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ABSTRACT 
 A real time operating system (RTOS) is a system that allows completing the task in predictable timing 

constraints. RTOS have several characteristics such as multitasking, preemption, priority, predictable task 

synchronization, priority inheritance and known behavior. The major problem of RTOS is critical section 

problem. In RTOS, it is difficult make available resources to all processes in deterministic and predefined time 

constraint (deadline) according to their priorities. This paper deals with the study of priority based scheduling in 

RTOS with available semaphore based solutions of critical section problem. It also has two new semaphore 

based approaches for task synchronization in RTOS. 

 

I. INTRODUCTION: 
A real-time operating system (RTOS) is an 

operating system (OS) intended to serve real-time 

application requests. It supports applications that 

must meet deadlines in addition to providing 

logically correct results. The main property of a real-

time system is feasibility. It is the guarantees that 

task always meet their deadlines, when scheduled 

according to the chosen policy.  

 The design of an RTOS is essentially a 

balance between providing a reasonably rich feature 

set for application development and deployment and, 

not sacrificing predictability and timeliness. A basic 

RTOS will be equipped with the following features: 

 

i. Multitasking and Preemptibility 

An RTOS must be multi-tasked and 

preemptible to support multiple tasks in real-time 

applications. The scheduler should be able to preempt 

any task in the system and allocate the resource to the 

task that needs it most even at peak load. 

 

ii. Task Priority 

Preemption defines the capability to identify 

the task that needs a resource the most and allocates 

it the control to obtain the resource. In RTOS, such 

capability is achieved by assigning individual task 

with the appropriate priority level. Thus, it is 

important for RTOS to be equipped with this feature. 

 

iii. Reliable and Sufficient Inter Task 

Communication Mechanism 

For multiple tasks to communicate in a 

timely manner and to ensure data integrity among 

each other, reliable and sufficient inter-task 

communication and synchronization mechanisms are 

required. 

 

iv. Priority Inheritance 

To allow applications with stringent priority 

requirements to be implemented, RTOS must have a 

sufficient number of priority levels when using 

priority scheduling. 

 

v. Predefined Short Latencies 

An RTOS needs to have accurately defined short 

timing of its system calls. The behavior metrics are: 

• Task switching latency: The time needed to save the 

context of a currently executing task and switching to 

another task is desirable to be short. 

 • Interrupt latency: The time elapsed between 

execution of the last instruction of the interrupted 

task and the first instruction in the interrupt handler. 
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• Interrupt dispatch latency. The time from the last 

instruction in the interrupt handler to the next task 

scheduled to run. 

 

 

 

 

vi. Control of Memory Management 

To ensure predictable response to an 

interrupt, an RTOS should provide way for task to 

lock its code and data into real memory. 

 

II. TASK SCHEDULING 
A real-time OS has an advanced algorithm 

for scheduling. Scheduler flexibility enables a wider, 

computer-system orchestration of process priorities, 

but a real-time OS is more frequently dedicated to a 

narrow set of applications. Key factors in a real-time 

OS are minimal interrupt latency and minimal thread 

switching latency, but a real-time OS is valued more 

for how quickly or how predictably it can respond 

than for the amount of work it can perform in a given 

period of time. The purpose of a real-time scheduling 

algorithm is to ensure that critical timing constraints, 

such as deadlines and response time, are met. When 

necessary, decisions are made that favor the most 

critical timing constraints, even at the cost of 

violating others. Real-time scheduling is also used to 

allocate processor time between tasks in soft real-

time embedded systems.  

Most RTOSs today control the execution of 

application software tasks by using priority-based 

pre-emptive scheduling. In this approach, software 

developers assign a numeric “priority” value to each 

task in their application software. The RTOS’s task 

scheduler will allow tasks to run, and will switch 

among the tasks using the rule that “The highest 

priority task that is ready to run, should always be the 

task that is actually running.  

 

2.1 Priority-based scheduling  

Many real-time systems use preemptive 

multitasking, especially those with an underlying 

real-time operating system (RTOS). Relative 

priorities are assigned to tasks, and the RTOS always 

executes the ready task with highest priority.  

