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ABSTRACT 
We estimate the Bitcoin volatility usingthe realized stochastic volatility model. The model parameters are 

determined by Bayesian inference usingthe Markov chain Monte Carlo method. We apply the hybrid Monte 

Carlo method for the volatility update process, which is the most time-consuming part. We investigate several 

integrators in the hybrid Monte Carlo method and find that the 2
nd

 order minimum norm integrator outperforms 

the others. The parameterphiof the model is found to be close to one, which indicates that the Bitcoin volatility 

ispersistent. We test the accuracy of the estimated volatilities by using standardized returns. The distribution of 

the standardized returns is found to be close to the standard normal distributions, which indicates that the 

volatility is estimated accurately by the realized stochastic volatility model. 

Keywords–Bitcoin, Hybrid Monte Carlo method, Hamiltonian Monte Carlo method, Realized volatility, 

Standardized return 
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I. INTRODUCTION 
 Volatility is of great importance in 

empirical finance to measure and forecast risk on the 

financial markets. Commonly used methods to 

estimate volatility are model-based 

methods,whichuse a specific model,such as the 

generalized  autoregressive conditional 

heteroskedasticity (GARCH) model [1] and the 

stochastic volatility (SV) model [2-4], to capture 

time-series properties. The original GARCH model 

[1]wasdesigned to capture the symmetric volatility 

that reacts to positive and negative returns equally. 

There exist various extended versions of the 

GARCH model that can capture the asymmetric 

characteristic of volatility (e.g., see[5-9]). The 

asymmetric volatility is especially important for 

equities becausethey respond asymmetrically to 

positive andnegative shocks, which is known as the 

leverage effect [10-11]. 

 The SV model is alsocommonly usedto 

estimate volatility and can also capture the 

asymmetry of volatility. Furthermore, Ref.[12] 

proposedthe realized SV (RSV) model, which 

utilizes realized volatility (RV) data as additional 

information to determine the volatility. By using the 

additional data, the RSV model is expected to 

estimate more accurate volatilities. 

  In the model-based methods, the model’s 

parameters are determined so that the model matches 

the underlying time series. For GARCH-type 

models, this matching process is usually performed 

usingthe maximum likelihood method. Bayesian 

inference can also be used toestimate the 

model’sparameters, and variousMarkov chain Monte 

Carlo (MCMC) methods have been examined 

toperform Bayesian inference GARCH-type models 

(e.g., see [13-21]). Becausethe likelihood function of 

the SV model is written in integral form and,thus,is 

not easily tractable in the maximum likelihood 

approach, Bayesian inference is often chosen for 

theSV model’sparameter estimations. Through 

several studies, anefficient MCMC scheme has been 

developed for the SV model [22-26].  

 This study focuses on the estimation ofthe 

volatility of Bitcoin’s return time series by the RSV 

model.Bitcoin has attracted much interest from 

researchersand has been recognized as an innovative 

payment medium. In recent years, several studies on 

Bitcoin have been conducted,including on its 

hedging capabilities [27], bubbles [28], price 

clustering [29], multifractality [30], relationships 

with other financial assets [31], Taylor effect [32], 

and market efficiency[33-38]. Properties of Bitcoin 

volatility have also been investigated[39-44], and an 

interesting property called “inverted leverage effect” 

has beenfound in cryptocurrency markets.  

 To estimate Bitcoin volatility, we use the 

RSV model and perform Bayesian inference for this 

model. For the volatility update process, which is the 

most time-consuming part, we adapt the hybrid 

Monte Carlo (HMC) method [45], whichwas 

originally developed for lattice quantum 

chromodynamics (QCD) simulations and has later 

been utilized in various other fields. The HMC 
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method, which is also known as the Hamiltonian 

Monte Carlo method,has been tested for the SV 

model, for which ithas been shown to 

samplevolatility variables more effectively than for 

the Metropolis method[46-47]. One of the distinct 

features of the HMC method is that it is easily 

parallelized, and its GPU computing can accelerate 

volatility updates in the RSV model[48-49].  

