg., Jhulelal Institute of Technology, Nagpur

Email: manju.ahuja@yahoo.com)

*** (Department of Computer Science & Engg., Jhulelal Institute of Technology, Nagpur

Email: sneha_khatwani@rediffmail.com)

**** (Department of Computer Science & Engg., Jhulelal Institute of Technology, Nagpur

Email: padmajaadgulwar@gmail.com)

ABSTRACT
 A real time operating system (RTOS) is a system that allows completing the task in predictable timing

constraints. RTOS have several characteristics such as multitasking, preemption, priority, predictable task

synchronization, priority inheritance and known behavior. The major problem of RTOS is critical section

problem. In RTOS, it is difficult make available resources to all processes in deterministic and predefined time

constraint (deadline) according to their priorities. This paper deals with the study of priority based scheduling in

RTOS with available semaphore based solutions of critical section problem. It also has two new semaphore

based approaches for task synchronization in RTOS.

I. INTRODUCTION:
A real-time operating system (RTOS) is an

operating system (OS) intended to serve real-time

application requests. It supports applications that

must meet deadlines in addition to providing

logically correct results. The main property of a real-

time system is feasibility. It is the guarantees that

task always meet their deadlines, when scheduled

according to the chosen policy.

 The design of an RTOS is essentially a

balance between providing a reasonably rich feature

set for application development and deployment and,

not sacrificing predictability and timeliness. A basic

RTOS will be equipped with the following features:

i. Multitasking and Preemptibility

An RTOS must be multi-tasked and

preemptible to support multiple tasks in real-time

applications. The scheduler should be able to preempt

any task in the system and allocate the resource to the

task that needs it most even at peak load.

ii. Task Priority

Preemption defines the capability to identify

the task that needs a resource the most and allocates

it the control to obtain the resource. In RTOS, such

capability is achieved by assigning individual task

with the appropriate priority level. Thus, it is

important for RTOS to be equipped with this feature.

iii. Reliable and Sufficient Inter Task

Communication Mechanism

For multiple tasks to communicate in a

timely manner and to ensure data integrity among

each other, reliable and sufficient inter-task

communication and synchronization mechanisms are

required.

iv. Priority Inheritance

To allow applications with stringent priority

requirements to be implemented, RTOS must have a

sufficient number of priority levels when using

priority scheduling.

v. Predefined Short Latencies

An RTOS needs to have accurately defined short

timing of its system calls. The behavior metrics are:

• Task switching latency: The time needed to save the

context of a currently executing task and switching to

another task is desirable to be short.

 • Interrupt latency: The time elapsed between

execution of the last instruction of the interrupted

task and the first instruction in the interrupt handler.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 85 | P a g e

• Interrupt dispatch latency. The time from the last

instruction in the interrupt handler to the next task

scheduled to run.

vi. Control of Memory Management

To ensure predictable response to an

interrupt, an RTOS should provide way for task to

lock its code and data into real memory.

II. TASK SCHEDULING
A real-time OS has an advanced algorithm

for scheduling. Scheduler flexibility enables a wider,

computer-system orchestration of process priorities,

but a real-time OS is more frequently dedicated to a

narrow set of applications. Key factors in a real-time

OS are minimal interrupt latency and minimal thread

switching latency, but a real-time OS is valued more

for how quickly or how predictably it can respond

than for the amount of work it can perform in a given

period of time. The purpose of a real-time scheduling

algorithm is to ensure that critical timing constraints,

such as deadlines and response time, are met. When

necessary, decisions are made that favor the most

critical timing constraints, even at the cost of

violating others. Real-time scheduling is also used to

allocate processor time between tasks in soft real-

time embedded systems.

Most RTOSs today control the execution of

application software tasks by using priority-based

pre-emptive scheduling. In this approach, software

developers assign a numeric “priority” value to each

task in their application software. The RTOS’s task

scheduler will allow tasks to run, and will switch

among the tasks using the rule that “The highest

priority task that is ready to run, should always be the

task that is actually running.