The scheduling algorithm is the method in 

which priorities are assigned. Most algorithms are 

classified as static priority, dynamic priority, or 

mixed priority. A static-priority algorithm assigns all 

priorities at design time, and those priorities remain 

constant for the lifetime of the task. A dynamic-

priority algorithm assigns priorities at runtime, based 

on execution parameters of tasks, such as upcoming 

deadlines. A mixed-priority algorithm has both static 

and dynamic components. Needless to say, static-

priority algorithms tend to be simpler than algorithms 

that must compute priorities on the fly.  

To demonstrate the importance of a 

scheduling algorithm, consider a system with only 

two tasks, Task 1 and Task 2. Assume these are both 

periodic tasks with periods T1 and T2, and each has a 

deadline that is the beginning of its next cycle. Task 1 

has T1 = 50 ms, and a worst-case execution time of 

C1 = 25 ms. Task 2 has T2 = 100 ms and C2 = 40 

ms. Note that the utilization, Ui, of task i is Ci/Ti. 

Thus U1 = 50% and U2 = 40%. This means total 

requested utilization U = U1 + U2 = 90%. It seems 

logical that if utilization is less than 100%, there 

should be enough available CPU time to execute both 

tasks.  

Let's consider a static priority scheduling 

algorithm. With two tasks, there are only two 

possibilities: 

 

Case 1: Priority(t1) > Priority(t2)  

Case 2: Priority(t1) < Priority(t2)  

 

The two cases are shown in Figure 1. In Case 1, both 

tasks meet their respective deadlines. In Case 2, 

however, Task 1 misses a deadline, despite 10% idle 

time. This illustrates the importance of priority 

assignment.  

 

 
 

Figure 1: Both possible outcomes for static-

priority scheduling with two tasks (T1=50, C1=25, 

T2=100, C2=40) 

 

2.2 Setting priorities 

 

2.2.1 Rate monotonic algorithm (RMA) 

The rate monotonic algorithm (RMA) is a 

procedure for assigning fixed priorities to tasks to 

maximize their "schedulability." A task set is 

considered schedulable if all tasks meet all deadlines 

all the time. The algorithm is simple:  

Assign the priority of each task according to 

its period, so that the shorter the period the higher the 

priority. In the example, the period of Task 1 is 

shorter than the period of Task 2. Following RMA's 

rule, we assign the higher priority to Task 1. This 

corresponds to Case 1 in Figure 1, which is the 
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priority assignment that succeeded in meeting all 

deadlines.  

RMA is the optimal static-priority 

algorithm. If a task set cannot be scheduled using the 

RMA algorithm, it cannot be scheduled using any 

static-priority algorithm.  

One major limitation of fixed-priority 

scheduling is that it is not always possible to fully 

utilize the CPU. Even though RMA is the optimal 

fixed-priority scheme, it has a worst-case schedulable 

bound of: 

Wn = n * (21/n - 1)  

Where n is the number of tasks in a system. 

As you would expect, the worst-case schedulable 

bound for one task is 100%. But, as the number of 

tasks increases, the schedulable bound decreases, 

eventually approaching its limit of about 69.3% (ln 2, 

to be precise).  

It is theoretically possible for a set of tasks 

to require just 70% CPU utilization in sum and still 

not meet all their deadlines. For example, consider 

the case shown in Figure 2. The only change is that 

both the period and execution time of Task 2 have 

been lowered. Based on RMA, Task 1 is assigned 

higher priority. Despite only 90% utilization, Task 2 

misses its first deadline. Reversing priorities would 

not have improved the situation.  

 
Figure 2: Some task sets aren't schedulable 

(T1=50, C1=25, T2=75, C2=30) 

 

In this case, the only way to meet all 

deadlines is to use a dynamic scheduling algorithm, 

which, because it increases system complexity, is not 

available in many commercial RTOSes.  

Sometimes a particular set of tasks will have 

total utilization above the worst-case schedulable 

bound and still be schedulable with fixed priorities. 