 The HMC method consists of a molecular 

dynamics (MD) simulation and aMetropolis test. In 

the MD simulation, Hamilton’s equations of motion 

are solved by an appropriate integrator. In this study, 

wealso investigate several other integrators and 

compare their performance. 

 This paper is organized as follows. Section 

2 describes the RSV model;Section 3 introduces the 

HMC method;Section 4 describesthe data 

used;Section 5 presents the results; andfinally, 

section 6presents the conclusions. 

 

Realized Stochastic volatility model 
The RSV modelused in this study is formulatedas 

follows [12]. 

Rt = exp(ht/2)εt ,   εt~N(0,1),  t = 1,⋯ , T  (1) 

lnRVt = ξ + ht + ut , ut~N(0,σu
2 ),  t = 1,⋯ , T  (2) 

ht+1 = μ + ϕ ht − μ + ηt ,ηt~N 0,ση
2 , 

t = 1,⋯ , T − 1            (3) 

h1 = μ + η0,       η0~N(0,
ση

2

1−ϕ
),                           (4)  

 where Rt  is the daily return on day t, RVt  is 

the daily RV with 5min sampling frequency (e.g., 

see [50]),and ht  is the log volatility defined by 

ht ≡ ln(σt
2). The model parameters neededfor the 

estimationare μ,ϕ,ση
2 , ξ,  and σu

2 and we denote 

θ =  θ1,⋯ , θ5 = (μ,ϕ,ση
2 , ξ,σu

2 ) . We estimate 

these parameters through Bayesian inference. From 

the Bayes’ theorem, the posterior density of h and 

θ is given by 

P θ, h R, RV ~f(R, RV|θ, h)π(θ),                        (5) 

 where f R, RV θ, h  is the conditional 

likelihood function for the RSV model, andπ(θ) is 

the prior density for θ. In this study, we use the flat 

prior for μ,ϕ, and ξ ,and for σu
2  and ση

2  we use 

π σu
2 = 1/σu

2  andπ ση
2 = 1/ση

2 , respectively. 

The conditional likelihood function f R, RV θ, h  is 

expressedas 

f R, RV θ, h =  
1 − ϕ2

2πση
2

exp −
(h1 − μ)2

2ση
2 /(1 − ϕ2)

 × 

 
1

 2πση
2

T

t=2

exp  −
(ht − μ − ϕ(ht−1 − μ))2

2ση
2

 × 

 
1

 2πσt
2

T
t=1 exp −

Rt

2σt
2 

1

 2πσu
2

exp  −
(lnR Vt−ξ−ht )2

2σu
2  .

(6)  

In Bayesian inference, the parameters are obtained 

as expectation values through the posterior 

densityE θi : 
E θi =  θiP θ, h R, RV dθdh /Z,          (7) 

where Z  is the normalization constant given by 

Z =  P θ, h R, RV dθdh . Because(7) is not 

analytically tractable, we estimate it usingthe 

MCMC method. For θ = (μ,ϕ,ση
2 , ξ,σu

2 ), we use 

the standard MCMC update technique[22-24]. The 

most time-consuming part is the update of volatility 

variables h, for which we use the HMC method. 

 

hybrid monte Carlo algorithm 
 We employ the HMC method to update the 

volatility variablesin the MCMC process. The HMC 

method is described as follows. First, we define the 

Hamiltonian H as 

H h, p =
1

2
p2 − lnP θ, h R, RV ,                       

(8) 

where  p = (p1,⋯, pT)  are conjugate momenta to 

volatility variables h = (h1 ,⋯ , hT) and p2 ≡
 pi

2T
i=1 .Using H, (7) is rewritten as 

E θi =  θiexp(−H h, p )dθdhdp /Z ,               

(9) 

 where Z =  exp(−H h, p  dθdhdp . To 

estimate (9)withthe MCMC method, we need to 

sample  h, p  with the probability density 

~exp(−H h, p ) . In the HMC method, candidate 

variables are generated by solving Hamilton’s 

equations of motion as 
dhi

dτ
=

∂H

∂pi
,                                   (10) 

dpi

dτ
= −

∂H

∂hi
.                           (11) 

To solve (10)–(11), we perform the MD simulation 

with an appropriate integrator. The simplest 

integrator for the HMC method is the 2
nd

 order 

leapfrog (2LF) integrator [47]. However, the 2LF 

integrator is not the only choice for the HMC 

method, and other integrators such as high-order 

[51-52] and minimum-norm (MN) integrators [53] 

can be used. In this study, we use the 2LF, 4
th

 order 

MN,and 2
nd

 order MN (2MN) integrators and 

compare their performance. 