2.1 Priority-based scheduling

Many real-time systems use preemptive

multitasking, especially those with an underlying

real-time operating system (RTOS). Relative

priorities are assigned to tasks, and the RTOS always

executes the ready task with highest priority.

The scheduling algorithm is the method in

which priorities are assigned. Most algorithms are

classified as static priority, dynamic priority, or

mixed priority. A static-priority algorithm assigns all

priorities at design time, and those priorities remain

constant for the lifetime of the task. A dynamic-

priority algorithm assigns priorities at runtime, based

on execution parameters of tasks, such as upcoming

deadlines. A mixed-priority algorithm has both static

and dynamic components. Needless to say, static-

priority algorithms tend to be simpler than algorithms

that must compute priorities on the fly.

To demonstrate the importance of a

scheduling algorithm, consider a system with only

two tasks, Task 1 and Task 2. Assume these are both

periodic tasks with periods T1 and T2, and each has a

deadline that is the beginning of its next cycle. Task 1

has T1 = 50 ms, and a worst-case execution time of

C1 = 25 ms. Task 2 has T2 = 100 ms and C2 = 40

ms. Note that the utilization, Ui, of task i is Ci/Ti.

Thus U1 = 50% and U2 = 40%. This means total

requested utilization U = U1 + U2 = 90%. It seems

logical that if utilization is less than 100%, there

should be enough available CPU time to execute both

tasks.

Let's consider a static priority scheduling

algorithm. With two tasks, there are only two

possibilities:

Case 1: Priority(t1) > Priority(t2)

Case 2: Priority(t1) < Priority(t2)

The two cases are shown in Figure 1. In Case 1, both

tasks meet their respective deadlines. In Case 2,

however, Task 1 misses a deadline, despite 10% idle

time. This illustrates the importance of priority

assignment.

Figure 1: Both possible outcomes for static-

priority scheduling with two tasks (T1=50, C1=25,

T2=100, C2=40)

2.2 Setting priorities

2.2.1 Rate monotonic algorithm (RMA)

The rate monotonic algorithm (RMA) is a

procedure for assigning fixed priorities to tasks to

maximize their "schedulability." A task set is

considered schedulable if all tasks meet all deadlines

all the time. The algorithm is simple:

Assign the priority of each task according to

its period, so that the shorter the period the higher the

priority. In the example, the period of Task 1 is

shorter than the period of Task 2. Following RMA's

rule, we assign the higher priority to Task 1. This

corresponds to Case 1 in Figure 1, which is the

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 86 | P a g e

priority assignment that succeeded in meeting all

deadlines.

RMA is the optimal static-priority

algorithm. If a task set cannot be scheduled using the

RMA algorithm, it cannot be scheduled using any

static-priority algorithm.

One major limitation of fixed-priority

scheduling is that it is not always possible to fully

utilize the CPU. Even though RMA is the optimal

fixed-priority scheme, it has a worst-case schedulable

bound of:

Wn = n * (21/n - 1)

Where n is the number of tasks in a system.

As you would expect, the worst-case schedulable

bound for one task is 100%. But, as the number of

tasks increases, the schedulable bound decreases,

eventually approaching its limit of about 69.3% (ln 2,

to be precise).

It is theoretically possible for a set of tasks

to require just 70% CPU utilization in sum and still

not meet all their deadlines. For example, consider

the case shown in Figure 2. The only change is that

both the period and execution time of Task 2 have

been lowered. Based on RMA, Task 1 is assigned

higher priority. Despite only 90% utilization, Task 2

misses its first deadline. Reversing priorities would

not have improved the situation.

Figure 2: Some task sets aren't schedulable

(T1=50, C1=25, T2=75, C2=30)

In this case, the only way to meet all

deadlines is to use a dynamic scheduling algorithm,

which, because it increases system complexity, is not

available in many commercial RTOSes.

Sometimes a particular set of tasks will have

total utilization above the worst-case schedulable

bound and still be schedulable with fixed priorities.

Figure 1's Case 1 is a perfect example. Schedulability

then depends on the specifics of the periods and

execution times of each task in the set, which must be

analyzed by hand. Only if the total utilization is less

than Wn can you skip that step and assume that all

the tasks will meet all their deadlines.