Figure 1's Case 1 is a perfect example. Schedulability 

then depends on the specifics of the periods and 

execution times of each task in the set, which must be 

analyzed by hand. Only if the total utilization is less 

than Wn can you skip that step and assume that all 

the tasks will meet all their deadlines.  

 

RMA Guidelines 

To benefit most from using a fixed-priority 

preemptive RTOS, consider the following rules of 

thumb:  

 Always assign priorities according to RMA. 

Manually assigning fixed priorities will not 

give you a better solution.  

 If total utilization is less than or equal to 

Wn, all tasks will meet all deadlines, so no 

additional work needs to be done.  

 If total utilization is greater than Wn, an 

analysis of the specific task set is needed, to 

verify whether or not it will be schedulable. 

 To achieve 100% utilization when using 

fixed priorities, assign periods so that all 

tasks are harmonic. This means that for each 

task, its period is an exact multiple of every 

other task that has a shorter period. 

 

III. SYNCHRONIZATION 
Because tasks share resources, events 

outside the scheduler's control can prevent the highest 

priority ready task from running when it should. If 

this happens, a critical deadline could be missed, 

causing the system to fail. Priority inversion is the 

term for a scenario in which the highest-priority 

ready task fails to run when it should.  

 

3.1 Resource sharing 

Tasks need to share resources to 

communicate and process data. This aspect of multi-

threaded programming is not specific to real-time or 

embedded systems.  

Any time two tasks share a resource, such as 

a memory buffer, in a system that employs a priority-

based scheduler, one of them will usually have a 

higher priority. The higher-priority task expects to be 

run as soon as it is ready. However, if the lower-

priority task is using their shared resource when the 

higher-priority task becomes ready to run, the higher-

priority task must wait for the lower-priority task to 

finish with it. The higher-priority task is "pending" 

on the resource. If the higher-priority task has a 

critical deadline that it must meet, the worst-case 

"lockout time" for all of its shared resources must be 

calculated and taken into account in the design. If the 

cumulative lockout times are too long, the resource-

sharing scheme must be redesigned.  

Since worst-case delays resulting from the 

sharing of resources can be calculated at design time, 

the only way they can affect the performance of the 

system is if no one properly accounts for them. 

 

3.2 Critical Section 

One of the methods of controlling access to 

a shared resource is that we can declare a section of 

code to be critical and we then regulate access to that 

section. This section of code is called as critical 

section. The system must ensure that only one task 

can be in its critical section, no other task is allowed 
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to enter in its critical section. Thus the execution of 

critical section by the tasks is mutually exclusive.  

Semaphore is the simplest and widely used 

synchronization tool, available in operating system or 

sometimes built into a programming language as a 

language construct, used for mutual exclusion. 

Semaphore is also used as a signaling tool. A task can 

use the resource (or enter into its critical section) if 

and only if the resource is free.  

Semaphore has following advantages as compared to 

other synchronization tools:  

• Simple to implement and use  

• It is the most primitive and widely used 

construct for synchronization and 

communication in all operating systems  

• It can be used to implement other 

synchronization tools Monitors, protected 

data type, bounded buffers, mailbox etc.  

Apart from the advantages semaphores also have 

following disadvantages:  

 
• May leads to deadlocks and starvation  

• Loss of mutual exclusion if carefully not used  

• Blocking tasks with higher priorities  

• Priority inversion  

 

The following are the challenges for task 

synchronization in RTOS:  

 

• Critical section (data, service, code) 

protected by lock mechanism e.g. 

Semaphore etc. In a RTOS, the maximum 

time a task can be delayed because of locks 

held by other tasks should be less than its 

timing constraints.  

• Race condition may leads to deadlock, 

livelock and starvation. Some deadlock 

avoidance/prevention algorithms are too 

complicate and non-deterministic for real-

time execution. Simplicity is preferred, like  

o All tasks always take locks in the 

same order.  

o Allow each task to hold only one 

resource.  

• Priority inversion using priority-based task 

scheduling and locking primitives should 

know the “priority inversion” danger: a 

medium-priority job runs while a high 

priority task is ready to proceed.  

