www.ijera.com

ISSN:

RESEARCH ARTICLE

OPEN ACCESS

Theoretical Calculation of Surface Energy of Anatase TiO_2 (111) and $ZrO_2(111)$: An Important Parameter for Osseointegration of Dental Implants

MetinÇalışır^{*},SalihAkbudak^{**}

^{*}Department of Periodontology, Faculty of Dentistry, AdiyamanUniversity, 02100 Adiyaman, Turkey. ^{**}Department of Physics, Faculty of Arts and Sciences, Adiyaman University, 02100 Adiyaman, Turkey. Corresponding Author:MetinÇalışır

ABSTRACT

The characteristics of the materials that are used for dental implants are critical for the success of the implant process. Surface energies of the materials that are used for implant surgery are especially important for osseointegration of the implant and to prevent implant failure. In this study, we performed a theoretical analysis of the surface energies of two prominent materials. The surface energies of anatase TiO_2 (111) and ZrO_2 (111) were calculated with General Utility Lattice Program (GULP). Through analysis of surface energy values, usage of TiO_2 (111) and ZrO_2 (111) in dental implants is discussed in detail. Obtained theoretical results show that surface energy of TiO_2 (111) is greater than the surface energy of ZrO_2 (111) which is consistent with the literature.

Keywords: Dental Implants, Surface Energy, TiO₂, ZrO₂.

Date Of Submission:15-09-2018

Date Of Acceptance: 01-10-2018

I. INTRODUCTION

Materials may exert higher conductivity, higher surface area, and better biocompatibility characteristics atnanodimensions compared to their macro forms. Thus, studies in nanoscale contribute to the production of novel materials in different fields such as physics, chemistry, biology, medicine and dentistry [1-5]. One of the fields that nanotechnology is widely used in is nanodentistry. Advances innanomaterials, nanosurgery and nanodrugs will shape the future of clinicalnanodentistry [6]. These fields become more important especially for the success of dental implants [7].

One of the most common causes of failure in dental implants is the lack of osseointegration between the implant and the bone. Interactions between the cells and the material interface affect the attachment of blood and bone cells to the surface, and their proliferation and differentiation. This is an important factor for enhancing osteointegration and implant success [8-13]. Interactions between the biomaterials and the cells depend on the surface features of the biomaterials, such as surface topography, surface energy and physical and chemical characteristics [14]. Especially the surface feature of implants is very important in implant technology which increases the importance of nanodentistry. Although there are many studies investigating the role of surface topography of implants on biological response, the

number of studies evaluating surface energy of dental implants is rather low [15].

Presence of a hydrophilic surface accelerates the interactions of the implant surface with blood, thereby enhancing wound healing and osseointegration, and is closely related to the surface energy of the biomaterial [16]. Different materials used in implant construction have different surface properties and different surface energies [17]. Implant surface energy is an important factor in the regulation of osteogenesis. Depending on the surface energy, the materials might have a hydrophilic or a hydrophobic surface [18]. Generally, when the implant surface is charged, the surface positively becomes hydrophilic and some of the plasma proteins required to create the initial osteogenic interactions areadsorbed to these surfaces [19]. This shows the importance of surface energy on osseointegration. Titanium (Ti) and Ti-based alloys are widely used especially in dental implants due to their excellent biocompatibility and excellent mechanical properties [12]. These titanium-based implants have an unreactiveoxide layer on their surfaces that resists rusting and promotes osseointegrationof the

resists rusting and promotes osseointegration of the surrounding bone tissue [23]. Increasing use of dental implants has led to the search for new materials to be used in orthopedic applications that would be an alternative to titanium implants. One of these materials is zirconium. When exposed to oxygen, zirconium is converted to the biocompatible zirconium dioxide (ZO, chemically ZrO_2) [24]. Zirconium dioxide has been shown to enhance the osseointegration of the surface [12].

Previously, theoretical and experimental studies have been performed that analyze the surface energies of titanium dioxide and zirconium dioxide [23-26]. However, theoretical studies on the investigation of surface energies in dental practice are lacking. Since surface energy has been shown to effect osseointegration, the aim of this study was to theoretically calculate and compare the surface energy of two different implant surfaces, TiO₂ and ZrO₂, by using General Utility Lattice Program (GULP), which is a forcefield based program.