RMA Guidelines

To benefit most from using a fixed-priority

preemptive RTOS, consider the following rules of

thumb:

 Always assign priorities according to RMA.

Manually assigning fixed priorities will not

give you a better solution.

 If total utilization is less than or equal to

Wn, all tasks will meet all deadlines, so no

additional work needs to be done.

 If total utilization is greater than Wn, an

analysis of the specific task set is needed, to

verify whether or not it will be schedulable.

 To achieve 100% utilization when using

fixed priorities, assign periods so that all

tasks are harmonic. This means that for each

task, its period is an exact multiple of every

other task that has a shorter period.

III. SYNCHRONIZATION
Because tasks share resources, events

outside the scheduler's control can prevent the highest

priority ready task from running when it should. If

this happens, a critical deadline could be missed,

causing the system to fail. Priority inversion is the

term for a scenario in which the highest-priority

ready task fails to run when it should.

3.1 Resource sharing

Tasks need to share resources to

communicate and process data. This aspect of multi-

threaded programming is not specific to real-time or

embedded systems.

Any time two tasks share a resource, such as

a memory buffer, in a system that employs a priority-

based scheduler, one of them will usually have a

higher priority. The higher-priority task expects to be

run as soon as it is ready. However, if the lower-

priority task is using their shared resource when the

higher-priority task becomes ready to run, the higher-

priority task must wait for the lower-priority task to

finish with it. The higher-priority task is "pending"

on the resource. If the higher-priority task has a

critical deadline that it must meet, the worst-case

"lockout time" for all of its shared resources must be

calculated and taken into account in the design. If the

cumulative lockout times are too long, the resource-

sharing scheme must be redesigned.

Since worst-case delays resulting from the

sharing of resources can be calculated at design time,

the only way they can affect the performance of the

system is if no one properly accounts for them.

3.2 Critical Section

One of the methods of controlling access to

a shared resource is that we can declare a section of

code to be critical and we then regulate access to that

section. This section of code is called as critical

section. The system must ensure that only one task

can be in its critical section, no other task is allowed

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 87 | P a g e

to enter in its critical section. Thus the execution of

critical section by the tasks is mutually exclusive.

Semaphore is the simplest and widely used

synchronization tool, available in operating system or

sometimes built into a programming language as a

language construct, used for mutual exclusion.

Semaphore is also used as a signaling tool. A task can

use the resource (or enter into its critical section) if

and only if the resource is free.

Semaphore has following advantages as compared to

other synchronization tools:

• Simple to implement and use

• It is the most primitive and widely used

construct for synchronization and

communication in all operating systems

• It can be used to implement other

synchronization tools Monitors, protected

data type, bounded buffers, mailbox etc.

Apart from the advantages semaphores also have

following disadvantages:

• May leads to deadlocks and starvation

• Loss of mutual exclusion if carefully not used

• Blocking tasks with higher priorities

• Priority inversion

The following are the challenges for task

synchronization in RTOS:

• Critical section (data, service, code)

protected by lock mechanism e.g.

Semaphore etc. In a RTOS, the maximum

time a task can be delayed because of locks

held by other tasks should be less than its

timing constraints.

• Race condition may leads to deadlock,

livelock and starvation. Some deadlock

avoidance/prevention algorithms are too

complicate and non-deterministic for real-

time execution. Simplicity is preferred, like

o All tasks always take locks in the

same order.

o Allow each task to hold only one

resource.

• Priority inversion using priority-based task

scheduling and locking primitives should

know the “priority inversion” danger: a

medium-priority job runs while a high

priority task is ready to proceed.

IV. VARIOUS IMPLEMENTATIONS

OF SEMAPHORES
Following two semaphore implementations are

widely used for task synchronization:

• Busy-Wait Implementation – In this implementation, the

wait(S) operation checks for the availability of the

resource. If the resource is free then it locks the resource

and allowed to enter the task in critical section. If the

resource is busy then it waits till the resource becomes free.