 

IV. VARIOUS IMPLEMENTATIONS 

OF SEMAPHORES 
Following two semaphore implementations are 

widely used for task synchronization: 

 

• Busy-Wait Implementation – In this implementation, the 

wait(S) operation checks for the availability of the 

resource. If the resource is free then it locks the resource 

and allowed to enter the task in critical section. If the 

resource is busy then it waits till the resource becomes free. 

After completing the operation in critical section, the task 

will release the resource by making a call to the signal(S) 

operation.  

 

 

• Queuing Implementation – In this implementation, 

the wait(S) operation checks for the availability of 

the resource. If the resource is free then it locks the 

resource and allowed to enter the task in critical 

section. If the resource is busy then it adds the task 

into the waiting queue at rear of queue. After 

completing the operation in critical section, the task 

will first check the waiting queue if it is not free then 

handover the resource to the first task otherwise 

release the resource by making a call to the signal(S) 

operation. The queue can be implemented as simple 

queue where the task ids can be stored.  

 

V. SEMAPHORE IMPLEMENTATION 

WITH PRIORITIES 
The busy-wait implementation and queuing 

implementations are not suitable for the real-time systems 

due non-deterministic nature and not support for priorities. 

Therefore, an implementation is required which will be 

deterministic in nature and can handle the priorities. For 

working in the real-time system, a new implementation is 

proposed based on the queuing implementation of 

semaphore with priorities. There are two variants for the 

implementation is discussed for proposed implementation 

of semaphore:  

• Priority Queuing Semaphore Implementation  

•Multiple Priorities Queuing Semaphore Implementation  

 

A. Priority Queuing Semaphore Implementation  
In this approach, a single priority queue is used in 

which the task ids (or TCBs) are ordered in descending 

order based on their priority value. If two tasks of same 

priority are there then these will be stored in FIFO order. In 

other words, if a task waits for a resource which is used by 

some other executing task then it will be added into the 

priority queue at the appropriate position according to its 

priority value. The implementation details are described 

below:  

 

Data structure:  

The dynamic priority queue is used which 

will be implemented by using linked list so that there 

will not be any limitation for the waiting tasks. The 

number of waiting tasks will be restricted based on 

the available/allotted memory space. The structure of 

the node of linked list will be as follows (figure 3):  
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Figure 3: Data Structure for priority queuing 

semaphore implementation 

 

Psuedocode and logic description of wait(S) 

operation:  

 

wait(S)  

{  

if(S == 0)  

then  

insert(PQ(S), TCB, priority);  

else  

S = S-1;  

}  

 

Insert(PQ(S), TCB, priority)  

{  

Disable task switching  

Newnode->TCB;  

Newnode->Priority = priority;  

start = S;  

while (Start->Next->Priority >= priority)  

Start = Start->Next;  

Newnode->Next = Start->Next;  

Start->Next = Newnode; 

Enable task switching  

}  

 
The wait(S) operation first check whether the 

resource is free by checking the value of S if it is free then 

it will decrease the value of S and allow the task to enter in 

the critical section. If the resource is not free then the TCB 

of the requesting task will be inserted in the priority queue 

along with its priority with the help of another function 

insert(). The insert() function first prepare a node for the 

new waiting task, then search for appropriate position in the 

priority queue to add the node of the waiting task. The 

insert() function must be re-entrant. Therefore, the task 

switching is disabled at the beginning of this function and 

enabled at the end of the function.  

 

Psuedocode and logic description of signal(S) 

operation:  

Signal(s) 

{ 

 Tasknode=delete(PQ(S),TCB) 

 if Tasknode!= NULL 

 then 

  allocate the resource to the 

Tasknode; 

 else 

  S = S+1;  

} 

 

Delete(PQ(S), TCB)  

{  

Disable task switching  

node = S;  

S = S->Next;  

TCB = node->TCB;  

free(node);  

Enable task switching  

}  

 

The signal(S) operation first checks whether 

any other task waits for the resource which is going 

to free by the current task. if any task waiting for then 

it will select highest priority task from the priority 

queue with the help of delete() function and allocate 

the resource to that task. If there is no task waiting 

for the resource then it will increase the value of S by 

one to make the resource free. The delete() function 

will return the TCB of the highest priority task 

(which at the front of the queue). The delete() 

function must be re-entrant. Therefore, the task 

switching is disabled at the beginning of this function 

and enabled at the end of the function.  