In the Lie algebra formalism [54-56], Hamilton’s 

equations of motion are given by 
df

dτ
=  f, H ,                              (12) 

where f =hor p and  ,  is the Poisson bracket. 

Defining the linear operator L(H) by  

L 𝐻 𝑓 =  𝑓,𝐻 ,                                 (13) 

the formal solution of (12) is given by  

𝑓 𝜏 + ∆𝜏 = 𝑒𝑥𝑝 ∆𝜏𝐿 𝐻  𝑓(𝜏).             (14) 

Rewriting L(H) as 

𝐿 𝐻 = 𝐿  
1

2
𝑝2 − 𝐿 𝑙𝑛𝑃 𝜃, ℎ 𝑅,𝑅𝑉   
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= 𝑇 + 𝑉 ,                                             

(15) 

the2LF integrator is given by decomposing 

𝑒𝑥𝑝 ∆𝜏(𝑇 + 𝑉)  as 

𝑒𝑥𝑝 ∆𝜏(𝑇 + 𝑉) = 𝑒𝑥𝑝  
∆𝜏𝑇

2
 𝑒𝑥𝑝 ∆𝜏𝑉 𝑒𝑥𝑝  

∆𝜏𝑇

2
 +

𝑂(𝛥𝜏3).                                                                (16) 

Letting 𝐼2(∆𝜏) denote the2LF integrator, we obtain 

 𝐼2(∆𝜏) = 𝑒𝑥𝑝  
∆𝜏𝑇

2
 𝑒𝑥𝑝 ∆𝜏𝑉 𝑒𝑥𝑝  

∆𝜏𝑇

2
 .      (17) 

The higher-order integrators can be constructed 

through the 2
nd

 order LF integrator [54,56]. The 

(2k+2)th order integrator  𝐼2𝑘+2(∆𝜏)  is given 

recursively by 

 𝐼2𝑘+2 ∆𝜏 =  𝐼2𝑘(𝑎1∆𝜏) 𝐼2𝑘(𝑎2∆𝜏) 𝐼2𝑘(𝑎1∆𝜏) ,    

(18) 

where 

𝑎1 =
1

1−21/(2𝑘+1),                       (19) 

𝑎2 =
21/(2𝑘+1)

1−21/(2𝑘+1).                  (20) 

 Although the higher-order integrators have 

higher-order error terms that inducefewererrors, the 

cost to implement the integratoris higherwith higher-

order degrees, which makes the integrator less 

efficient. The cost of the n-th order integrator 

relative to the 2
nd

 order LF integrator increases 

as3
𝑛

2
−1

[51]. For instance, the relative cost of the 4
th

 

order integrator is 3
𝑛

2
−1 = 3 for n=4. In general, the 

efficiency of the higher-order integrators depends on 

the model used. For lattice QCD simulations, higher-

order integrators are expected to be effective for 

models with a large system size [51].  

 The 2MN integratoris more attractive than 

other integrators becauseit is expected to 

havefewerintegration errors without model 

dependence [52,56]. The 2MN integrator 

 𝐼2𝑀𝑁 ∆𝜏 is described as  

 𝐼2𝑀𝑁 ∆𝜏 = 𝑒𝜆𝛥𝜏𝑇𝑒
∆𝜏𝑉

2 𝑒(1−2𝜆)𝛥𝜏𝑇 𝑒
∆𝜏𝑉

2 𝑒𝜆𝛥𝜏𝑇 . (21) 

The error of this integrator can be minimized at 

𝜆 ≈ 0.193183 [52,56]. The relative cost of the 2MN 

integrator is approximately2.  