After completing the operation in critical section, the task

will release the resource by making a call to the signal(S)

operation.

• Queuing Implementation – In this implementation,

the wait(S) operation checks for the availability of

the resource. If the resource is free then it locks the

resource and allowed to enter the task in critical

section. If the resource is busy then it adds the task

into the waiting queue at rear of queue. After

completing the operation in critical section, the task

will first check the waiting queue if it is not free then

handover the resource to the first task otherwise

release the resource by making a call to the signal(S)

operation. The queue can be implemented as simple

queue where the task ids can be stored.

V. SEMAPHORE IMPLEMENTATION

WITH PRIORITIES
The busy-wait implementation and queuing

implementations are not suitable for the real-time systems

due non-deterministic nature and not support for priorities.

Therefore, an implementation is required which will be

deterministic in nature and can handle the priorities. For

working in the real-time system, a new implementation is

proposed based on the queuing implementation of

semaphore with priorities. There are two variants for the

implementation is discussed for proposed implementation

of semaphore:

• Priority Queuing Semaphore Implementation

•Multiple Priorities Queuing Semaphore Implementation

A. Priority Queuing Semaphore Implementation
In this approach, a single priority queue is used in

which the task ids (or TCBs) are ordered in descending

order based on their priority value. If two tasks of same

priority are there then these will be stored in FIFO order. In

other words, if a task waits for a resource which is used by

some other executing task then it will be added into the

priority queue at the appropriate position according to its

priority value. The implementation details are described

below:

Data structure:

The dynamic priority queue is used which

will be implemented by using linked list so that there

will not be any limitation for the waiting tasks. The

number of waiting tasks will be restricted based on

the available/allotted memory space. The structure of

the node of linked list will be as follows (figure 3):

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 88 | P a g e

Figure 3: Data Structure for priority queuing

semaphore implementation

Psuedocode and logic description of wait(S)

operation:

wait(S)

{

if(S == 0)

then

insert(PQ(S), TCB, priority);

else

S = S-1;

}

Insert(PQ(S), TCB, priority)

{

Disable task switching

Newnode->TCB;

Newnode->Priority = priority;

start = S;

while (Start->Next->Priority >= priority)

Start = Start->Next;

Newnode->Next = Start->Next;

Start->Next = Newnode;

Enable task switching

}

The wait(S) operation first check whether the

resource is free by checking the value of S if it is free then

it will decrease the value of S and allow the task to enter in

the critical section. If the resource is not free then the TCB

of the requesting task will be inserted in the priority queue

along with its priority with the help of another function

insert(). The insert() function first prepare a node for the

new waiting task, then search for appropriate position in the

priority queue to add the node of the waiting task. The

insert() function must be re-entrant. Therefore, the task

switching is disabled at the beginning of this function and

enabled at the end of the function.

Psuedocode and logic description of signal(S)

operation:

Signal(s)

{

 Tasknode=delete(PQ(S),TCB)

 if Tasknode!= NULL

 then

 allocate the resource to the

Tasknode;

 else

 S = S+1;

}

Delete(PQ(S), TCB)

{

Disable task switching

node = S;

S = S->Next;

TCB = node->TCB;

free(node);

Enable task switching

}

The signal(S) operation first checks whether

any other task waits for the resource which is going

to free by the current task. if any task waiting for then

it will select highest priority task from the priority

queue with the help of delete() function and allocate

the resource to that task. If there is no task waiting

for the resource then it will increase the value of S by

one to make the resource free. The delete() function

will return the TCB of the highest priority task

(which at the front of the queue). The delete()

function must be re-entrant. Therefore, the task

switching is disabled at the beginning of this function

and enabled at the end of the function.