 

B. Multiple Priorities Queuing Semaphore 

Implementation  
In this approach, a separate queue is 

maintained for each priority level. The request tasks 

will be added at rear of the queue which belongs to 

its priority value. The resource will be allocated to 

the highest priority waiting task. If there is no task 

waiting in the highest priority queue then it will 

check the next priority level queue. The 

implementation details are described below:  

 

Data structure:  

The dynamic multiple queues are used for 

each priority level which will be implemented by 

using header linked list so that there will not be any 

limitation for the waiting tasks. The number of 

waiting tasks will be restricted based on the 

available/allotted memory space. The first node of 

the list contains the information about the number of 

tasks belongs to that priority level are waiting for 

resources, pointer to the TCB of first waiting task, 

and the pointer to the last node of the queue. The 

structure of the node of linked list will be as follows 

(figure 4 and figure 5):  

 

 
 

Figure 5: Data Structure for multiple priority 

queuing semaphore implementation (Header 

Node) 
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Figure 4: Data Structure for multiple priority 

queuing semaphore implementation (Header 

Node) 

 

Psuedocode and logic description of wait(S) 

operation:  

 

wait(S)  

 

{  

if(S == 0)  

then  

insert(PQ(S), TCB, priority);  

else  

S = S-1;  

}  

 

Insert(PQ(S), TCB, priority)  

 

{  

Disable task switching  

Newnode->TCB;  

Newnode->Next == NULL;  

PQ[priority]->no_of_tasks++;  

PQ[priority]->last_node->Next = Newnode;  

Enable task switching  

}  

 

The wait(S) operation first check whether 

the resource is free by checking the value of S if it is 

free then it will decrease the value of S and allow the 

task to enter in the critical section. If the resource is 

not free then the TCB of the requesting task will be 

inserted in the queue of its own priority value with 

the help of another function insert(). The insert() 

function first prepare a node for the new waiting task, 

then append the newnode in the queue at the rear. 

The insert() function must be re-entrant. Therefore, 

the task switching is disabled at the beginning of this 

function and enabled at the end of the function.  

 

Psuedocode and logic description of signal(S) 

operation:  

signal(S)  

{  

tasknode = delete(PQ(S), TCB)  

if tasknode != NULL  

then  

allocate the resource to the 

tasknode  

else  

S = S+1;  

}  

 

Delete(PQ(S), TCB)  

 

{  

Disable task switching  

i = highestpriority;  

while (PQ[i]->no_of_task == 0)  

i++;  

node = PQ[i]->Next;  

PQ[i]->Next = node->Next;  

TCB = node->TCB;  

free(node);  

PQ[i]->no_of_task--;  

Enable task switching  

}  

The signal(S) operation first checks 

whether any other task waits for the resource which is 

going to free by the current task. if any task waiting 

for then it will select highest priority task from the 

priority queue with the help of delete() function and 

allocate the resource to that task. If there is no task 

waiting for the resource then it will increase the value 

of S by one to make the resource free. The delete() 

function will return the TCB of the highest priority 

task (which at the front of the queue). The delete() 

function must be re-entrant. Therefore, the task 

switching is disabled at the beginning of this function 

and enabled at the end of the function. 

VI. PRIORITY INVERSION 

The real trouble arises at run-time, when 

a medium-priority task preempts a lower-priority task 

using a shared resource on which the higher-priority 

task is pending. If the higher-priority task is 

otherwise ready to run, but a medium-priority task is 

currently running instead, a priority inversion is said 

to occur.  

 

 

Figure 6: Priority inversion timeline 
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This dangerous sequence of events is 

illustrated in Figure 6. Low-priority Task L and high-

priority Task H share a resource. Shortly after Task L 

takes the resource, Task H becomes ready to run. 