II. METHODS

Total Lattice Energy of TiO_2 (Bulk), ZrO_2 (Bulk), anatase TiO_2 (111) and ZrO_2 (111) were obtained by GULP [27-28]. GULP is designed to perform a variety of tasks based on force field methods. Dreiding force field method was used for TiO_2 surface [29], and Lewis force field method was used for ZrO_2 surface. For both systems, P1 symmetry was adopted. Surface energy of the surfaces was obtained by using the following formula;

$$\Delta U_{SE} = \frac{U_{surf} - U_{Bulk}}{A}(1)$$

where ΔU_{SE} is surface energy, U_{surf} is the total

lattice energy of the (111) surface, U_{Bulk} is the total lattice energy of the bulk system and A is the surface area. We have cleaved the surfaces along Y (u) and XY (v) planes for both TiO₂ and ZrO₂.

For TiO₂ (111), u is 5.34 Å, v is 10.21 Å and contact angle is 105°. The surface thickness for TiO₂ (111) surface was set to 15.42 Å. For bulk TiO₂, lattice parameters are a = 3,776, b = 3,776 and c = 9,486 Å, respectively.

For ZrO_2 (111), u and v are 3.58 Å and contact angle is 120°. The surface thickness for ZrO_2 (111) was set to 11.71 Å. For bulk ZrO_2 , lattice parameters are a = b = c = 5,070 Å.

III. RESULTS AND DISCUSSION

This study presents the calculation and comparison of the surface energies of two different implant materials which were previously proven to be successful as dental implants.

Utilization dental implants in completely or partially edentulous patients is a scientifically accepted and well documented treatment method [30]. Titanium and titanium alloys have become gold standard for implant surgery in dentistry due totheir excellent bio compatibility, appropriate mechan ical properties and proven success as dental implants [20] (Fig. 1a). The titanium dioxide layer that is formed when the titanium surface contacts with oxygen forms the basis of its biocompatibility. The characteristics of the titanium dioxide layer on the surface are very important for its biological activity during implant-bone osseointegration [21]. However, some aesthetic concerns regarding the titanium implants have led researchers to search for new alternative biocompatible implant materials. Zirconium is one of the major materials that present a suitable alternative. Due to its tooth-like colors superior (aesthetic advantage), mechanical properties, and biocompatibility, zirconium has been proposed to be used as a dental implant material [31] (Fig. 1b). Thus, in the present study, we evaluated titanium and zirconium as the most commonly used implant materials.

 TiO_2 (bulk) and anatase TiO_2 (111) surfaces are shown in Fig. 2. Similarly, Fig. 3 shows ZrO_2 (111) and ZrO_2 (bulk). In Fig. 2, the red color represents the oxygen atom and the grey color shows the titanium atom. In Fig. 3, the red color represents the zirconium atom while the light blue color shows the oxygen atom.

The physical, chemical and surface properties of a biomaterial play fundamental roles in osseointegration. The surface characteristics of the implant material are one of the main factors that wound healing promote and enhance osseointegration of the implant within the tissue [32]. Particularly, surface energy has been shown to promote migration of bone cells to the implant during surface osteogenesis, thus boostingosseointegration. The hydrophilicity or hydrophobicity of the surfaces arecorrelated to the surface energy of the materials (Fig. 4a-b).The positive value of surface energy indicates that the surface is hydrophilic[18, 19]. In this study, both titanium dioxide and zirconium dioxide surfaces were found to have positive surface energy values and the surface energy of titanium was found to be higher.In vitro and in vivo studies that analyzed these two surfaces exhibited the biocompatibility of these two implant materials, and their clinical success [12].Hydrophilic surfaces enable the biomacromolecules in the blood to attach to the implant surface and fill the space between the implant and the bone tissue, thus causing osteoblasts to migrate to the region and ultimately resulting in complete osseointegration[13]. Our results suggest that the calculated positive surface energies of both of these materials may be related to their hydrophilic characteristics.

Lattice total energies together with surface area are presented in Table 1 for both TiO_2 and ZrO_2 . Surface energies of TiO_2 and ZrO_2 are shown in Table 2. The results in Table 2 clearly show that the surface energy of TiO_2 is higher than that of ZrO_{2} , which is in agreement with the literature [33-35].

Several studies have previously evaluated the clinical usage of titanium and zirconium implants, which showed that the clinical success rates of titanium and zirconium implants are comparable [33-37]. The results of the current work suggest that the surface energy of the titanium dioxide surface is higher. In parallel with these results, several studies have shown that the boneimplant contact of titanium implants is higher compared to zirconium implants[33-35].