B. Multiple Priorities Queuing Semaphore

Implementation
In this approach, a separate queue is

maintained for each priority level. The request tasks

will be added at rear of the queue which belongs to

its priority value. The resource will be allocated to

the highest priority waiting task. If there is no task

waiting in the highest priority queue then it will

check the next priority level queue. The

implementation details are described below:

Data structure:

The dynamic multiple queues are used for

each priority level which will be implemented by

using header linked list so that there will not be any

limitation for the waiting tasks. The number of

waiting tasks will be restricted based on the

available/allotted memory space. The first node of

the list contains the information about the number of

tasks belongs to that priority level are waiting for

resources, pointer to the TCB of first waiting task,

and the pointer to the last node of the queue. The

structure of the node of linked list will be as follows

(figure 4 and figure 5):

Figure 5: Data Structure for multiple priority

queuing semaphore implementation (Header

Node)

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 89 | P a g e

Figure 4: Data Structure for multiple priority

queuing semaphore implementation (Header

Node)

Psuedocode and logic description of wait(S)

operation:

wait(S)

{

if(S == 0)

then

insert(PQ(S), TCB, priority);

else

S = S-1;

}

Insert(PQ(S), TCB, priority)

{

Disable task switching

Newnode->TCB;

Newnode->Next == NULL;

PQ[priority]->no_of_tasks++;

PQ[priority]->last_node->Next = Newnode;

Enable task switching

}

The wait(S) operation first check whether

the resource is free by checking the value of S if it is

free then it will decrease the value of S and allow the

task to enter in the critical section. If the resource is

not free then the TCB of the requesting task will be

inserted in the queue of its own priority value with

the help of another function insert(). The insert()

function first prepare a node for the new waiting task,

then append the newnode in the queue at the rear.

The insert() function must be re-entrant. Therefore,

the task switching is disabled at the beginning of this

function and enabled at the end of the function.

Psuedocode and logic description of signal(S)

operation:

signal(S)

{

tasknode = delete(PQ(S), TCB)

if tasknode != NULL

then

allocate the resource to the

tasknode

else

S = S+1;

}

Delete(PQ(S), TCB)

{

Disable task switching

i = highestpriority;

while (PQ[i]->no_of_task == 0)

i++;

node = PQ[i]->Next;

PQ[i]->Next = node->Next;

TCB = node->TCB;

free(node);

PQ[i]->no_of_task--;

Enable task switching

}

The signal(S) operation first checks

whether any other task waits for the resource which is

going to free by the current task. if any task waiting

for then it will select highest priority task from the

priority queue with the help of delete() function and

allocate the resource to that task. If there is no task

waiting for the resource then it will increase the value

of S by one to make the resource free. The delete()

function will return the TCB of the highest priority

task (which at the front of the queue). The delete()

function must be re-entrant. Therefore, the task

switching is disabled at the beginning of this function

and enabled at the end of the function.

VI. PRIORITY INVERSION

The real trouble arises at run-time, when

a medium-priority task preempts a lower-priority task

using a shared resource on which the higher-priority

task is pending. If the higher-priority task is

otherwise ready to run, but a medium-priority task is

currently running instead, a priority inversion is said

to occur.

Figure 6: Priority inversion timeline

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 90 | P a g e

This dangerous sequence of events is

illustrated in Figure 6. Low-priority Task L and high-

priority Task H share a resource. Shortly after Task L

takes the resource, Task H becomes ready to run.

However, Task H must wait for Task L to finish with

the resource, so it ends. Before Task L finishes with

the resource, Task M becomes ready to run,

preempting Task L. While Task M (and perhaps

additional intermediate-priority tasks) runs, Task H,

the highest-priority task in the system, remains in a

pending state.

To avoid unbounded priority inversion when

accessing shared resources, preemptive scheduling

requires the implementation of specific concurrency

control protocols, such as Priority Inheritance,

Priority Ceiling or Stack Resource Policy.

1. Priority inheritance:

This technique mandates that a lower-

priority task inherit the priority of any higher-priority

task pending on a resource they share. This priority

change should take place as soon as the high-priority

task begins to end; it should end when the resource is

released. This requires help from the operating

system.

2. Priority Ceiling or Stack Resource Policy:

Priority ceilings associate a priority with

each resource; the scheduler then transfers that

priority to any task that accesses the resource. The

priority assigned to the resource is the priority of its

highest-priority user, plus one. Once a task finishes

with the resource, its priority returns to normal. A

beneficial feature of the priority ceiling solution is

that tasks can share resources simply by changing

their priorities, thus eliminating the need for mutexes.