However, Task H must wait for Task L to finish with 

the resource, so it ends. Before Task L finishes with 

the resource, Task M becomes ready to run, 

preempting Task L. While Task M (and perhaps 

additional intermediate-priority tasks) runs, Task H, 

the highest-priority task in the system, remains in a 

pending state. 

To avoid unbounded priority inversion when 

accessing shared resources, preemptive scheduling 

requires the implementation of specific concurrency 

control protocols, such as Priority Inheritance, 

Priority Ceiling or Stack Resource Policy. 

 

1. Priority inheritance: 

This technique mandates that a lower-

priority task inherit the priority of any higher-priority 

task pending on a resource they share. This priority 

change should take place as soon as the high-priority 

task begins to end; it should end when the resource is 

released. This requires help from the operating 

system.  

2. Priority Ceiling or Stack Resource Policy: 

Priority ceilings associate a priority with 

each resource; the scheduler then transfers that 

priority to any task that accesses the resource. The 

priority assigned to the resource is the priority of its 

highest-priority user, plus one. Once a task finishes 

with the resource, its priority returns to normal. A 

beneficial feature of the priority ceiling solution is 

that tasks can share resources simply by changing 

their priorities, thus eliminating the need for mutexes.  

But these two solutions introduce additional 

overhead and complexity, whereas non-preemptive 

scheduling automatically prevents unbounded 

priority inversion. On the other hand, fully non-

preemptive scheduling is too inflexible for certain 

applications and could introduce large blocking times 

that would prevent guaranteeing the schedulability of 

the task set. 

To overcome such difficulties, different 

scheduling approaches have been proposed in the 

literature to avoid arbitrary preemptions and limit the 

length of non-preemptive execution.[2] 

1) Fixed Preemption Points (FPP): According to this 

model, each task is divided into a number of 

nonpreemptive chunks (also called subjobs) by 

inserting predefined preemption points in the task 

code. If a higher priority task arrives between two 

preemption points of the running task, preemption is 

deferred until the next preemption point.[2] 

2) Floating Non-Preemptive Regions (NPR): Another 

approach is to define for each task τi a maximum 

interval Qi in which the task can execute 

nonpreemptively. Since the mode switching is 

triggered by the arrival time of higher priority tasks, 

which is unknown a priori, in this model, the non-

preemptive regions have no fixed start time, and are 

considered to be “floating” in the task code.[2] 

3) Preemption Thresholds: A different approach for 

limiting preemptions is based on the concept of 

preemption thresholds, proposed by Wang and 

Saksena under fixed priority systems. This method 

allows a task to disable preemption up to a specified 

priority, which is called preemption threshold. Each 

task is assigned a regular priority and a preemption 

threshold, and the preemption is allowed to take place 

only when the priority of arriving task is higher than 

the threshold of the running task. This work has been 

later improved by Regehr in [2]. 

 

7. COMPARISON AMONG VARIOUS 

SEMAPHORE IMPLEMENTATIONS  

 

 
The comparison among busy-wait, queuing 

and proposed implementations of semaphores is 

described in the table 1:  
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TABLE 1 Comparison Between Various 

Semaphore Implementations 
 

 
 

VII. CONCLUSION 
The task synchronization is one of the 

important issues in the general operating systems as 

well as in the real-time operating systems. Due to the 

pre-emption during the execution of critical section, 

the task synchronization becomes more crucial in 

RTOS. It is requires to take care about the priorities 

of the processes during task synchronization.  

Sometimes, the higher priority tasks may be 

blocked by the lower priority tasks because they have 

acquired the resources earlier but before release they 

were pre-empted by the higher priority task. This 

situation may leads to the deadlocks. To avoid the 

deadlocks in this situation we can use priority 

inversion in which temporarily the priority of the 

lower priority process will be increased so that it can 

get the CPU time and can complete its critical section 

execution and can release the resource. After 

releasing the appropriate resource the priority of that 

task was reverted back.  

Therefore, use some implementation for task 

synchronization in RTOS which can support 

priorities, deadlines, priority inversion to accomplish 

the tasks in real-time environment. 
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