IV. CONCLUSION

To the best of our knowledge, this is the first study to compare the surface energies of two different implant surfaces that are frequently used in dental implants. Our results show that the surface energy of the titanium dioxide surface is higher than that of the zirconium dioxide surfaces. These results are consistent with the previous studies showing the clinical and experimental success of implants with titanium and zirconium surfaces. Results obtained in this study will shed light onto new theoretical studies about titanium and zirconium implants.

REFERENCES

- [1]. P. Li, M. Zhou, L. Zhang, Y. Guo, andF.Liu,Formation of a quantumspinHallstate on a Ge(111) surface,Nanotechnology, 27(9), 2016, 095703.
- [2]. G.Peng,andM.Mavrikakis,AdsorbateDiffusio nonTransitionMetalNanoparticles,NanoLette rs, 15(1),2015, 629-634.
- [3]. X.Yin, M.J. Stott, and A. Rubio, α- and βtricalciumphosphate: Adensity functional stud y, Physical Review B, 68, 2003, 205205.
- [4]. F.Ren,X. Lu,andY. Leng,Ab initiosimulation on theorystalstructureandelasticproperties of carbonatedapatite,JournaloftheMechanicalBe havior of BiomedicalMaterials, 26, 2013, 59-67.
- [5]. Y. Lin,H. Ma, C.W. Matthews,B. Kolb, S. Sinogeikin, T. Thonhauser, andW.L. Mao,ExperimentalandTheoreticalStudies on aHighPressureMonoclinicPhaseofAmmonia Borane,TheJournal of PhysicalChemistry C, 116(3), 2012, 2172-2178.
- [6]. H. Aeran, V. Kumar, S. Uniyal, and P. Tanwer, Nanodentistry: Is just a fiction orfuture, JournalofOralBiologyandCraniofacialResear ch, 5(3), 2015, 207–211.
- [7]. A.P. Tomsia,J.S. Lee,U.G. Wegst,and E. Saiz,Nanotechnologyfordentalimplants,The International Journal

ofOral&MaxillofacialImplants, 28(6), 2013, 535-546.

- [8]. D.V.Kilpadi,andJ.E.Lemons,Surfaceenergyc haracterizationofunalloyedtitaniumimplants, JournalofBiomedicalMaterialsResearch, 28(12), 1994,1419–1425.
- [9]. Z.Schwartz,andB.D.Boyan,UnderlyingMech anismsattheBoneBiomaterialInterface, Journ al of Cellular Biochemitry, 56(3), 1994,340– 347.
- [10]. K.Kieswetter,Z.Schwartz,D.D.Dean,andB.D. Boyan,Theroleofimplantsurfacecharacteristic sin thehealingofbone, CriticalReviews in Oral BiologyandMedicine, 7(4),1996, 329– 345.
- [11]. R.K. Sinha,F. Morris,S.A. Shah,andR.S. Tuan,Surfacecompositionoforthopaedicimpl antmetalsregulatescellattachment, spreading, andcytoskeletalorganizationof primaryhumanosteoblastsinvitro,ClinicalOrt hopaedicsandRelatedResearch, 305, 1994, 258–272.
- [12]. V. Sollazzo, F. Pezzetti, A. Scarano, A. Piattelli, C.A. Bignozzi, L.Massari, G. Brunelli, and F. Carinci, Zirconiumoxidecoatingimprovesimp lantosseointegrationin vivo, Dental Materials, 24(3), 2008, 357–361.
- [13]. S. Sista,C. Wen,P.D. Hodgson,andG. Pande,Theinfluence of surfaceenergy of titanium-zirconiumalloy on osteoblastcellfunctions in vitro, Journal of BiomedicalMaterialsResearchPartA, 97(1), 2011,27-36.
- J.M. Sautier, J.R. Nefussi, and N.Forest,Surface-reactivebiomaterials in osteoblastcultures: an ultrastructuralstudy,Biomaterials, 13(6), 1992, 400-402.
- [15]. F. Rupp,L. Scheideler,M. Eichler,andJ.Geis-Gerstorfer,WettingBehavior of DentalImplants, TheInternationalJournal of Oral&MaxillofacialImplants, 26(6), 2011,1256–1266.
- [16]. S.K. Roehling, B.Meng,andD.L. Cochran,SandblastedandAcid-EtchedImplantSurfacesWithorWithout High SurfaceFreeEnergy: ExperimentalandClinical Background. In: Wennerberg, A.,Albrektsson, T., Jimbo, R. (eds) ImplantSurfacesandtheirBiologicalandClin icalImpact,(Berlin: Springer,Heidelberg, 2015) 93-136.
- [17]. F. Rupp, R.A. Gittens, L. Scheideler, A. Marmur, B.D. Boyan, Z. Schwartz, and J. Geis-Gerstorfer, A Review on the Wettability of Dental Implant Surfaces: Theoretical and Exp

erimentalAspects,ActaBiomaterialia,10(7), 2014,2894–2906.