 In the MD simulation, an appropriate 

integrator is repeatedly appliedk times, and h and p 

are integrated up to the length 𝑙 = ∆𝜏 × 𝑘. Here, we 

set 𝑙 = 2 . Then, the new variables h and p are 

accepted with a Metropolis probability of 

~𝑚𝑖𝑛[1, 𝑒𝑥𝑝 −∆𝐻 ] , where ∆𝐻 = 𝐻(ℎ 𝜏 +
𝑙,𝑝𝜏+𝑙)−𝐻(ℎ𝜏,𝑝𝜏). 

 

II. DATA 
 In this study, we use Bitcoin Tick data (in 

dollars) traded inCoinbasefrom January 28, 2015, to 

January 6, 2019, downloaded from 

Bitcoincharts[58].  From this data set, we construct 

daily returns and daily realized volatilities calculated 

with a 5min sampling frequency. Figs.1 and 2 

display time series of daily returns and daily realized 

volatility, respectively. Both daily returns and daily 

realized volatilities are used as input data to the RSV 

model. 

Fig.1 Daily return of Bitcoin. 

Fig.2 Daily realized volatility of Bitcoin. 

 

III. RESULTS 
 First, we investigate the performance of the 

different integrators(2LF, 4
th

MN, and 2MN)used in 

the HMC method. More precisely, we use the 

integrators  𝐼2(∆𝜏),  𝐼4(∆𝜏), and 𝐼2𝑀𝑁 ∆𝜏  in the MD 

simulations. We calculate the acceptance for various 

step sizes∆𝜏, and then define the efficiency function 

of the integrators [51] by 

𝐸𝐹𝐹(𝐴𝑐𝑐) = ∆𝜏 × 𝐴𝑐𝑐(∆𝜏),                          (22) 

 where 𝐴𝑐𝑐 ∆𝜏  is the acceptance at ∆𝜏. (22) 

takes a maximum value at a certain optimal 

acceptance. An analytical calculation 

[51]indicatedthat the optimal acceptance 𝐴𝑐𝑐𝑜𝑝𝑡  

depends only on the degree of the integrator as 

follows: 

𝐴𝑐𝑐𝑜𝑝𝑡 = 𝑒𝑥𝑝 
1

𝑛
 .                                      

(23) 

 (23) implies that 𝐴𝑐𝑐𝑜𝑝𝑡 is0.61 and 0.78 for 

the 2
nd

 and 4
th

 integrators, respectively. Fig.3 shows 

the efficiency function 𝐸𝐹𝐹(𝐴𝑐𝑐) of the 2LF 

integrator as a function of step size∆𝜏.It is found that 

𝐸𝐹𝐹 𝐴𝑐𝑐 ismaximum around Acc=0.6–0.7, which 

is consistent with the result from (23). Similarly, 

Fig.4 shows the𝐸𝐹𝐹(𝐴𝑐𝑐) of the 4
th

order integrator, 
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and reveals that 𝐸𝐹𝐹 𝐴𝑐𝑐 ismaximum around Acc= 

0.7–0.8, which is alsoconsistent withthe result from 

(23).  

Fig.3 Efficiency ofthe 2LF integrator as a function 

of acceptance. 

 

 To evaluate the actual performance of the 

integrators, we calculate the relative efficiency ofthe 

2LF integrator as 𝐸𝐹𝐹4𝑡ℎ(𝐴𝑐𝑐𝑜𝑝𝑡 )/𝐸𝐹𝐹2𝐿𝐹(𝐴𝑐𝑐𝑜𝑝𝑡 ). 

From Figs.3 and 4, we find 𝐸𝐹𝐹4𝑡ℎ 𝐴ccopt  = 0.11 

and EFF2LF Accopt  =0.049. Thus, EFF4th (Accopt )/

EFF2LF Accopt  is approximately 2.2. This value is 

lowerthan that of the relative cost of the 4
th

order 

integrator, i.e., 3, which indicates that the 4
th

 

integrator is less efficient than the 2LF integrator. 