But these two solutions introduce additional

overhead and complexity, whereas non-preemptive

scheduling automatically prevents unbounded

priority inversion. On the other hand, fully non-

preemptive scheduling is too inflexible for certain

applications and could introduce large blocking times

that would prevent guaranteeing the schedulability of

the task set.

To overcome such difficulties, different

scheduling approaches have been proposed in the

literature to avoid arbitrary preemptions and limit the

length of non-preemptive execution.[2]

1) Fixed Preemption Points (FPP): According to this

model, each task is divided into a number of

nonpreemptive chunks (also called subjobs) by

inserting predefined preemption points in the task

code. If a higher priority task arrives between two

preemption points of the running task, preemption is

deferred until the next preemption point.[2]

2) Floating Non-Preemptive Regions (NPR): Another

approach is to define for each task τi a maximum

interval Qi in which the task can execute

nonpreemptively. Since the mode switching is

triggered by the arrival time of higher priority tasks,

which is unknown a priori, in this model, the non-

preemptive regions have no fixed start time, and are

considered to be “floating” in the task code.[2]

3) Preemption Thresholds: A different approach for

limiting preemptions is based on the concept of

preemption thresholds, proposed by Wang and

Saksena under fixed priority systems. This method

allows a task to disable preemption up to a specified

priority, which is called preemption threshold. Each

task is assigned a regular priority and a preemption

threshold, and the preemption is allowed to take place

only when the priority of arriving task is higher than

the threshold of the running task. This work has been

later improved by Regehr in [2].

7. COMPARISON AMONG VARIOUS

SEMAPHORE IMPLEMENTATIONS

The comparison among busy-wait, queuing

and proposed implementations of semaphores is

described in the table 1:

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Industrial Automation and Computing (ICIAC- 12-13
th
 April 2014)

 Jhulelal Institute Of Technology, Lonara, Nagpur 91 | P a g e

TABLE 1 Comparison Between Various

Semaphore Implementations

VII. CONCLUSION
The task synchronization is one of the

important issues in the general operating systems as

well as in the real-time operating systems. Due to the

pre-emption during the execution of critical section,

the task synchronization becomes more crucial in

RTOS. It is requires to take care about the priorities

of the processes during task synchronization.

Sometimes, the higher priority tasks may be

blocked by the lower priority tasks because they have

acquired the resources earlier but before release they

were pre-empted by the higher priority task. This

situation may leads to the deadlocks. To avoid the

deadlocks in this situation we can use priority

inversion in which temporarily the priority of the

lower priority process will be increased so that it can

get the CPU time and can complete its critical section

execution and can release the resource. After

releasing the appropriate resource the priority of that

task was reverted back.

Therefore, use some implementation for task

synchronization in RTOS which can support

priorities, deadlines, priority inversion to accomplish

the tasks in real-time environment.

REFERENCES
[1]. Manoj K. Gupta, Rakesh K. Arora,” Priority

Queue Based Implementation of Semaphore

for RTOS”, Published in International Journal

of Advanced Engineering & Application, Jan

2011

[2]. Gang Yao, Giorgio Buttazzo and Marko

Bertogna,” Feasibility Analysis under Fixed

Priority Scheduling with Fixed Preemption

Points”, Proceedings of the 16th IEEE

International Conference on Embedded and

Real-Time Computing Systems and

Applications(RTCSA 2010), Macau, China,

August 23-25, 2010.

[3]. Giorgio,”Why Real Time Computing”,

Proceedings of the ANIPLA International

Congress on Methadology on emerging

Technology,2006

[4]. Stewart, David and Michael Barr. "Rate

Monotonic Scheduling," Embedded Systems

Programming, March 2002, pp. 79-80.

[5]. Krithi Ramamritham,” Scheduling Algorithms

and Operating Systems Support for Real-Time

Systems” PROCEEDINGS OF THE IEEE,

VOL. 82. NO. I , January 1994.