- [18]. T. Sawase, R. Jimbo, K. Baba, Y. Shibata, T. Ikeda, and M. Atsuta, Photoinduced hydrophilicity enhances initial cell beh aviorandearly bone apposition, Clinical Oral Implants Research, 19(5), 2008, 491-496.
- [19]. R. Jimbo, M.Ivarsson, A. Koskela, Y.T. Sul, and C.B. Johansson, Proteinad sorption to su rfacechemistry and crystal structure modificati on of titanium surfaces, Journal of Oral & Maxilo facial Research, 1(3), 2010, e3.
- [20]. O.E. Pohler, Unalloyed titanium for implants in bone surgery, Injury, 31(4), 2000, 7–13.
- [21]. H.F.Hildebrand,andJ.C.Hornez,Biologicalres ponseandbiocompatibility.In:J.A.Helsen,H.J. Breme(eds.)Metalsas Biomaterials, (UK, Wiley, Chichester, 1998) 265–290.
- [22]. Y. Yang, J.L. Ong, and J.Tian, Deposition of highlyadhesiveZrO₂coatingonTiandCoCrMo implantmaterialusingplasmaspraying, Biomaterials, 24(4), 2003,619–627.
- [23]. A.Christensen, and E.A.Carter, Firstprinciples study of thesurfaces of zirconia, Physical Review B, 58(12), 1998, 8050-8064.
- [24]. A.A. Levchenko, G.Li,J. Boerio-Goates, B.F. Woodfield,andA. Navrotsky, TiO₂StabilityLandscape: Polymorphism, SurfaceEnergy, andBoundWaterEnergetics,Chemistry of Materials,18(26), 2006, 6324–6332.
- [25]. A.L.Silva, D.Hotza, and R.H.R.Castro, Surface energy effects on the stability of an at ase and rutil enanocrystals: A predictive diagram for Nb₂O₅doped-TiO₂, Applied Surface Science, 393, 2017, 103-109.
- [26]. F. Yuan,S.X. Lu,W.G. Xu, H.F. Zhang, andT.Ning,FirstprinciplesStudyontheSurface Energies of Rutile TiO₂(110) vs (011)-2×1Surfaces,Advanced MaterialsResearch, 937,2014, 113-117.
- [27]. J.D. Gale, GULP: Acomputer program forthesymmetry-adaptedsimulation of solids, JournaloftheChemicalSocietyFaradayTransa ctions,93, 1997,629.
- [28]. J.D.Gale,andA.L.Rohl,TheGeneralUtilityLat ticeProgram(GULP),MolecularSimululation, 29, 2003, 291-341.
- [29]. S.L.Mayo,B.D.Olafson,andW.A.Goddard,D REIDING:agenericforcefieldformolecularsi mulations,TheJournal of PhysicalChemistry, 94(26), 1990,8897-8909.
- [30]. M. Gahlert, T. Gudehus, S. Eichhorn, E. Steinhauser, H. Kniha, and W. Erhardt, Biomech anical and histomorphometric comparison betw eenzirconia implants with varying surface textu resand a titanium implant in the maxilla of

miniaturepigs, ClinicalOralImplantsResearch, 18(5), 2007, 662–668.