 

Fig.4 Efficiency ofthe 4
th

 order integrator as a 

function of acceptance. 

 

Fig.5shows EFF(Acc)  of the 2MN integrator and 

reveals thatAccopt ≈ 0.7.BecauseEFF2MN  Accopt   is 

found to be approximately0.25, the relative 

efficiency of the 2MN integrator, i.e., 

EFF2MN (Accopt )/EFF2LF Accopt  , is approximately 

5.1.Becausethe relative cost of the 2MN integrator is 

2, itsrelative efficiency is higher than the relative 

cost, which means that the 2MN integrator 

outperforms the 2LF integrator, in agreement with 

previous results [53]. 

Fig.5 Efficiency ofthe 2MN integrator as a function 

of acceptance. 

 

 Table 1lists the results of the parameters. 

We use the 2MN integrator in the HMC simulation 

and collect 25000 samples after 5000 thermalization 

processes. The results in Table 1 are average values 

over the 25000 collected samples. The parameter ϕ 

is related to the persistenceof volatility; if ϕ is close 

to 1, the volatility time series has strong persistence. 

We foundϕ = 0.8255 , which is close to 1, and 

thus,the time series of Bitcoin volatility has the 

property of persistence. Fig.6 shows the Bitcoin 

volatility time-series estimated by the RSV model. 

AS shown in the figure,the Bitcoin volatility exhibits 

volatility clustering, i.e., the tendency of large 

changes in volatilities to cluster. The presence of 

volatility clustering is also in agreement with the 

volatility persistence.  

 

Table. 1Estimatedparameters. 

μ ϕ ση
2  

-7.48(2) 0.8255(6) 0.696(3) 

ξ σu
2   

0.206(2) 0.065(2)  

 

Fig.6 Volatility estimated by the RSV model. The 

volatility results are averages calculated from 25000 

samples. 
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 Fig.7 shows the return distribution,which is 

identified as leptokurtic. Table 2 lists the results of 

variance, kurtosis, and skewness. The kurtosis is 7.5, 

which exceeds the value of 3 of the normal 

distribution. The skewness appearsto be zero. To test 

the accuracy of the volatility estimated by the RSV 

model, we calculate the returns standardized 

(e.g.[59-65]) by the estimated volatilities. Let us 

assume that the returnRt  at day t is  

Rt = σtεt ,               εt~N(0,1),               (24) 

and calculate the standardized return as 

Rt
   = Rt/σt .                                              (25) 

 We use the volatility obtained by the RSV 

model for σt .If the volatility is accurately estimated, 

the standardized returns Rt
    exhibit the standard 

normal variables. Fig.8 shows the distribution of the 

standardized returns, which is foundtobeclose to the 

standard normal distribution.As shown in Table 2, 

the variance and kurtosisare found to be 0.936 and 

2.63, respectively, which are consistent with those of 

the standard normal distribution and confirmsthat the 

volatility isestimated accurately by the RSV model.  

 

Fig.7 Original return distribution. 

 

Fig.8 Standardized return distribution. Thesolid red 

curve is equal to
exp  −

r2

2
 

 2π
. 

Table 2. Variance, kurtosis, and skewness values 

obtained. 

 Original return Standardized 

return 

variance 1.5(3) × 10−3 0.936(3) 

kurtosis 7.5(11) 2.63(5) 

skewness -0.13(30) 0.09(15) 

 

IV. CONCLUSION 
 We performed Bayesian inference of the 

RSV model to estimate Bitcoin volatility using the 

HMC method for the volatility update process, 

which is the most time-consuming part ofthe 

Bayesian inference of the RSV model. We examined 

2LF, 4
th

order MN, and 2MN integrators and 

foundthat the 2MN integrator is the most efficient 

for the present case. The parameter ϕwasfound to be 

close to one, which indicates that the volatility time 

series waspersistent.  

 We testedthe accuracy of theestimated 

volatility by using standardized returns and found 

that, while the original distribution is leptokurtic, the 

distribution of the standardized returns is consistent 

with the standard normal distribution, which 

indicates that the RSV model estimated the Bitcoin 

volatilities accurately.  
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