- [31]. R. Depprich, H. Zipprich, M.Ommerborn, C. Naujoks, H.P.Wiesmann, S. Kiattavorncharoen, H.C. Lauer, U. Meyer, N.R.
 Kübler, and J. Handschel, Osseointegration of zi rconiaimplants compared with titanium: an in vivostudy, Head & Face Medicine, 4, 2008, 30.
- [32]. T.Albrektsson,P.I.Branemark,H.A.Hansson, andJ.Lindström,Osseointegratedtitaniumimp lants. Requirementsforensuring a longlasting, direct bone-to-implantanchorage in man,ActaOrthopaedicaScandinavica, 52(2), 1981, 155–170.
- [33]. R.J. Kohal, D.Weng, M. Bächle, and J.R.Strub, Loaded custom madezir conia and tita niumimplants Show similar osseo integration: an animal experiment, Journal of Periodon to log y, 75(9), 2004, 1262–1268.
- [34]. O.Hoffmann,N. Angelov,F. Gallez,R.E. Jung,andF.E.Weber,Thezirconiaimplantboneinterface:apreliminaryhistologicevaluati oninrabbits,TheInternationalJournalofOral& MaxillofacialImplants, 23(4), 2008, 691– 695.
- [35]. B. Bacchelli,G. Giavaresi,M. Franchi, D.Martini, V. De Pasquale, A. Trirè, M. Fini, R. Giardino, and A. Ruggeri, Influence of a zirconias and blasting treated surface on periimplant bone healing: an experimental stud y in sheep, Acta Biomaterialia, 5(6), 2009, 2246–2257.
- [36]. J.H.Dubruille,E.Viguier,G.LeNaour,M.T.Du bruille,M.Auriol,andY. Le Charpentier, Evaluation of combinations of titanium, zirconia, and alümina implantswith 2 bone fillers in thedog,TheInternationalJournalof Oral&MaxillofacialImplants,14(2),1999, 271–277.
- [37]. M.Franchi,B.Bacchelli,D.Martini,V.D.Pasqu ale,E.Orsini,V.Ottani,M.Fini,G. Giavaresi,R. Giardino,and A. Ruggeri,Earlydetachment of titaniumparticlesfromvariousdifferentsurface s of endosseousdentalimplants,Biomaterials, 25(12),2004, 2239–2246.

Figure captions

Fig.1. a)Titaniumimplant, b)Zirconiumimplant

Fig.2: Graphical display of (a) TiO_2 (111) surface and (b) TiO_2 (bulk). Red colored atoms in (a) and (b)

areoxygenandgreycoloredonesaretitaniumatoms. **Fig.3:** Graphicaldisplay of (a) ZrO_2 (111) surfaceand (b) ZrO_2 (bulk). Redcoloredatoms in (a) and(b) arezirconiumandlightbluecoloredonesareoxygenato ms.

TABLES

Fig.4.a)Hydrophobicsurface, **b**)Hydrophilicsurface. Acceleratedcoveringof theimplantsurfacewithblood [16].

Table 1: Total latticeenergies of TiO₂ (Bulk), TiO₂ (111), ZrO₂ (Bulk) and ZrO₂(111) giventogetherwith the surface area of TiO₂ (111) and ZrO₂ (111).

System	Total LatticeEnergy (kJ/mol)	SurfaceArea (Å ²)
TiO ₂ (Bulk)	6550,0375	
TiO ₂ (111)	34749,5781	52,624291
ZrO ₂ (Bulk)	-10700,5076	
ZrO ₂ (111)	-8199,2380	11,130353

Table 2: Surfaceenergy of TiO_2 (111) and ZrO_2 (111).		
System	SurfaceEnergy (J/m ²)	
TiO ₂	88,91	
ZrO_2	37,33	

FIGURES

www.ijera.com

Fig. 1. A)Titaniumimplant, B)Zirconiumimplant

61|P a g e

DOI: 10.9790/9622-0809055763

(b)

Fig. 2: Graphicaldisplay of (a) TiO₂ (111) surfaceand (b) TiO₂ (bulk). Redcoloredatoms in (a) and (b) areoxygenandgreycoloredonesaretitaniumatoms.

(a)

(b)

Fig. 3: Graphicaldisplay of (a) ZrO₂ (111) surfaceand (b) ZrO₂ (bulk). Redcoloredatoms in (a) and (b) arezirconiumandlightbluecoloredonesareoxygenatoms.

Metin Çalışır Journal of EngineeringResearchand Application www.ijera.com 2248-9622 Vol. 8, Issue 9 (Part -V) Sep 2018, pp57-63

A

Fig. 4.A)Hydrophobicsurface, B)Hydrophilicsurface. Acceleratedcovering of theimplantsurfacewithblood [16].

MetinÇalışırand SalihAkbudak. "Theoretical Calculation Of Surface Energy OfAnatase TiO2 (111) And ZrO2(111): An Important Parameter For Osseointegration Of Dental Implants "International Journal of Engineering Research and Applications (IJERA), vol.8, no.9, 2018, pp57-63